1
|
Tomoe R, Fujimoto K, Tanaka T, Arakaki A, Kisailus D, Yoshino T. Lipid membrane modulated control of magnetic nanoparticles within bacterial systems. J Biosci Bioeng 2023; 136:253-260. [PMID: 37422334 DOI: 10.1016/j.jbiosc.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Bacterial magnetosomes synthesized by the magnetotactic bacterium Magnetospirillum magneticum are suitable for biomedical and biotechnological applications because of their high level of chemical purity of mineral with well-defined morphological features and a biocompatible lipid bilayer coating. However, utilizations of native magnetosomes are not sufficient for maximum effectiveness in many applications as the appropriate particle size differs. In this study, a method to control magnetosome particle size is developed for integration into targeted technological applications. The size and morphology of magnetosome crystals are highly regulated by the complex interactions of magnetosome synthesis-related genes; however, these interactions have not been fully elucidated. In contrast, previous studies have shown a positive correlation between vesicle and crystal sizes. Therefore, control of the magnetosome vesicle size is tuned by modifying the membrane lipid composition. Exogenous phospholipid synthesis pathways have been genetically introduced into M. magneticum. The experimental results show that these phospholipids altered the properties of the magnetosome membrane vesicles, which yielded larger magnetite crystal sizes. The genetic engineering approach presented in this study is shown to be useful for controlling magnetite crystal size without involving complex interactions of magnetosome synthesis-related genes.
Collapse
Affiliation(s)
- Ryoto Tomoe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazushi Fujimoto
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Zhang B, Jiang X. Magnetic Nanoparticles Mediated Thrombolysis-A Review. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2023; 4:109-132. [PMID: 38111792 PMCID: PMC10727495 DOI: 10.1109/ojnano.2023.3273921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Nanoparticles containing thrombolytic medicines have been developed for thrombolysis applications in response to the increasing demand for effective, targeted treatment of thrombosis disease. In recent years, there has been a great deal of interest in nanoparticles that can be navigated and driven by a magnetic field. However, there are few review publications concerning the application of magnetic nanoparticles in thrombolysis. In this study, we examine the current state of magnetic nanoparticles in the application of in vitro and in vivo thrombolysis under a static or dynamic magnetic field, as well as the combination of magnetic nanoparticles with an acoustic field for dual-mode thrombolysis. We also discuss four primary processes of magnetic nanoparticles mediated thrombolysis, including magnetic nanoparticle targeting, magnetic nanoparticle trapping, magnetic drug release, and magnetic rupture of blood clot fibrin networks. This review will offer unique insights for the future study and clinical development of magnetic nanoparticles mediated thrombolysis approaches.
Collapse
Affiliation(s)
- Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
3
|
Ghose D, Swain S, Patra CN, Jena BR, Rao MEB. Advancement and Applications of Platelet-inspired Nanoparticles: A Paradigm for Cancer Targeting. Curr Pharm Biotechnol 2023; 24:213-237. [PMID: 35352648 DOI: 10.2174/1389201023666220329111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Platelet-inspired nanoparticles have ignited the possibility of new opportunities for producing similar biological particulates, such as structural cellular and vesicular components, as well as various viral forms, to improve biocompatible features that could improve the nature of biocompatible elements and enhance therapeutic efficacy. The simplicity and more effortless adaptability of such biomimetic techniques uplift the delivery of the carriers laden with cellular structures, which has created varied opportunities and scope of merits like; prolongation in circulation and alleviating immunogenicity improvement of the site-specific active targeting. Platelet-inspired nanoparticles or medicines are the most recent nanotechnology-based drug targeting systems used mainly to treat blood-related disorders, tumors, and cancer. The present review encompasses the current approach of platelet-inspired nanoparticles or medicines that have boosted the scientific community from versatile fields to advance biomedical sciences. Surprisingly, this knowledge has streamlined to development of newer diagnostic methods, imaging techniques, and novel nanocarriers, which might further help in the treatment protocol of the various diseased conditions. The review primarily focuses on the novel advancements and recent patents in nanoscience and nanomedicine that could be streamlined in the future for the management of progressive cancers and tumor targeting. Rigorous technological advancements like biomimetic stem cells, pH-sensitive drug delivery of nanoparticles, DNA origami devices, virosomes, nano cells like exosomes mimicking nanovesicles, DNA nanorobots, microbots, etc., can be implemented effectively for target-specific drug delivery.
Collapse
Affiliation(s)
- Debashish Ghose
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760 010, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
| | - Suryakanta Swain
- Department of Pharmacy, School of Health Sciences, The Assam Kaziranga University, Koraikhowa, NH-37, Jorhat, 785006, Assam, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760 010, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Muddana Eswara Bhanoji Rao
- Calcutta Institute of Pharmaceutical Technology and AHS, Banitabla, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
4
|
Disharoon D, Marr DW, Neeves KB. Engineered microparticles and nanoparticles for fibrinolysis. J Thromb Haemost 2019; 17:2004-2015. [PMID: 31529593 PMCID: PMC6893081 DOI: 10.1111/jth.14637] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Fibrinolytic agents including plasmin and plasminogen activators improve outcomes in acute ischemic stroke and thrombosis by recanalizing occluded vessels. In the decades since their introduction into clinical practice, several limitations of have been identified in terms of both efficacy and bleeding risk associated with these agents. Engineered nanoparticles and microparticles address some of these limitations by improving circulation time, reducing inhibition and degradation in circulation, accelerating recanalization, improving targeting to thrombotic occlusions, and reducing off-target effects; however, many particle-based approaches have only been used in preclinical studies to date. This review covers four advances in coupling fibrinolytic agents with engineered particles: (a) modifications of plasminogen activators with macromolecules, (b) encapsulation of plasminogen activators and plasmin in polymer and liposomal particles, (c) triggered release of encapsulated fibrinolytic agents and mechanical disruption of clots with ultrasound, and (d) enhancing targeting with magnetic particles and magnetic fields. Technical challenges for the translation of these approaches to the clinic are discussed.
Collapse
Affiliation(s)
- Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Inada Y, Matsuswma A, Kodera Y, Nishimura H. Review : Polyethylene Glycol(PEG)-Protein Conjugates: Application to Biomedical and Biotechnological Processes. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391159000500309] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yuji Inada
- Laboratory of Bio-Active Materials Department of Materials Science and Technology Toin University of Yokohama Kurogane-cho 1614, Midori-ku, Yokohama 227, Japan
| | - Ayako Matsuswma
- Laboratory of Bio-Active Materials Department of Materials Science and Technology Toin University of Yokohama Kurogane-cho 1614, Midori-ku, Yokohama 227, Japan
| | - Yoh Kodera
- Laboratory of Bio-Active Materials Department of Materials Science and Technology Toin University of Yokohama Kurogane-cho 1614, Midori-ku, Yokohama 227, Japan
| | - Hiroyuki Nishimura
- Laboratory of Bio-Active Materials Department of Materials Science and Technology Toin University of Yokohama Kurogane-cho 1614, Midori-ku, Yokohama 227, Japan
| |
Collapse
|
6
|
Bi F, Zhang J, Su Y, Tang YC, Liu JN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009; 30:5125-30. [PMID: 19560812 DOI: 10.1016/j.biomaterials.2009.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/05/2009] [Indexed: 11/27/2022]
Abstract
Thrombolytic therapy is an important treatment for thrombosis, a life-threatening condition in cardiovascular diseases. However, the traditional thrombolytic therapies have often been associated with the risk of severe bleeding. By conjugating urokinase with magnetic nanoparticles (MNPs), we have presented a strategy to control thrombolysis within a specific site. The covalent bioconjugate of urokinase and dextran-coated MNPs was synthesized and isolated. Thrombolysis by the conjugate was studied under a magnetic field in a rat arteriovenous shunt thrombosis model. The magnetic field was generated by two AlNiCo permanent magnets around the site of thrombus. The magnetic field enhanced the thrombolytic efficacy of the conjugate by 5-fold over urokinase with no reduction in plasma fibrinogen and little prolonged bleeding time. It suggested that thrombolysis had been specifically directed to the desired site by the magnetic carrier under the magnetic field. Additionally, the conjugate had a longer half-life than urokinase in circulation.
Collapse
Affiliation(s)
- Feng Bi
- Institute of Molecular Medicine, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
7
|
Barry SE. Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperthermia 2009; 24:451-66. [PMID: 18608583 DOI: 10.1080/02656730802093679] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Certain iron-based particle formulations have useful magnetic properties that, when combined with low toxicity and desirable pharmacokinetics, encourage their development for therapeutic applications. This mini-review begins with background information on magnetic particle use as MRI contrast agents and the influence of material size on pharmacokinetics and tissue penetration. Therapeutic investigations, including (1) the loading of bioactive materials, (2) the use of stationary, high-gradient (HG) magnetic fields to concentrate magnetic particles in tissues or to separate material bound to the particles from the body, and (3) the application of high power alternating magnetic fields (AMF) to generate heat in magnetic particles for hyperthermic therapeutic applications are then surveyed. Attention is directed mainly to cancer treatment, as selective distribution to tumors is well-suited to particulate approaches and has been a focus of most development efforts. While magnetic particles have been explored for several decades, their use in therapeutic products remains minimal; a discussion of future directions and potential ways to better leverage magnetic properties and to integrate their use into therapeutic regimens is discussed.
Collapse
Affiliation(s)
- Stephen E Barry
- Alnis BioSciences, Inc., Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
|
9
|
Chemical modification of proteins with polyethylene glycols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1995. [DOI: 10.1007/bfb0102318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|