1
|
Votava JA, Fan J, Parks BW. Physiological consequences of Aldolase C deficiency during lactation. PLoS One 2024; 19:e0315719. [PMID: 39666708 PMCID: PMC11637398 DOI: 10.1371/journal.pone.0315719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
The lactating mammary gland strongly induces de novo lipogenesis (DNL) to support the synthesis of fatty acids, triglycerides, and cholesterol found within milk. In monogastric species, glucose is a major substrate utilized for DNL within the lactating mammary gland and must be efficiently taken up and processed to supply cytosolic acetyl-CoA for DNL. Along with the enzymes of the DNL pathway, the glycolytic enzyme, Aldolase C (Aldoc), is transcriptionally upregulated and is highly expressed during lactation in the mammary gland, suggesting a role for Aldoc in lactation. Aldoc is also a transcriptional target of the sterol regulatory element binding proteins 1 and 2 (Srebp1 and Srebp2), which transcriptionally regulate enzymes within the DNL pathway and has recently been shown to regulate plasma cholesterol and triglycerides. Here, we investigate the role of Aldoc in lactation, by utilizing a whole-body Aldoc knockout mouse. Our results demonstrate that Aldoc has a significant impact on lactation, whereby pups nursing from Aldoc-/- dams have reduced body weight. Biochemical analysis of milk identified that milk from Aldoc-/- dams have significantly higher galactose, lower lactose, and cholesterol content. Mass spectrometry analysis of milk lipids from Aldoc-/- dams revealed significantly lower quantities of medium and long chain fatty acid containing triglycerides, which has direct implications on lactation as these are the predominant triglycerides synthesized from glucose in human mammary gland. Overall, our results provide functional evidence for the contribution of Aldoc in mammary gland lactose and lipid synthesis during lactation.
Collapse
Affiliation(s)
- James A. Votava
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Jing Fan
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Yang Y, Tarabra E, Yang GS, Vaitheesvaran B, Palacios G, Kurland IJ, Pessin JE, Bastie CC. Alteration of de novo glucose production contributes to fasting hypoglycaemia in Fyn deficient mice. PLoS One 2013; 8:e81866. [PMID: 24312371 PMCID: PMC3842980 DOI: 10.1371/journal.pone.0081866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/20/2013] [Indexed: 11/19/2022] Open
Abstract
Previous studies have demonstrated that glucose disposal is increased in the Fyn knockout (FynKO) mice due to increased insulin sensitivity. FynKO mice also display fasting hypoglycaemia despite decreased insulin levels, which suggested that hepatic glucose production was unable to compensate for the increased basal glucose utilization. The present study investigates the basis for the reduction in plasma glucose levels and the reduced ability for the liver to produce glucose in response to gluconeogenic substrates. FynKO mice had a 5-fold reduction in phosphoenolpyruvate carboxykinase (PEPCK) gene and protein expression and a marked reduction in pyruvate, pyruvate/lactate-stimulated glucose output. Remarkably, de novo glucose production was also blunted using gluconeogenic substrates that bypass the PEPCK step. Impaired conversion of glycerol to glucose was observed in both glycerol tolerance test and determination of the conversion of (13)C-glycerol to glucose in the fasted state. α-glycerol phosphate levels were reduced but glycerol kinase protein expression levels were not changed. Fructose-driven glucose production was also diminished without alteration of fructokinase expression levels. The normal levels of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate observed in the FynKO liver extracts suggested normal triose kinase function. Fructose-bisphosphate aldolase (aldolase) mRNA or protein levels were normal in the Fyn-deficient livers, however, there was a large reduction in liver fructose-6-phosphate (30-fold) and fructose-1,6-bisphosphate (7-fold) levels as well as a reduction in glucose-6-phosphate (2-fold) levels. These data suggest a mechanistic defect in the allosteric regulation of aldolase activity.
Collapse
Affiliation(s)
- Yingjuan Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Elena Tarabra
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gong-She Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- * E-mail: (CCB); (GSY)
| | - Bhavapriya Vaitheesvaran
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gustavo Palacios
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Irwin J. Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Claire C. Bastie
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail: (CCB); (GSY)
| |
Collapse
|
3
|
Russell P, Williams A, Marquez K, Hua T, Ehya F, Hardamon C, Tallman T, Valdez P. Effect of ammonium, sodium, and potassium ions on rabbit muscle phosphofructokinase-1 and adenylate kinase activities. J Enzyme Inhib Med Chem 2009; 24:930-6. [PMID: 19555176 DOI: 10.1080/14756360802448089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This report shows that 30 nM PFK-1 and 30 nM AK were both affected by the presence of NH(4)(+), Na(+), and K(+) salts but with opposite consequences. Low concentrations of PFK-1 lose about half of its activity as a result of dilution and become susceptible to further activity losses owing to the presence of monovalent salts. On the other hand low concentrations of AK lose about 75 percent of its activity but regains activity losses owing to the presence of monovalent salts. It was determined that regain of AK activity did not appear to be a reflection of a major effect on the K(m) value of either AMP or ATP. Dilution to 30 nM AK resulted in no increase K(m) values compared to K(m) values at 140 nM AK. Dilution caused major decreases in the maximum velocities, V(max), when ATP or fructose 6-phosphate was the variable substrate. It was shown in earlier reports that these same low concentrations of PFK-1 and AK were susceptible inhibitions by ascorbate. These attributes are discussed as they may relate to the role of ascorbate facilitation glycogen synthesis in resting muscle and the role that the cytoskeleton infrastructure scaffold may play is also discussed.
Collapse
Affiliation(s)
- Percy Russell
- Department of Biology, University of California 0690, San Diego, La Jolla, CA 92093-0690, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Russell P, Williams A, Marquez K, Tahir Z, Hosseinian B, Lam K. Some characteristics of rabbit muscle phosphofructokinase-1 inhibition by ascorbate. J Enzyme Inhib Med Chem 2008; 23:411-7. [PMID: 18569348 DOI: 10.1080/14756360701611621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
These studies relate to a working hypothesis that glycogen storage is facilitated in resting muscle by inhibiting glycolysis via inhibition of LDH, AK, and PFK-1 by ascorbate; when muscle is active, these isozymes combine with muscle proteins and are released and protected from inhibition by ascorbate and glycolysis proceeds. Focus in these studies is on the ability of G-actin and aldolase to prevent PFK-1 inhibition by ascorbate. We found that inhibition by ascorbate was PFK-1 concentration dependent; ascorbate does not inhibit above 200 nM PFK-1. We conclude that ascorbate inhibits PFK-1 dimers (and perhaps monomers) but not PFK-1 tetramers. Separation of PFK-1 dimers from tetramers was achieved with centrifugal filter devices and differences in their sensitivity to ascorbate inhibition were demonstrated. Some comparisons are made with attributes of AK inhibitions by ascorbate that, like PFK-1, are also enzyme concentration dependent. Discussions relate findings to cellular infrastructure and the role of ascorbate in glycogen synthesis.
Collapse
Affiliation(s)
- Percy Russell
- Department of Biology, University of California, La Jolla, CA 92093-0690, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Marinho-Carvalho MM, Zancan P, Sola-Penna M. Modulation of 6-phosphofructo-1-kinase oligomeric equilibrium by calmodulin: formation of active dimers. Mol Genet Metab 2006; 87:253-61. [PMID: 16377227 DOI: 10.1016/j.ymgme.2005.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/04/2005] [Accepted: 11/08/2005] [Indexed: 01/04/2023]
Abstract
Muscle 6-phospho-1-kinase (PFK) is the key regulatory enzyme of the glycolytic pathway and is a calmodulin-binding protein binding two calmodulin molecules per PFK protomer. This enzyme is characterized by a complex regulation that involves its allosteric behavior modulated by several ligands, which modulate the equilibrium between the active tetramers and the inactive dimers of the enzyme. Calmodulin is described to induce the dimerization of PFK, so inhibiting its catalytic activity. Here, we show that binding of calmodulin specifically to its higher-affinity site of PFK induce its dimerization without compromising enzyme catalytic activity forming a hitherto not described active dimmer of PFK. It is also shown that the dimerization is a Ca2+ -dependent event that responds to physiological intracellular Ca2+ concentrations and decrease the interaction of the enzyme to membrane site, which stimulate its catalytic activity. We propose that the effects of calmodulin on PFK reported here are of great physiological significance due to the response to physiological concentrations of Ca2+ and due to be in accordance to the known effects of calmodulin on cell ATP production. We also propose that calmodulin might affect the interaction of PFK to other cellular components as the cytoskeleton.
Collapse
Affiliation(s)
- Monica M Marinho-Carvalho
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Fármacos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
6
|
Raïs B, Ortega F, Puigjaner J, Comin B, Orosz F, Ovádi J, Cascante M. Quantitative characterization of homo- and heteroassociations of muscle phosphofructokinase with aldolase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1479:303-14. [PMID: 11004548 DOI: 10.1016/s0167-4838(00)00047-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dissociation of purified phosphofructokinase accompanied with inactivation was analyzed in the absence and presence of aldolase and the data were compared with those obtained with muscle extract. The kinetics of the decrease in enzymatic activity was highly dependent on the dilution factor in both cases, but the inactivation appeared to be biphasic only with extract. The inactivation of the phosphofructokinase was impeded by addition of excess of aldolase. Time courses of kinase inactivation were fitted by alternative kinetic models to characterize the multiple equilibria of several homo- and hetero-oligomers of phosphofructokinase. The combination of modeling data obtained with purified and extract systems suggests that aldolase binds to an intermediate dimer of phosphofructokinase and within this heterocomplex the kinase is completely active. The intermediate dimer is stabilized by association with microtubules and the kinase activity decreased due to dilution can be recovered by addition of excess aldolase. In extract, the phosphofructokinase is of sigmoidal character (Hill coefficient of 2.3); the addition of excess exogenous aldolase to phosphofructokinase resulted in heterocomplex formation displaying Michaelian kinetics. The possible physiological relevance of heterocomplex formation of phosphofructokinase in muscle extract is discussed.
Collapse
Affiliation(s)
- B Raïs
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry,University of Barcelona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Ovádi J, Srere PA. Macromolecular compartmentation and channeling. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 192:255-80. [PMID: 10553282 DOI: 10.1016/s0074-7696(08)60529-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
One of the accepted characterizations of the living state is that it is complex to an extraordinary degree. Since our current understanding of the living condition is minimal and fragmentary, it is not surprising that our first descriptions are simplistic. However, in certain areas of metabolism, especially those that have been amenable to experimentation for the longest period of time, the simplistic explanations have been the most difficult to revise. For example, current texts of general biochemistry still view metabolism as occurring by a series of independent enzymes dispersed in a uniform aqueous environment. This notion has been shown to be deeply flawed by both experimental and theoretical considerations. Thus, there is ample evidence that, in many metabolic pathways, specific interactions between sequential enzymes occur as static and/or dynamic complexes. In addition, reversible interactions of enzymes with structural proteins and membranes is a common occurrence. The interactions of enzymes give rise to a higher level of complexity that must be accounted for when one wishes to understand the regulation of metabolism. One of the phenomena that occurs because of sequential enzyme interactions is the process of channeling. This article discusses enzyme interactions and channeling and summarizes experimental and theoretical results from a few well-studied examples.
Collapse
Affiliation(s)
- J Ovádi
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
8
|
Vértessy BG, Orosz F, Kovács J, Ovádi J. Alternative binding of two sequential glycolytic enzymes to microtubules. Molecular studies in the phosphofructokinase/aldolase/microtubule system. J Biol Chem 1997; 272:25542-6. [PMID: 9325270 DOI: 10.1074/jbc.272.41.25542] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Simultaneous binding of two sequential glycolytic enzymes, phosphofructokinase and aldolase, to a microtubular network was investigated. The binding of the phosphofructokinase to microtubules and its bundling activity has been previously characterized (Lehotzky, A., Telegdi, M., Liliom, K., and Ovádi, J. (1993) J. Biol. Chem. 268, 10888-10894). Aldolase binding to microtubules at near physiological ionic strength is weak (Kd = 20 microM) as compared with that of the kinase (Kd = 1 microM). The interactions of both enzymes with microtubules are modulated by their common intermediate, fructose-1,6-bisphosphate. Pelleting and electron microscopic measurements have revealed that the aldolase binding interferes with that of phosphofructokinase, although they have distinct binding domains on microtubules. The underlying molecular mechanism responsible for this finding is that in the solution phase aldolase and phosphofructokinase form a bienzyme complex that does not bind to the microtubule. The bienzyme complex formation does not influence the catalytic activity of aldolase, however, it inhibits the dissociation-induced inactivation of the kinase by stabilizing a catalytically active molecular form. The present data suggest the first experimental evidence that two sequential glycolytic enzymes do not associate simultaneously to microtubules, but their complexation in solution provides kinetic advantage for glycolysis.
Collapse
Affiliation(s)
- B G Vértessy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, H-1518, P.O.B. 7., Hungary
| | | | | | | |
Collapse
|
9
|
Abstract
Although differences among species in enzyme maximal activity or concentration are often interpreted as adaptive and important for regulating metabolism, these differences may simply reflect phylogenetic divergence. Phylogenetic analysis of the expression of the glycolytic enzymes among 15 taxa of a North American fish genus (Fundulus) indicated that most variation in enzyme concentration is due to evolutionary distance and may be nonadaptive. However, three enzymes' maximal activities covary with environmental temperature and have adaptive value. Additionally, two pairs of enzymes covary, indicating coevolution. Thus, metabolic flux may be modulated by many different enzymes rather than by a single rate-limiting enzyme.
Collapse
Affiliation(s)
- V A Pierce
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57 Street, Chicago, IL 60637, USA
| | | |
Collapse
|
10
|
Chen-Zion M, Livnat T, Beitner R. Insulin rapidly stimulates binding of phosphofructokinase and aldolase to muscle cytoskeleton. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:821-6. [PMID: 1534302 DOI: 10.1016/0020-711x(92)90019-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. We report here on a novel action of insulin which shows that the hormone stimulates binding of phosphofructokinase (PFK) and aldolase to muscle cytoskeleton. 2. This effect was demonstrated both in vivo, by injection of insulin, in the tibialis anterior and gastrocnemius muscles, as well as in vitro, in the isolated rat diaphragm muscle incubated with insulin. 3. Insulin exerted this effect at physiologic range of concentrations and very rapidly (about 50% stimulation of binding occurred within 1 min). 4. The possible physiological significance of this rapid action of insulin, is to provide local ATP, generated by the accelerated cytoskeletal glycolysis, for other rapidly insulin-stimulated membrane-cytoskeleton processes.
Collapse
Affiliation(s)
- M Chen-Zion
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
11
|
Ovádi J, Orosz F. Calmodulin and dynamics of interactions of cytosolic enzymes. CURRENT TOPICS IN CELLULAR REGULATION 1992; 33:105-26. [PMID: 1386799 DOI: 10.1016/b978-0-12-152833-1.50012-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J Ovádi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
12
|
Brooks SP, Storey KB. A quantitative evaluation of the effect of enzyme complexes on the glycolytic rate in vivo: mathematical modeling of the glycolytic complex. J Theor Biol 1991; 149:361-75. [PMID: 2062101 DOI: 10.1016/s0022-5193(05)80311-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular distribution of free and bound glycolytic enzymes in vivo was estimated by means of a model based on previously determined association constants for individual binding interactions and in vivo protein concentrations. The calculations revealed that a significant proportion of the enzymes would be either associated with F-actin, or bound in binary enzyme-enzyme complexes in vivo. An analysis of the relative concentration, and relative activity, of F-actin-bound enzymes suggested that a complete glycolytic complex, composed of all enzymatic steps from phosphofructokinase (PFK) to lactate dehydrogenase (LDH) does not exist. This was indicated by a very low concentration of F-actin-associated phosphoglycerate kinase (PGK) and by a very low activity of F-actin bound aldolase and PGK; this model showed that aldolase and PGK would be absent from any F-actin bound complex. An analysis of soluble enzyme-enzyme associations indicated that formation of binary enzyme complexes may lead to an increased overall flux through glyceraldehyde 3-phosphate dehydrogenase and LDH, but would serve to decrease flux through PFK and aldolase. A 1.4-fold activation of PFK, which occurs when the soluble enzyme binds to F-actin, suggested that reversible binding of PFK to F-actin may represent a novel cellular mechanism for controlling glycolytic flux during periods of increased metabolic demand by controlling the key regulatory enzyme of glycolysis.
Collapse
Affiliation(s)
- S P Brooks
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
13
|
Abstract
Associations between glycolytic enzymes and subcellular structures have been interpreted as presenting a novel mechanism of glycolytic control; reversible enzyme binding to subcellular structural components is believed to regulate enzyme activity in vivo through the formation of a multi-enzyme complex. However, three lines of evidence suggest that enzyme binding to cellular structures is not involved in the control of glycolysis. (i) Calculations of the distribution of glycolytic enzymes under the physiological cellular conditions of higher ionic strength and higher enzyme concentrations indicate that a large multi-enzyme complex would not exist. (ii) In many cases, binding to subcellular structures is accompanied by changes in enzyme kinetic parameters brought about by allosteric modification, but these changes often inhibit enzyme activity. (iii) In the case where formation of binary enzyme/enzyme complexes activates enzymes, the overall increase in flux through the enzyme reaction is negligible.
Collapse
|
14
|
Guderley H, Jean C, Blouin M. The effect of fatigue on the binding of glycolytic enzymes in the isolated gastrocnemius of Rana pipiens. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 977:87-90. [PMID: 2804095 DOI: 10.1016/s0005-2728(89)80012-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fatigue of isolated gastrocnemius muscles from R. pipiens leads to a marked increase in the proportion of phosphofructokinase bound to the particulate fraction and a decrease in the binding of lactate dehydrogenase, pyruvate kinase, creatine phosphokinase and glyceraldehyde-3-phosphate dehydrogenase. Only the proportion of aldolase bound to the particulate fraction was unaffected by fatigue. This pattern was unchanged when fatigued muscles were extracted at pH 6.5 rather than 7.5. Thus, muscle fatigue leads to opposite changes in the binding of the glycolytic enzymes.
Collapse
Affiliation(s)
- H Guderley
- Département de biologie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
15
|
Sukhodolets MV, Muronetz VI, Nagradova NK. Interaction between D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase labeled by fluorescein-5'-isothiocyanate: evidence that the dye participates in the interaction. Biochem Biophys Res Commun 1989; 161:187-96. [PMID: 2499334 DOI: 10.1016/0006-291x(89)91579-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An interaction of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase labeled with FITC was studied by following the changes in fluorescence intensity of the bound dye. The association between the two enzymes was found to be a rather slow process characterized by a second order rate constant of 1.1 +/- 0.2.10(3) M-1 s-1, the KD of the complex between apoenzymes being 3.2.10(-7) M. The stability of the complex increased upon increase of temperature and ionic strength of the medium, suggesting a hydrophobic character of association. The ligands which bind at the active centers of the two enzymes (NAD+, ATP, 3-phosphoglycerate) weakened the bienzyme association. Unlabeled 3-phosphoglycerate kinase was unable to displace the FITC-labeled enzyme from the complex. Taken together, the results indicate that interaction between D-glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase labeled by FITC is assisted by the dye, which may bind at nucleotide-binding sites of GPDH. No interaction was observed between the FITC-labeled 3-phosphoglycerate kinase and lactate dehydrogenase, which suggests that protein-protein interaction at specific "recognition" sites may be a prerequisite for the complex formation.
Collapse
Affiliation(s)
- M V Sukhodolets
- A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, USSR
| | | | | |
Collapse
|
16
|
Keleti T, Ovádi J, Batke J. Kinetic and physico-chemical analysis of enzyme complexes and their possible role in the control of metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1989; 53:105-52. [PMID: 2692072 DOI: 10.1016/0079-6107(89)90016-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Ovádi J. Old pathway--new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations. Trends Biochem Sci 1988; 13:486-90. [PMID: 3075372 DOI: 10.1016/0968-0004(88)90237-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Orosz F, Christova TY, Ovádi J. Modulation of phosphofructokinase action by macromolecular interactions. Quantitative analysis of the phosphofructokinase-aldolase-calmodulin system. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 957:293-300. [PMID: 2973356 DOI: 10.1016/0167-4838(88)90286-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The simultaneous effect of calmodulin and aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) on the concentration-dependent behaviour of muscle phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) has been analysed by means of a covalently attached fluorescent probe, gel penetration experiments, and using a kinetic approach. We found that calmodulin-induced inactivation of phosphofructokinase is suspended by addition of an equimolar amount of aldolase. This effect was attributed to an apparent competition of calmodulin and aldolase for the dimeric forms of kinase. Moreover, the direct binding of aldolase to calmodulin has also been demonstrated, which resulted in a significant decrease in the kcat value of the enzyme. The quantitative analysis of these interactions in the system phosphofructokinase-calmodulin-aldolase is presented. A possible molecular model for the modulation of phosphofructokinase action by macromolecular interactions is envisaged.
Collapse
Affiliation(s)
- F Orosz
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest
| | | | | |
Collapse
|