1
|
Hara T, Suzuki Y, Nakazawa T, Nishimura H, Nagasawa S, Nishiguchi M, Matsumoto M, Hatanaka M, Kitamura M, Seya T. Post-translational modification and intracellular localization of a splice product of CD46 cloned from human testis: role of the intracellular domains in O-glycosylation. Immunology 1998; 93:546-55. [PMID: 9659228 PMCID: PMC1364134 DOI: 10.1046/j.1365-2567.1998.00455.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We obtained a unique CD46 cDNA, STc/CY4, from the human testis, the predicted amino acid sequence of which suggested the presence of a novel isoform of CD46. This message was present predominantly in the testis, and the predicted isoform possessed a short (11 amino acids) transmembrane section (TM) and an unidentified cytoplasmic tail (CY). When expressed in Chinese hamster ovary (CHO) cells, this CD46 isoform underwent no O-glycosylation and was mostly retained in the endoplasmic reticulum. This unusual behaviour of the new isoform was due in part to the short TM and the unusual sequences of the CY. The molecular mass of this isoform was 42,000, approximately 20,000 smaller than conventional CD46. These properties of the STc/CY4 isoform were similar to those of sperm CD46. The only difference between sperm CD46 and the STc/CY4 isoform expressed on CHO cells was that only the latter possessed N-linked sugars of high mannose types. Since the STc/CY4 isoform may behave like sperm CD46 in cellular localization and post-translational modification, studies of sperm-egg interassociation were performed using hamster eggs and CHO cell clones expressing various isoforms including the STc/CY4. Rosette formation was seen most effectively between hamster eggs and STc/CY4-expressing CHO cells. These results infer that O-glycosylation perturbs CD46-mediated sperm-binding to eggs and thus sperm CD46 lacking O-linked sugars can serve as an adhesion molecule. The possible role of CD46 in fertilization and the structural differences between sperm and conventional CD46 are discussed.
Collapse
Affiliation(s)
- T Hara
- Department of Immunology, Osaka Medical Centre for Cancer and Cardiovascular Diseases, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Kröning H, Kähne T, Ittenson A, Franke A, Ansorge S. Thiol-proteindisulfide-oxidoreductase (proteindisulfide isomerase): a new plasma membrane constituent of mature human B lymphocytes. Scand J Immunol 1994; 39:346-50. [PMID: 7511832 DOI: 10.1111/j.1365-3083.1994.tb03384.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The thiol-proteindisulfide-oxidoreductase (TPO, EC 1.8.4.2., proteindisulfide isomerase, EC 5.3.4.1.) is known as an cytoplasmatic enzyme, and is thought to be involved in the post-translational folding of disulfide containing proteins. Using monoclonal and polyclonal antibodies the authors were able to prove that this enzyme or an unknown homologous protein is localized also to the plasma membrane of B lymphocytes. In peripheral blood from healthy donors 11% of the mononuclear cells (PBMNC) expressed this surface antigen whereas in PBMNC of patients with B-cell chronic lymphocytic leukaemia 76% of the MNC were positive. This value correlates well with the known B-cell markers CD19 and CD20. However, this antigen is different from all known clustered B-cell markers. Immunoprecipitation analysis of PHA-stimulated PBMNC and of cells from patients suffering from chronic lymphocytic leukaemia revealed a membrane protein with the same molecular weight (61 kDa) as the TPO. These data suggest that this enzyme is present not only in the cytoplasm but also on the surface of B cells and that it is possibly involved in the regulation of the SH-SS status of the cell membrane proteins of B lymphocytes.
Collapse
Affiliation(s)
- H Kröning
- Department of Internal Medicine, University Otto von Guericke Magdeburg, Germany
| | | | | | | | | |
Collapse
|
3
|
Dawson DB, Varandani PT. Characterization and application of monoclonal antibodies directed to separate epitopes of glutathione-insulin transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 923:389-400. [PMID: 2435325 DOI: 10.1016/0304-4165(87)90047-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Five monoclonal antibodies specific for glutathione-insulin transhydrogenase were characterized. None of the monoclonal antibodies cross-reacted with another insulin-degrading enzyme, neutral thiopeptidase. The isotype of four antibodies was IgG1 and of the fifth IgG2b. Affinity studies, competitive binding studies and immunoblot analysis of CNBr and trypsin cleavage products of glutathione-insulin transhydrogenase demonstrated that the four IgG1 antibodies were directed to an epitope of the enzyme which was distinct from the epitope recognized by the IgG2b antibody. Inhibition studies indicated that each monoclonal antibody, when added singly to glutathione-insulin transhydrogenase, was unable to inhibit the insulin-degrading activity of the enzyme. However, when monoclonal antibodies directed against separate epitopes of glutathione-insulin transhydrogenase were presented together (i.e., the IgG2b with any one of the four IgG1 antibodies), a loss in enzymatic activity was noted. Immunoblot analysis of rat organ extracts with the IgG1 antibodies demonstrated one immunoreactive protein band of Mr 56,000 in all tissues examined (liver, fat, pancreas and kidney) except the spleen, which demonstrated two immunoreactive protein bands of Mr 56,000 and 51,000. The same immunoblots, when probed with the IgG2b antibody, demonstrated the same immunoreactive protein banding pattern as above plus an additional immunoreactive protein band of Mr 67,000 in all tissues. Studies with spleen extracts from steptozotocin-induced diabetic rats demonstrated that there was a loss of the 51,000 immunoreactive band in diabetes. This 51,000 protein was restored upon insulin treatment of the diabetic rats and nullified upon concomitant administration of cycloheximide or actinomycin D with insulin. Immunoblots of human liver, adipose and skeletal muscle extracts indicated that each monoclonal antibody cross-reacted with the human form of the enzyme which had a molecular weight of Mr 63,000; a second minor immunoreactive band of 67,000 was detected with the IgG2b antibody. The physiological significance of additional molecular forms of the enzyme (i.e., 67,000 and 51,000) remains to be determined.
Collapse
|
4
|
Abstract
Protein disulphide-isomerase (PDI) activity was not detectable in freshly prepared rat liver microsomes (microsomal fraction), but became detectable after treatments that damage membrane integrity, e.g. sonication, detergent treatment or freezing and thawing. Maximum activity was detectable after sonication. Identical latency was observed in microsomes prepared by gel filtration and in those prepared by high-speed centrifugation. PDI activity was latent in all particulate subcellular fractions, but not latent in the high-speed supernatant. When all fractions were sonicated to expose total PDI activity, PDI was found at highest specific activity in the microsomal fraction and co-distributed with marker enzymes of the endoplasmic reticulum. Washing of microsomes under various conditions that removed peripheral proteins and, in some cases, bound ribosomes did not remove significant quantities of PDI, nor did it affect the latency of PDI activity. Treatment of microsomes with proteinases, under conditions where the permeability barrier of the microsomal vesicles was maintained intact, did not inactivate PDI significantly or affect its latency. PDI was very readily solubilized from microsomal vesicles by low concentrations of detergents, which removed only a fraction of the total microsomal protein. In all these respects, PDI resembled nucleoside diphosphatase, a marker peripheral protein of the luminal surface of the endoplasmic reticulum, and differed from NADPH: cytochrome c reductase, a marker integral protein exposed at the cytoplasmic surface of the membrane. The data are compatible with a model in which PDI is loosely associated with the luminal surface of the endoplasmic reticulum, a location consistent with the proposed physiological role of the enzyme as catalyst of formation of native disulphide bonds in nascent and newly synthesized secretory proteins.
Collapse
|
5
|
Roth RA, Mesirow ML. Production and characterization of a monoclonal antibody to rat liver thiol: protein-disulfide oxidoreductase/glutathione-insulin transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 788:189-92. [PMID: 6743666 DOI: 10.1016/0167-4838(84)90261-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rat liver thiol:protein-disulfide oxidoreductase/glutathione-insulin transhydrogenase (glutathione:protein disulfide oxidoreductase, EC 1.8.4.2) was purified and found to give two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis. A monoclonal antibody was produced against this enzyme preparation and found to remove all the insulin degrading activity of purified preparations of the enzyme. This monoclonal antibody was also found to react with the two different forms of the enzyme observed on gel electrophoresis. These results suggest that glutathione-insulin transhydrogenase can exist in more than one state.
Collapse
|
6
|
Abstract
Protein disulphide-isomerase can be partially purified from the high-speed-supernatant fraction of extensively disrupted chick-embryo tendon tissue. The catalytic properties of the preparation resemble those of the enzyme from mammalian liver. Gel electrophoresis and isoelectric focusing show the enzyme to be very acidic, with pI 4.4 +/- 0.3. Gel filtration indicates an Mr for the active enzyme of 140 000. The enzyme can be partially purified by preparative gel filtration or isoelectric focusing, but its limited stability has prevented purification to homogeneity; active fractions from both gel filtration and isoelectric focusing show two major polypeptide components by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The major polypeptides present in partially purified preparations have Mr 45 000 and 55 000; the latter band co-distributes with the enzyme activity in fractionations by both gel filtration and isoelectric focusing. The subcellular location of the enzyme cannot be established from work on homogenates of whole tissue, which are extensively disrupted. In homogenates from isolated tendon cells, the enzyme is located in a vesicle fraction that is excluded from Sepharose 2B but is of low density and can only be sedimented at very high speeds. This fraction is identified as deriving from the endoplasmic reticulum on the grounds of marker-enzyme studies and electron microscopy.
Collapse
|
7
|
Hillson DA, Lambert N, Freedman RB. Formation and isomerization of disulfide bonds in proteins: protein disulfide-isomerase. Methods Enzymol 1984; 107:281-94. [PMID: 6503714 DOI: 10.1016/0076-6879(84)07018-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Mills EN, Lambert N, Freedman RB. Identification of protein disulphide-isomerase as a major acidic polypeptide in rat liver microsomal membranes. Biochem J 1983; 213:245-8. [PMID: 6615426 PMCID: PMC1152114 DOI: 10.1042/bj2130245] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein disulphide-isomerase was purified to homogeneity from rat liver by a rapid high-yielding procedure. Structural properties of the pure enzyme were very similar to those of the bovine liver enzyme purified by the same method. The purified rat liver enzyme was subjected to two-dimensional gel electrophoresis in the presence and in the absence of microsomal membranes, and shown to co-electrophorese with a major acidic polypeptide clearly identifiable in the two-dimensional electrophoretic profile of microsomal membranes. This identification was confirmed by peptide 'mapping' of the pure enzyme and of the defined spot from a two-dimensional electrophoresis gel.
Collapse
|
9
|
Lambert N, Freedman RB. Structural properties of homogeneous protein disulphide-isomerase from bovine liver purified by a rapid high-yielding procedure. Biochem J 1983; 213:225-34. [PMID: 6615424 PMCID: PMC1152112 DOI: 10.1042/bj2130225] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein disulphide-isomerase from bovine liver was purified to homogeneity as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, two-dimensional electrophoresis and N-terminal amino acid analysis. The preparative procedure, a modification of that of Carmichael, Morin & Dixon [(1977) J. Biol. Chem. 252, 7163-7167], is much faster and higher-yielding than previous procedures, and the final purified material is of higher specific activity. The enzyme has Mr 57 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, both in the presence and in the absence of thiol compounds. Gel-filtration studies on Sephadex G-200 indicate an Mr of 107 000, suggesting that the native enzyme is a homodimer with no interchain disulphide bonds. Ultracentrifugation studies give a sedimentation coefficient of 3.5S, implying that the enzyme sediments as the monomer. The isoelectric point, in the presence of 8 M-urea, is 4.2, and some microheterogeneity is detectable. The amino acid composition is comparable with previous analyses of this enzyme from bovine liver and of other preparations of thiol:protein disulphide oxidoreductases whose relation to protein disulphide-isomerase has been controversial. The enzyme contains a very high proportion of Glx + Asx residues (27%). The N-terminal residue is His. The pure enzyme has a very small carbohydrate content, determined as 0.5-1.0% by the phenol/H2SO4 assay. Unless specific steps are taken to remove it, the purified enzyme contains a small amount (5 mol/mol of enzyme) of Triton X-100 carried through the purification.
Collapse
|
10
|
Lambert N, Freedman RB. Kinetics and specificity of homogeneous protein disulphide-isomerase in protein disulphide isomerization and in thiol-protein-disulphide oxidoreduction. Biochem J 1983; 213:235-43. [PMID: 6615425 PMCID: PMC1152113 DOI: 10.1042/bj2130235] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The protein disulphide-bond isomerization activity of highly active homogeneous protein disulphide-isomerase (measured by re-activation of 'scrambled' ribonuclease) is enhanced by EDTA and by phosphate buffers. As shown for previous less-active preparations, the enzyme has a narrow pH optimum around pH 7.8 and requires the presence of either a dithiol or a thiol. The dithiol dithiothreitol is effective at concentrations 100-fold lower than the monothiols reduced glutathione and cysteamine. The enzyme follows Michaelis-Menten kinetics with respect to these substrates; Km values are 4,620 and 380 microM respectively. The enzyme shows apparent inhibition by high concentrations of thiol or dithiol compounds (greater than 10 X Km), but the effect is mainly on the extent of reaction, not the initial rate. This is interpreted as indicating the formation of significant amounts of reduced ribonuclease in these more reducing conditions. The purified enzyme will also catalyse net reduction of insulin disulphide bonds by reduced glutathione (i.e. it has thiol:protein-disulphide oxidoreductase or glutathione:insulin transhydrogenase activity), but this requires considerably higher concentrations of enzyme and reduced glutathione than does the disulphide-isomerization activity. The Km for reduced glutathione in this reaction is an order of magnitude greater than that for the disulphide-isomerization activity, and the turnover number is considerably lower than that of other enzymes that can catalyse thiol-disulphide oxidoreduction. Conventional two-substrate steady-state analysis of the thiol:protein-disulphide oxidoreductase activity indicates that it follows a ternary-complex mechanism. The protein disulphide-isomerase and thiol:protein-disulphide oxidoreductase activities co-purify quantitatively through the final stages of purification, implying that a single protein species is responsible for both activities. It is concluded that previous preparations, from various sources, that have been referred to as protein disulphide-isomerase, disulphide-interchange enzyme, thiol:protein-disulphide oxidoreductase or glutathione:insulin transhydrogenase are identical or homologous proteins. The assay, nomenclature and physiological role of this enzyme are discussed.
Collapse
|
11
|
Myllylä R, Oikarinen J. A rapid and sensitive assay for protein disulphide isomerase activity. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1983; 7:115-21. [PMID: 6187793 DOI: 10.1016/0165-022x(83)90045-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An assay procedure for the determination of protein disulphide isomerase activity is presented. The method is based on the reactivation of randomly cross-linked RNAase, the extent of RNAase reactivation being determined from the degradation of radioactively labelled RNA. The method is rapid and sensitive and allows one to test a large number of samples simultaneously.
Collapse
|
12
|
Takamori K, Thorpe JM, Goldsmith LA. Skin sulfhydryl oxidase. Purification and some properties. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 615:309-23. [PMID: 6251889 DOI: 10.1016/0005-2744(80)90499-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A sulfhydryl-oxidizing enzyme has been found in skin of young rats and a method for purifying the enzyme over 600-fold has been developed. Enzymatic activity was assayed either by its ability to oxidize dithiothreitol of by measuring its ability to renature reductively denatured ribonuclease A. Skin sulfhydryl oxidase catalyzed the oxidation of various thiols: dithiothreitol, dithioerythritol, D-penicillamine, and L-cysteine. Glutathione and 2-mercaptoethanol were very poor substrates for the enzyme. The enzyme also reactivated reductively denatured ribonuclease A, with neither the presence of a thiol nor prior reduction of the enzyme being necessary. The molecular weight of the enzyme was estimated to be 66 000 +/- 2000, and the isoelectric point was determined to be at pH 4.65. Alkylating reagents alone had some inhibiting effect on skin sulfhydryl oxidase; when the enzyme was preincubated with thiols which were substrates, inhibition by alkylating reagents was greatly increased. After preincubation with dithiothreitol, treatment of the enzyme with alkylating reagents or N-ethylmaleimide caused significant inhibition; preincubation with a poor substrate, reduced glutathione, did not enhance inhibition by alkylating reagents or N-ethylmaleimide.
Collapse
|
13
|
Freedman RB. How many distinct enzymes are responsible for the several cellular processes involving thiol:protein-disulphide interchange? FEBS Lett 1979; 97:201-10. [PMID: 33065 DOI: 10.1016/0014-5793(79)80085-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Freedman RB, Newell A, Walklin CM. Paradoxical detergent effects on microsomal protein disulphide isomerase. FEBS Lett 1978; 88:49-52. [PMID: 639992 DOI: 10.1016/0014-5793(78)80604-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|