1
|
Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications. Antimicrob Agents Chemother 2013; 57:4769-81. [PMID: 23877676 DOI: 10.1128/aac.00477-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Candida tropicalis ranks between third and fourth among Candida species most commonly isolated from clinical specimens. Invasive candidiasis and candidemia are treated with amphotericin B or echinocandins as first-line therapy, with extended-spectrum triazoles as acceptable alternatives. Candida tropicalis is usually susceptible to all antifungal agents, although several azole drug-resistant clinical isolates are being reported. However, C. tropicalis resistant to amphotericin B is uncommon, and only a few strains have reliably demonstrated a high level of resistance to this agent. The resistance mechanisms operating in C. tropicalis strains isolated from clinical samples showing resistance to azole drugs alone or with amphotericin B cross-resistance were elucidated. Antifungal drug resistance was related to mutations of the azole target (Erg11p) with or without alterations of the ergosterol biosynthesis pathway. The antifungal drug resistance shown in vitro correlated very well with the results obtained in vivo using the model host Galleria mellonella. Using this panel of strains, the G. mellonella model system was validated as a simple, nonmammalian minihost model that can be used to study in vitro-in vivo correlation of antifungals in C. tropicalis. The development in C. tropicalis of antifungal drug resistance with different mechanisms during antifungal treatment has potential clinical impact and deserves specific prospective studies.
Collapse
|
2
|
Evaluation of structural features in fungal cytochromes P450 predicted to rule catalytic diversification. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:205-20. [DOI: 10.1016/j.bbapap.2012.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 01/11/2023]
|
3
|
Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B. Antimicrob Agents Chemother 2012; 56:4223-32. [PMID: 22615281 DOI: 10.1128/aac.06253-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We identified a clinical isolate of Candida glabrata (CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 μg ml(-1), respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols. ERG11 sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatable Saccharomyces cerevisiae erg11 strain, wild-type C. glabrata Erg11p fully complemented the function of S. cerevisiae sterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium ((glc)YM). However, when grown on sterol-supplemented (glc)YM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ(7)-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-type ERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplemented (glc)YM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown using (glc)YM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown using (glc)YM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 μg AMB ml(-1), respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance in C. glabrata.
Collapse
|
4
|
Ekins S, Mankowski DC, Hoover DJ, Lawton MP, Treadway JL, Harwood HJ. Three-dimensional quantitative structure-activity relationship analysis of human CYP51 inhibitors. Drug Metab Dispos 2006; 35:493-500. [PMID: 17194716 DOI: 10.1124/dmd.106.013888] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP51 fulfills an essential requirement for all cells, by catalyzing three sequential mono-oxidations within the cholesterol biosynthesis cascade. Inhibition of fungal CYP51 is used as a therapy for treating fungal infections, whereas inhibition of human CYP51 has been considered as a pharmacological approach to treat dyslipidemia and some forms of cancer. To predict the interaction of inhibitors with the active site of human CYP51, a three-dimensional quantitative structure-activity relationship model was constructed. This pharmacophore model of the common structural features of CYP51 inhibitors was built using the program Catalyst from multiple inhibitors (n = 26) of recombinant human CYP51-mediated lanosterol 14alpha-demethylation. The pharmacophore, which consisted of one hydrophobe, one hydrogen bond acceptor, and two ring aromatic features, demonstrated a high correlation between observed and predicted IC(50) values (r = 0.92). Validation of this pharmacophore was performed by predicting the IC(50) of a test set of commercially available (n = 19) and CP-320626-related (n = 48) CYP51 inhibitors. Using predictions below 10 microM as a cutoff indicative of active inhibitors, 16 of 19 commercially available inhibitors (84%) and 38 of 48 CP-320626-related inhibitors (79.2%) were predicted correctly. To better understand how inhibitors fit into the enzyme, potent CYP51 inhibitors were used to build a Cerius(2) receptor surface model representing the volume of the active site. This study has demonstrated the potential for ligand-based computational pharmacophore modeling of human CYP51 and enables a high-throughput screening system for drug discovery and data base mining.
Collapse
Affiliation(s)
- Sean Ekins
- Computational Biology, ACT LLC, 601 Runnymede Ave., Jenkintown, PA 19046, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Senior IJ, Hollomon DW, Loeffler RST, Baldwin BC. Sterol composition and resistance to DMI fungicides inErysiphe graminis. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780450109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Kudo M, Ohi M, Aoyama Y, Nitahara Y, Chung SK, Yoshida Y. Effects of Y132H and F145L substitutions on the activity, azole resistance and spectral properties of Candida albicans sterol 14-demethylase P450 (CYP51): a live example showing the selection of altered P450 through interaction with environmental compounds. J Biochem 2005; 137:625-32. [PMID: 15944416 DOI: 10.1093/jb/mvi073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Three variants of Candida albicans CYP51 (sterol 14-demethylase P450) having Y132H and/or F145L substitutions were purified and characterized to reveal the effects of these amino acid substitutions on the enzymatic properties and azole resistance of the enzyme. Y132H and F145L substitutions modified the spectral properties of the enzyme, suggesting that they caused some structural change modifying the heme environments of CYP51. Y132H and F145L substitutions increased the resistance of the enzyme to azole compounds but considerably decreased the catalytic activity. This fact represents a trade-off between acquisition of azole resistance and maintenance of high activity in the CYP51 having Y132H and F145L substitutions. A fluconazole-resistant C. albicans strain DUMC136 isolated from patients receiving long-term azole treatment was a homozygote of the altered CYP51 having Y132H and F145L substitutions. However, neither of these substitutions was found in CYP51 of wild-type C. albicans so far studied. These facts suggest that the azole-resistant variant having Y132H and/or F145L substitutions might be selected only under azole-rich environments because of its azole resistance and impaired catalytic activity. This may be a live example showing one of the important processes of P450 diversification, the selection of altered P450 through the interaction with environmental compounds.
Collapse
Affiliation(s)
- Makiko Kudo
- School of Pharmaceutical Sciences and Institute for Bioscience, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179
| | | | | | | | | | | |
Collapse
|
7
|
Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL. Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 2001; 39:2431-8. [PMID: 11427550 PMCID: PMC88166 DOI: 10.1128/jcm.39.7.2431-2438.2001] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two cyp51-related genes (cyp51A and cyp51B) encoding 14-alpha sterol demethylase-like enzymes were identified in the opportunistic human pathogen Aspergillus fumigatus. PCR amplification using degenerate oligonucleotides based on conserved areas of cytochrome P450 demethylases of other filamentous fungi and yeasts allowed the cloning and sequencing of two different homologue genes in A. fumigatus. Southern analysis confirmed that both genes hybridized to distinct genomic loci and that both are represented as single copies in the genome. Comparison of the deduced Cyp51A and Cyp51B proteins with the CYP51 proteins from Penicillium italicum, Aspergillus nidulans, Erysiphe graminis, Uncinula necator, Botrytis cinerea, Ustilago maydis, Cryptococcus neoformans, Candida albicans, Saccharomyces cerevisiae, Candida tropicalis, and Candida glabrata showed that the percentages of identity of the amino acid sequences (range, 40 to 70%) were high enough to consider Cyp51A and Cyp51B to be members of the fungal CYP51 family. Fragments from both genes were also cloned from other Aspergillus spp. (A. flavus, A. nidulans, and A. terreus). Phylogenetic analysis showed that, at least in the most pathogenic species of Aspergillus, there are two fungal CYP51 proteins. This is the first report of the existence of two homologue genes coding for 14-alpha sterol demethylase in the fungal kingdom. This finding could provide insights into the azole resistance mechanisms operating in fungi. The primers used here may be useful molecular tools for facilitating the cloning of novel 14-alpha sterol demethylase genes in other filamentous fungi.
Collapse
Affiliation(s)
- E Mellado
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, 28220 Madrid, Spain.
| | | | | | | |
Collapse
|
8
|
Yoshida Y, Aoyama Y, Noshiro M, Gotoh O. Sterol 14-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily. Biochem Biophys Res Commun 2000; 273:799-804. [PMID: 10891326 DOI: 10.1006/bbrc.2000.3030] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biodiversity is the most characteristic feature of cytochrome P450. Finding of CYP51 distributing widely in biological kingdoms provided breakthroughs for the discussion on the evolution and diversification of P450. Molecular phylogenetic analysis demonstrated that CYP51 appeared in the prokaryotic era and distributed into most kingdoms concomitant with phylogenetic divergence. This is the first evolutionary evidence indicating the prokaryotic origin of P450. Modification of substrate specificity of eukaryotic CYP51s occurred independently to adapt to the different sterol precursors existing in each kingdom. Formation of CYP51 variants through the mutation of active site and the selection of the advantageous ones from them were demonstrated by the emergence of azole-resistant CYP51s in Candida albicans under the environments rich in azole antifungal agents. These findings illustrate the most probable core process of P450 diversification consisting of modification of active site and selection of the resulting variants through interaction with endogenous and exogenous chemicals.
Collapse
Affiliation(s)
- Y Yoshida
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, 663-8719, Japan
| | | | | | | |
Collapse
|
9
|
Ji H, Zhang W, Zhou Y, Zhang M, Zhu J, Song Y, Lü J. A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem 2000; 43:2493-505. [PMID: 10891108 DOI: 10.1021/jm990589g] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The three-dimensional structure of lanosterol 14alpha-demethylase (P450(14DM), CYP51) of Candida albicans was modeled on the basis of crystallographic coordinates of four prokaryotic P450s: P450BM3, P450cam, P450terp, and P450eryF. The P450(14DM) sequence was aligned to those of known proteins using a knowledge-based alignment method. The main chain coordinates of the core regions were transferred directly from the corresponding coordinates of P450BM3. The side chain conformations of the core regions were determined by the conformations of the equivalent residues with the highest homologous scores in four crystal structures. The model was then refined using molecular mechanics and molecular dynamics. The reliability of the resulting model was assessed by Ramachandran plots, Profile-3D, hydropathy plot analysis, and by analyzing the consistency of the model with the experimental data. The structurally and functionally important residues such as the heme binding residues, the residues interacting with redox-partner protein and/or involved in electron transfer, the residues lining substrate access channel, and the substrate binding residues were identified from the model. These residues are candidates for further site-directed mutagenesis and site-specific antipeptide antibody binding experiments. The active analogue approach was employed to search the pharmacophoric conformations for 14 azole antifungals. The resulting bioactive conformations were docked into the active site of lanosterol 14alpha-demethylase of Candida albicans. All 14 azole antifungals are shown to have a similar docking mode in the active site. The halogenated phenyl group of azole inhibitors is deep in the same hydrophobic binding cleft as the 17-alkyl chain of substrate. The pi-pi stacking interaction might exist between halogenated phenyl ring of inhibitors and the aromatic ring of residue Y132. The long side chains of some inhibitors such as itraconazole and ketoconazole surpass the active site and interact with the residues in the substrate access channel. To compare with mammalian enzymes, structurally selective residues of the active site of fungal lanosterol 14alpha-demethylase are distributed in the C terminus of F helix, beta6-1 sheet and beta6-2 sheet.
Collapse
Affiliation(s)
- H Ji
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Favre B, Didmon M, Ryder NS. Multiple amino acid substitutions in lanosterol 14alpha-demethylase contribute to azole resistance in Candida albicans. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2715-25. [PMID: 10537193 DOI: 10.1099/00221287-145-10-2715] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lanosterol 14alpha-demethylase (14DM) is the target of the azole antifungals, and alteration of the 14DM sequence leading to a decreased affinity of the enzyme for azoles is one of several potential mechanisms for resistance to these drugs in Candida albicans. In order to identify such alterations the authors investigated a collection of 19 C. albicans clinical isolates demonstrating either frank resistance (MICs > or = 32 microg ml(-1)) or dose-dependent resistance (MICs 8-16 microg ml(-1)) to fluconazole. In cell-free extracts from four isolates, including the Darlington strain ATCC 64124, sensitivity of sterol biosynthesis to inhibition by fluconazole was greatly reduced, suggesting that alterations in the activity or affinity of the 14DM could contribute to resistance. Cloning and sequencing of the 14DM gene from these isolates revealed 12 different alterations (two to four per isolate) leading to changes in the deduced amino acid sequence. Five of these mutations have not previously been reported. To demonstrate that these alterations could affect fungal susceptibility to azoles, the 14DM genes from one sensitive and three resistant C. albicans strains were tagged at the carboxyl terminus with a c-myc epitope and expressed in Saccharomyces cerevisiae under control of the endogenous promoter. Transformants receiving 14DM genes from resistant strains had fluconazole MICs up to 32-fold higher than those of transformants receiving 14DM from a sensitive strain, although Western blot analysis indicated that the level of expressed 14DM was similar in all transformants. Amino acid substitutions in the 14DM gene from the Darlington strain also conferred a strong cross-resistance to ketoconazole. In conclusion, multiple genetic alterations in C. albicans 14DM, including several not previously reported, can affect the affinity of the enzyme for azoles and contribute to resistance of clinical isolates.
Collapse
Affiliation(s)
- B Favre
- Novartis Research Institute, Vienna, Austria
| | | | | |
Collapse
|
11
|
Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W, Borgers M, Ramaekers FCS, Odds FC, Vanden Bossche H. Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2701-2713. [PMID: 10537192 DOI: 10.1099/00221287-145-10-2701] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cytochrome P450 14alpha-demethylase, encoded by the ERG11 (CYP51) gene, is the primary target for the azole class of antifungals. Changes in the azole affinity of this enzyme caused by amino acid substitutions have been reported as a resistance mechanism. Nine Candida albicans strains were used in this study. The ERG11 base sequence of seven isolates, of which only two were azole-sensitive, were determined. The ERG11 base sequences of the other two strains have been published previously. In these seven isolates, 12 different amino acid substitutions were identified, of which six have not been described previously (A149V, D153E, E165Y, S279F, V452A and G4655). In addition, 16 silent mutations were found. Two different biochemical assays, subcellular sterol biosynthesis and CO binding to reduced microsomal fractions, were used to evaluate the sensitivity of the cytochromes for fluconazole and itraconazole. Enzyme preparations from four isolates showed reduced itraconazole susceptibility, whereas more pronounced resistance to fluconazole was observed in five isolates. A three-dimensional model of C. albicans Cyp51p was used to position all 29 reported substitutions, 98 in total identified in 53 sequences. These 29 substitutions were not randomly distributed over the sequence but clustered in three regions from amino acids 105 to 165, from 266 to 287 and from 405 to 488, suggesting the existence of hotspot regions. Of the mutations found in the two N-terminal regions only Y132H was demonstrated to be of importance for azole resistance. In the C-terminal region three mutations are associated with resistance, suggesting that the non-characterized substitutions found in this region should be prioritized for further analysis.
Collapse
Affiliation(s)
- Patrick Marichal
- Department of Anti-infectives Research1, Center for Molecular Design2, Department of Biotechnology3 and Department of Functional Genomics4, Janssen Research Foundation, Turnhoutseweg 30, B2340 Beerse, Belgium
- Department of Molecular Cell Biology and Genetics, University of Maastricht, The Netherlands5
| | - Luc Koymans
- Department of Anti-infectives Research1, Center for Molecular Design2, Department of Biotechnology3 and Department of Functional Genomics4, Janssen Research Foundation, Turnhoutseweg 30, B2340 Beerse, Belgium
| | - Staf Willemsens
- Department of Anti-infectives Research1, Center for Molecular Design2, Department of Biotechnology3 and Department of Functional Genomics4, Janssen Research Foundation, Turnhoutseweg 30, B2340 Beerse, Belgium
| | - Danny Bellens
- Department of Anti-infectives Research1, Center for Molecular Design2, Department of Biotechnology3 and Department of Functional Genomics4, Janssen Research Foundation, Turnhoutseweg 30, B2340 Beerse, Belgium
| | - Peter Verhasselt
- Department of Anti-infectives Research1, Center for Molecular Design2, Department of Biotechnology3 and Department of Functional Genomics4, Janssen Research Foundation, Turnhoutseweg 30, B2340 Beerse, Belgium
| | - Walter Luyten
- Department of Anti-infectives Research1, Center for Molecular Design2, Department of Biotechnology3 and Department of Functional Genomics4, Janssen Research Foundation, Turnhoutseweg 30, B2340 Beerse, Belgium
| | - Marcel Borgers
- Department of Molecular Cell Biology and Genetics, University of Maastricht, The Netherlands5
| | - Frans C S Ramaekers
- Department of Molecular Cell Biology and Genetics, University of Maastricht, The Netherlands5
| | - Frank C Odds
- Department of Anti-infectives Research1, Center for Molecular Design2, Department of Biotechnology3 and Department of Functional Genomics4, Janssen Research Foundation, Turnhoutseweg 30, B2340 Beerse, Belgium
| | - Hugo Vanden Bossche
- Department of Anti-infectives Research1, Center for Molecular Design2, Department of Biotechnology3 and Department of Functional Genomics4, Janssen Research Foundation, Turnhoutseweg 30, B2340 Beerse, Belgium
| |
Collapse
|
12
|
Lewis DF, Wiseman A, Tarbit MH. Molecular modelling of lanosterol 14 alpha-demethylase (CYP51) from Saccharomyces cerevisiae via homology with CYP102, a unique bacterial cytochrome P450 isoform: quantitative structure-activity relationships (QSARs) within two related series of antifungal azole derivatives. JOURNAL OF ENZYME INHIBITION 1999; 14:175-92. [PMID: 10445042 DOI: 10.3109/14756369909030315] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The construction of a three-dimensional molecular model of the fungal form of cytochrome P450 (CYP51) from Saccharomyces cerevisiae, based on homology with the haemoprotein domain of CYP102 from Bacillus megaterium (a unique bacterial P450 of known crystal structure) is described. It is found that the endogenous substrate, lanosterol, can readily occupy the putative active site of the CYP51 model such that the known mono-oxygenation reaction, leading to C14-demethylation of lanosterol, is the preferred route of metabolism for this particular substrate. Key amino acid contacts within the CYP51 active site appear to orientate lanosterol for oxidative attack at the C14-methyl group, and the position of the substrate relative to the haem moiety is consistent with the phenyl-iron complexation studies reported by Tuck et al. [J. Biol. Chem., 267, 13175-13179 (1992)]. Typical azole inhibitors, such as ketoconazole, are able to fit the putative active site of CYP51 by a combination of haem ligation, hydrogen bonding, pi-pi stacking and hydrophobic interactions within the enzyme's haem environment. The mode of action of azole antifungals, as described by the modelling studies, is supported by quantitative structure-activity relationship (QSAR) analyses on two groups of structurally related fungal inhibitors. Moreover, the results of molecular electrostatic isopotential (EIP) energy calculations are compatible with the proposed mode of binding between azole antifungal agents and the putative active site of CYP51, although membrane interactions may also have a role in the antifungal activity of azole derivatives.
Collapse
Affiliation(s)
- D F Lewis
- School of Biological Sciences, University of Surrey, Guildford, UK.
| | | | | |
Collapse
|
13
|
White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11:382-402. [PMID: 9564569 PMCID: PMC106838 DOI: 10.1128/cmr.11.2.382] [Citation(s) in RCA: 903] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the frequency of diagnosed fungal infections has risen sharply due to several factors, including the increase in the number of immunosuppressed patients resulting from the AIDS epidemic and treatments during and after organ and bone marrow transplants. Linked with the increase in fungal infections is a recent increase in the frequency with which these infections are recalcitrant to standard antifungal therapy. This review summarizes the factors that contribute to antifungal drug resistance on three levels: (i) clinical factors that result in the inability to successfully treat refractory disease; (ii) cellular factors associated with a resistant fungal strain; and (iii) molecular factors that are ultimately responsible for the resistance phenotype in the cell. Many of the clinical factors that contribute to resistance are associated with the immune status of the patient, with the pharmacology of the drugs, or with the degree or type of fungal infection present. At a cellular level, antifungal drug resistance can be the result of replacement of a susceptible strain with a more resistant strain or species or the alteration of an endogenous strain (by mutation or gene expression) to a resistant phenotype. The molecular mechanisms of resistance that have been identified to date in Candida albicans include overexpression of two types of efflux pumps, overexpression or mutation of the target enzyme, and alteration of other enzymes in the same biosynthetic pathway as the target enzyme. Since the study of antifungal drug resistance is relatively new, other factors that may also contribute to resistance are discussed.
Collapse
Affiliation(s)
- T C White
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle Biomedical Research Institute, Washington, USA.
| | | | | |
Collapse
|
14
|
De Groot MJ, Vermeulen NP. Modeling the active sites of cytochrome P450s and glutathione S-transferases, two of the most important biotransformation enzymes. Drug Metab Rev 1997; 29:747-99. [PMID: 9262946 DOI: 10.3109/03602539709037596] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M J De Groot
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
White TC. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans. Antimicrob Agents Chemother 1997; 41:1488-94. [PMID: 9210671 PMCID: PMC163945 DOI: 10.1128/aac.41.7.1488] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Azole resistance in the pathogenic yeast Candida albicans is an emerging problem in the human immunodeficiency virus (HIV)-infected population. The target enzyme of the azole drugs is lanosterol 14alpha demethylase (Erg16p), a cytochrome P-450 enzyme in the biosynthetic pathway of ergosterol. Biochemical analysis demonstrates that Erg16p became less susceptible to fluconazole in isolate 13 in a series of isolates from an HIV-infected patient. PCR-single-strand conformation polymorphism (PCR-SSCP) analysis was used to scan for genomic alterations of ERG16 in the isolates that would cause this change in the enzyme in isolate 13. Alterations near the 3' end of the gene that were identified by PCR-SSCP were confirmed by DNA sequencing. A single amino acid substitution (R467K) that occurred in isolate 13 was identified in both alleles of ERG16. Allelic differences within the ERG16 gene, in the ERG16 promoter, and in the downstream THR1 gene were eliminated in isolate 13. The loss of allelic variation in this region of the genome is most likely the result of mitotic recombination or gene conversion. The R467K mutation and loss of allelic variation that occur in isolate 13 are likely responsible for the azole-resistant enzyme activity seen in this and subsequent isolates. The description of R467K represents the first point mutation to be identified within ERG16 of a clinical isolate of C. albicans that alters the fluconazole sensitivity of the enzyme.
Collapse
Affiliation(s)
- T C White
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, and Seattle Biomedical Research Institute, 98109, USA.
| |
Collapse
|
16
|
Abstract
This paper reviews the current status of our understanding of azole antifungal resistance mechanisms at the molecular level and explores their implications. Extensive biochemical studies have highlighted a significant diversity in mechanisms conferring resistance to azoles, which include alterations in sterol biosynthesis, target site, uptake and efflux. In stark contrast, few examples document the molecular basis of azole resistance. Those that do refer almost exclusively to mechanisms in laboratory mutants, with the exception of the role of multi-drug resistance proteins in clinical isolates of Candida albicans. It is clear that the technologies required to examine and define azole resistance mechanisms at the molecular level exist, but research appears distinctly lacking in this most important area.
Collapse
Affiliation(s)
- T Joseph-Horne
- IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, UK
| | | |
Collapse
|
17
|
Morace G, Sanguinetti M, Posteraro B, Lo Cascio G, Fadda G. Identification of various medically important Candida species in clinical specimens by PCR-restriction enzyme analysis. J Clin Microbiol 1997; 35:667-72. [PMID: 9041409 PMCID: PMC229647 DOI: 10.1128/jcm.35.3.667-672.1997] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A single primer pair amplifying a cytochrome P-450 lanosterol-14 alpha-demethylase (L1A1) gene fragment that encodes a highly conserved region was used to detect yeast DNA in clinical specimens. Positive PCR products were obtained from genomic DNAs of Candida albicans, C. parapsilosis, C. tropicalis, C. guilliermondii, C. krusei, C. (Torulopsis) glabrata, and C. kefyr. No human, bacterial, or parasitic DNA was amplified. The sensitivity was evaluated for C. albicans genomic DNA by using various DNA concentrations (200 pg to 2 fg). The amplified DNAs of Candida species with unknown P-450 L1A1 gene sequences were subcloned and sequenced. Identification at the species level was achieved by digestion of the PCR products with different restriction enzymes. A specific restriction enzyme analysis pattern was determined for each species investigated. Subsequently, we used PCR to detect specific yeast DNA directly with clinical specimens such as blood and bronchoalveolar lavage specimens. After appropriate treatment, the specimens were processed by PCR and the results were compared with those obtained by traditional diagnostic procedures such as cultures and serology. Although preliminary, the PCR results seem to correlate well, at least for blood, with those of antigen detection assays and traditional blood cultures, with a better and earlier detection of candidemia.
Collapse
Affiliation(s)
- G Morace
- Istituto di Microbiologia, Università Cattolica Sacro Cuore, Rome, Italy
| | | | | | | | | |
Collapse
|
18
|
de Groot MJ, Vermeulen NP, Kramer JD, van Acker FA, Donné-Op den Kelder GM. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. Chem Res Toxicol 1996; 9:1079-91. [PMID: 8902262 DOI: 10.1021/tx960003i] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytochromes P450 (P450s) constitute a superfamily of phase I enzymes capable of oxidizing and reducing various substrates. P450 2D6 is a polymorphic enzyme, which is absent in 5-9% of the Caucasian population as a result of a recessive inheritance of gene mutations. This deficiency leads to impaired metabolism of a variety of drugs. All drugs metabolized by P450 2D6 contain a basic nitrogen atom, and a flat hydrophobic region coplanar to the oxidation site which is either 5 or 7 A away from the basic nitrogen atom. The aim of this study was to build a three-dimensional structure for the protein and more specifically for the active site of P450 2D6 in order to determine the amino acid residues possibly responsible for binding and/ or catalytic activity. Furthermore, the structural features of the active site can be implemented into the existing small molecule substrate model, thus enhancing its predictive value with respect to possible metabolism by P450 2D6. As no crystal structures are yet available for membrane-bound P450s (such as P450 2D6), the crystal structures of bacterial (soluble) P450 101 (P450cam), P450 102 (P450BM3), and P450 108 (P450terp) have been used to build a three-dimensional model for P450 2D6 with molecular modeling techniques. Several important P450 2D6 substrates were consecutively docked into the active site of the protein model. The energy optimized positions of the substrates in the protein agreed well with the original relative positions of the substrates within the substrate model. This confirms the usefulness of small molecule models in the absence of structural protein data. Furthermore, the derived protein model indicates new leads for experimental validation and extension of the substrate model.
Collapse
Affiliation(s)
- M J de Groot
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Molecular Toxicology, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Abstract
The understanding of structure-function relationship of enzymes requires detailed information of their three-dimensional structure. Protein structure determination by X-ray and NMR methods, the two most frequently used experimental procedures, are often difficult and time-consuming. Thus computer modeling of protein structures has become an increasingly active and attractive option for obtaining predictive models of three-dimensional protein structures. Specifically, for the ubiquitous metabolizing heme proteins, the cytochrome P450s, the X-ray structures of four isozymes of bacterial origin, P450cam, P450terp, P450BM-3 and P450eryF have now been determined. However, attempts to obtain the structure of mammalian forms by experimental means have thus far not been successful. Thus, there have been numerous attempts to construct models of mammalian P450s using homology modeling methods in which the known structures have been used to various extents and in various strategies to build models of P450 isozymes. In this paper, we review these efforts and then describe a strategy for structure building and assessment of 3D models of P450s recently developed in our laboratory that corrects many of the weaknesses in the previous procedures. The results are 3D models that for the first time are stable to unconstrained molecular dynamics simulations. The use of this method is demonstrated by the construction and validation of a 3D model for rabbit liver microsomal P450 isozyme 2B4, responsible for the oxidative metabolism of diverse xenobiotics including widely used inhalation anesthetics. Using this 2B4 model, the substrate access channel, substrate binding site and plausible surface regions for binding with P450 redox partners were identified.
Collapse
Affiliation(s)
- Y T Chang
- Molecular Research Institute, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
20
|
Lewis DF. Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3). Xenobiotica 1995; 25:333-66. [PMID: 7645302 DOI: 10.3109/00498259509061857] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. A novel modelling alignment for P450s, utilizing NADPH-P450 reductase for electron transfer, is proposed on the basis of analysis of their amino acid sequences. 2. Information used to facilitate the alignment process includes: the recent X-ray crystal structure of P450102 (P450bm3), site-directed mutagenesis experiments, chemical modification of specific residues, and antibody recognition studies. 3. The alignment has been used to construct a number of microsomal P450s of relevance to xenobiotic and endogenous metabolism.
Collapse
Affiliation(s)
- D F Lewis
- Molecular Toxicology Group, School of Biological Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
21
|
Abstract
The reactions of arylhydrazines (ArNHNH2) or aryldiazenes (ArN = NH) with simple iron porphyrins or with hemoproteins that have relatively open active sites, including hemoglobin, myoglobin, cytochrome P450, chloroperoxidase, catalase, prostaglandin synthase, and indoleamine-2,3-dioxygenase yield sigma-bonded aryl-iron complexes. Denaturation of the protein complexes under aerobic, acidic conditions shifts the aryl group to the porphyrin nitrogens and produces mixtures of the four possible N-arylprotoporphyrin IX regioisomers. The regioisomers are obtained in approximately equal amounts if the iron-to-nitrogen shift occurs outside of the protein but the ratio of isomers differs if the rearrangement is controlled by the protein. Only in the case of cytochrome P450 enzymes can the shift be induced to occur without denaturation of the protein. The isomer ratios obtained when the shift occurs in the intact active site provide direct experimental information on the active site topology and dynamics. Topological information has thus been obtained for cytochromes P450 1A1, 1A2, 2B1, 2B2, 2B4, 2B10, 2B11, 2E1, 11A1, 51, 101, 102, and 108. In contrast to hemoproteins with open active sites, conventional peroxidases react with arylhydrazines to give delta-meso-aryl adducts and covalent protein adducts. Reaction with the delta-meso edge but not the heme iron provides key evidence that restricting access of substrates to the ferryl oxygen helps direct the reaction towards peroxidase rather than peroxygenase catalysis.
Collapse
Affiliation(s)
- P R Ortiz de Montellano
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143-0446, USA
| |
Collapse
|
22
|
Vanden Bossche H, Koymans L, Moereels H. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol Ther 1995; 67:79-100. [PMID: 7494862 DOI: 10.1016/0163-7258(95)00011-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A number of cytochrome P450s are targets for compounds that are clinically used or under clinical evaluation for treatment of patients with mycotic infections, such as dermatophytosis, superficial and systemic candidiasis, cryptococcosis and aspergillosis, with skin diseases, such as psoriasis or ichthyosis, and other retinoid-sensitive malignancies, e.g., neuro-ectodermal glioma. Some of the P450 inhibitors are candidates for the treatment of hirsutism or prostate cancer, others are potent inhibitors of the P450 isomerase involved in the synthesis of thromboxane A2, a potent platelet aggregation inducer and vasoconstrictor.
Collapse
|
23
|
Burgener-Kairuz P, Zuber JP, Jaunin P, Buchman TG, Bille J, Rossier M. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment. J Clin Microbiol 1994; 32:1902-7. [PMID: 7989540 PMCID: PMC263900 DOI: 10.1128/jcm.32.8.1902-1907.1994] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PCR of a Candida albicans cytochrome P-450 lanosterol-alpha-demethylase (P450-L1A1) gene segment is a rapid and sensitive method of detection in clinical specimens. This enzyme is a target for azole antifungal action. In order to directly detect and identify the clinically most important species of Candida, we cloned and sequenced 1.3-kbp fragments of the cytochrome P450-L1A1 genes from Torulopsis (Candida) glabrata and from Candida krusei. These segments were compared with the published sequences from C. albicans and Candida tropicalis. Amplimers for gene sequences highly conserved throughout the fungal kingdom were first used; positive PCR results were obtained for C. albicans, T. glabrata, C. krusei, Candida parapsilosis, C. tropicalis, Cryptococcus neoformans, and Trichosporon beigelii DNA extracts. Primers were then selected for a highly variable region of the gene, allowing the species-specific detection from purified DNA of C. albicans, T. glabrata, C. krusei, and C. tropicalis. The assay sensitivity as tested for C. albicans in seeded clinical specimens such as blood, peritoneal fluid, or urine was 10 to 20 cells per 0.1 ml. Compared with results obtained by culture, the sensitivity, specificity, and efficiency of the species-specific nested PCR tested with 80 clinical specimens were 71, 95, and 83% for C. albicans and 100, 97, and 98% for T. glabrata, respectively.
Collapse
|
24
|
Burns N, Grimwade B, Ross-Macdonald PB, Choi EY, Finberg K, Roeder GS, Snyder M. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev 1994; 8:1087-105. [PMID: 7926789 DOI: 10.1101/gad.8.9.1087] [Citation(s) in RCA: 431] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have developed a large-scale screen to identify genes expressed at different times during the life cycle of Saccharomyces cerevisiae and to determine the subcellular locations of many of the encoded gene products. Diploid yeast strains containing random lacZ insertions throughout the genome have been constructed by transformation with a mutagenized genomic library. Twenty-eight hundred transformants containing fusion genes expressed during vegetative growth and 55 transformants containing meiotically induced fusion genes have been identified. Based on the frequency of transformed strains producing beta-galactosidase, we estimate that 80-86% of the yeast genome (excluding the rDNA) contains open reading frames expressed in vegetative cells and that there are 93-135 meiotically induced genes. Indirect immunofluorescence analysis of 2373 strains carrying fusion genes expressed in vegetative cells has identified 245 fusion proteins that localize to discrete locations in the cell, including the nucleus, mitochondria, endoplasmic reticulum, cytoplasmic dots, spindle pole body, and microtubules. The DNA sequence adjacent to the lacZ gene has been determined for 91 vegetative fusion genes whose products have been localized and for 43 meiotically induced fusions. Although most fusions represent genes unidentified previously, many correspond to known genes, including some whose expression has not been studied previously and whose products have not been localized. For example, Sec21-beta-gal fusion proteins yield a Golgi-like staining pattern, Ty1-beta-gal fusion proteins localize to cytoplasmic dots, and the meiosis-specific Mek1/Mre4-beta-gal and Spo11-beta-gal fusion proteins reside in the nucleus. The phenotypes in haploid cells have been analyzed for 59 strains containing chromosomal fusion genes expressed during vegetative growth; 9 strains fail to form colonies indicating that the disrupted genes are essential. Fifteen additional strains display slow growth or are impaired for growth on specific media or in the presence of inhibitors. Of 39 meiotically induced fusion genes examined, 14 disruptions confer defects in spore formation or spore viability in homozygous diploids. Our results will allow researchers who identify a yeast gene to determine immediately whether that gene is expressed at a specific time during the life cycle and whether its gene product localizes to a specific subcellular location.
Collapse
Affiliation(s)
- N Burns
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103
| | | | | | | | | | | | | |
Collapse
|
25
|
Yoshida Y, Aoyama Y. The P450 superfamily: A group of versatile hemoproteins contributing to the oxidation of various small molecules. Stem Cells 1994. [DOI: 10.1002/stem.5530120710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Ishida N, Sugita O. The rat cytochrome P450 C‐M/F (CYP2D) subfamily: Constitutive P450 isozymes in male and female. Stem Cells 1994. [DOI: 10.1002/stem.5530120711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Koymans LM, Vermeulen NP, Baarslag A, Donné-Op den Kelder GM. A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building. J Comput Aided Mol Des 1993; 7:281-9. [PMID: 8377025 DOI: 10.1007/bf00125503] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A homology model building study of cytochrome P450 2D6 has been carried out based on the crystal structure of cytochrome P450 101. The primary sequences of P450 101 and P450 2D6 were aligned by making use of an automated alignment procedure. This alignment was adjusted manually by matching alpha-helices (C, D, G, I, J, K and L) and beta-sheets (beta 3/beta 4) of P450 101 that are proposed to be conserved in membrane-bound P450s (Ouzounis and Melvin [Eur. J. Biochem., 198 (1991) 307]) to the corresponding regions in the primary amino acid sequence of P450 2D6. Furthermore, alpha-helices B, B' and F were found to be conserved in P450 2D6. No significant homology between the remaining regions of P450 101 and P450 2D6 could be found and these regions were therefore deleted. A 3D model of P450 2D6 was constructed by copying the coordinates of the residues from the crystal structure of P450 101 to the corresponding residues in P450 2D6. The regions without a significant homology with P450 101 were not incorporated into the model. After energy-minimization of the resulting 3D model of P450 2D6, possible active site residues were identified by fitting the substrates debrisoquine and dextrometorphan into the proposed active site. Both substrates could be positioned into a planar pocket near the heme region formed by residues Val370, Pro371, Leu372, Trp316, and part of the oxygen binding site of P450 2D6. Furthermore, the carboxylate group of either Asp100 or Asp301 was identified as a possible candidate for the proposed interaction with basic nitrogen atom(s) of the substrates.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L M Koymans
- Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12:1-51. [PMID: 7678494 DOI: 10.1089/dna.1993.12.1] [Citation(s) in RCA: 1083] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We provide here a list of 221 P450 genes and 12 putative pseudogenes that have been characterized as of December 14, 1992. These genes have been described in 31 eukaryotes (including 11 mammalian and 3 plant species) and 11 prokaryotes. Of 36 gene families so far described, 12 families exist in all mammals examined to date. These 12 families comprise 22 mammalian subfamilies, of which 17 and 15 have been mapped in the human and mouse genome, respectively. To date, each subfamily appears to represent a cluster of tightly linked genes. This revision supersedes the previous updates [Nebert et al., DNA 6, 1-11, 1987; Nebert et al., DNA 8, 1-13, 1989; Nebert et al., DNA Cell Biol. 10, 1-14 (1991)] in which a nomenclature system, based on divergent evolution of the superfamily, has been described. For the gene and cDNA, we recommend that the italicized root symbol "CYP" for human ("Cyp" for mouse), representing "cytochrome P450," be followed by an Arabic number denoting the family, a letter designating the subfamily (when two or more exist), and an Arabic numeral representing the individual gene within the subfamily. A hyphen should precede the final number in mouse genes. "P" ("p" in mouse) after the gene number denotes a pseudogene. If a gene is the sole member of a family, the subfamily letter and gene number need not be included. We suggest that the human nomenclature system be used for all species other than mouse. The mRNA and enzyme in all species (including mouse) should include all capital letters, without italics or hyphens. This nomenclature system is identical to that proposed in our 1991 update. Also included in this update is a listing of available data base accession numbers for P450 DNA and protein sequences. We also discuss the likelihood that this ancient gene superfamily has existed for more than 3.5 billion years, and that the rate of P450 gene evolution appears to be quite nonlinear. Finally, we describe P450 genes that have been detected by expressed sequence tags (ESTs), as well as the relationship between the P450 and the nitric oxide synthase gene superfamilies, as a likely example of convergent evolution.
Collapse
Affiliation(s)
- D R Nelson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Koymans L, Donné-op den Kelder GM, Koppele Te JM, Vermeulen NP. Cytochromes P450: their active-site structure and mechanism of oxidation. Drug Metab Rev 1993; 25:325-87. [PMID: 8404461 DOI: 10.3109/03602539308993979] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- L Koymans
- Department of Pharmacochemistry, Faculty of Chemistry, Free University, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Negishi M, Iwasaki M, Juvonen RO, Aida K. Alteration of the substrate specificity of mouse 2A P450s by the identity of residue-209: steroid-binding site and orientation. J Steroid Biochem Mol Biol 1992; 43:1031-6. [PMID: 22217847 DOI: 10.1016/0960-0760(92)90330-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mouse steroid 7α- and 15α-hydroxylases (P450c7 and P450c15) and coumarin 7-hydroxylase (P450coh) are structurally similar. To study the structural basis of the substrate specificities of these enzymes, we constructed a series of the mutant P450s, expressed in COS-1 and yeast cells, and studied them spectroscopically as well as enzyme-kinetically. A single amino acid mutation of residue-209 is sufficient to alter the substrate specificity of the P450s from xenobiotics to steroids and subsequently, from testosterone to corticosterone. Moreover, residue-209, when it is asparagine, appears to bind directly to the 11β-hydroxyl of corticosterone. The mutations also after the spin equilibrium of P450 depending on the hydrophobicity and size of residue-209. We conclude, therefore, that residue-209 resides close to the 6th ligand of heme in the mouse 2A subfamily and is located at a critical site of the substrate-binding pocket. As a result, the identity of the residue-209 plays a key role in determining the substrate specificity.
Collapse
Affiliation(s)
- M Negishi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
31
|
Loper JC. Cytochrome P450 lanosterol 14α-demethylase (CYP51): insights from molecular genetic analysis of the ERG11 gene in Saccharomyces cerevisiae. J Steroid Biochem Mol Biol 1992; 43:1107-16. [PMID: 22217856 DOI: 10.1016/0960-0760(92)90339-k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Eukaryotes characteristically express a cytochrome P450-catalyzed sterol 14α-methyl demethylase as an essential step in the production of membrane sterols. Lanosterol 14α-demethylase of Saccharomyces cerevisiae is the best characterized representative of these enzymes among fungi and provides a model system for the molecular genetic analysis of the reaction. The gene for this P450 and the gene for the S. cerevisiae NADPH-cytochrome P450 reductase have been examined by mutational inactivation and for their regulation of expression. Our results have contributed to a better understanding of sterol biosynthesis in relation to mechanisms of resistance to fungicidal demethylase inhibitors, and promote the rationale for using S. cerevisiae in the further characterization of structure function relationships among sterol 14α-demethylases.
Collapse
Affiliation(s)
- J C Loper
- Department of Molecular Genetics University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| |
Collapse
|
32
|
Salmon F, Taton M, Benveniste P, Rahier A. Plant sterol biosynthesis: novel potent and selective inhibitors of cytochrome P450-dependent obtusifoliol 14 alpha-methyl demethylase. Arch Biochem Biophys 1992; 297:123-31. [PMID: 1637175 DOI: 10.1016/0003-9861(92)90649-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The R-(-) isomer of methyl 1-(2,2-dimethylindan-1-yl)imidazole-5-carboxylate (CGA 214372; 2) strongly inhibited P450-dependent obtusifoliol 14 alpha-demethylase (P450OBT.14DM) (I50 = 8 x 10(-9) M, I50/Km = 5 x 10(-5) in a maize (Zea mays) microsomal preparation. Kinetic studies indicated uncompetitive inhibition with respect to obtusifoliol. The corresponding S-(+) isomer was a 20-fold weaker inhibitor for P450OBT.14DM. The molecular features of a variety of analogues of 2 were related to their potency as inhibitors of P450OBT.14DM in vitro, allowing delineation of the key structural requirements governing inhibition of the demethylase. CGA 214372 proved to have a high degree of selectivity for P450OBT.14DM. This allowed easy distinction of this activity from other P450-dependent activities present in the maize microsomal preparation and gave strong evidence that P450OBT.14DM is a herbicidal target. Microsomal maize P450OBT.14DM and yeast P450LAN.14DM, the only known examples of P450-dependent enzymes carrying out an identical metabolic function in different eukaryotes, showed distinct inhibition patterns with CGA 214372 and ketoconazole, a substituted imidazole anti-mycotic.
Collapse
Affiliation(s)
- F Salmon
- Département d'Enzymologie Cellulaire et Moléculaire, CNRS-UPR 406, Strasbourg, France
| | | | | | | |
Collapse
|
33
|
Active site topology of Saccharomyces cerevisiae lanosterol 14 alpha-demethylase (CYP51) and its G310D mutant (cytochrome P-450SG1). J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42190-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Lewis DF, Moereels H. The sequence homologies of cytochromes P-450 and active-site geometries. J Comput Aided Mol Des 1992; 6:235-52. [PMID: 1517776 DOI: 10.1007/bf00123379] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amino acid sequence alignment of 16 cytochrome P-450 proteins representative of the major families is reported. The sequence matching process has been carried out on the basis of maximum homology by residue type, retention of secondary structure and minimization of deletions/insertions except where additional loop regions exist. From the starting point of known reported sequence homology matching from the literature, a realignment on the basis of conserved residues involved in both structure and function gives rise to a self-consistent set of sequences which correlates with known mechanistic and structural data. Once fitted, these archetypal sequences form a straightforward template for the alignment of all P-450 subfamilies. Computer modelling of the active-site regions constructed from homology with the bacterial form of the enzyme (P-450CAM) evinces the correct substrate specificity. Furthermore, the construction of the macromolecular assembly of components of the cytochrome P-450 system on the microsomal endoplasmic reticular membrane is presented from the evidence of site-directed mutagenesis, analysis by molecular probes, X-ray crystallography and molecular modelling.
Collapse
Affiliation(s)
- D F Lewis
- Department of Biochemistry, University of Surrey, Guildford, U.K
| | | |
Collapse
|
35
|
Aoyama Y, Yoshida Y. Different substrate specificities of lanosterol 14a-demethylase (P-45014DM) of Saccharomyces cerevisiae and rat liver for 24-methylene-24,25-dihydrolanosterol and 24,25-dihydrolanosterol. Biochem Biophys Res Commun 1991; 178:1064-71. [PMID: 1872829 DOI: 10.1016/0006-291x(91)91000-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purified lanosterol 14a-demethylase (P-45014DM) of S. cerevisiae catalyzed the 14a-demethylation of 24-methylene-24,25-dihydrolanosterol (24-methylenelanost-8-en-3 beta-ol, 24-methylene-DHL), the natural substrate of the demethylase of filamentous fungi, as well as its natural substrate, lanosterol. Lanosterol 14a-demethylase of rat liver microsomes also catalyzed the 14a-demethylation of 24-methylene-DHL, but the activity was considerably lower than that for lanosterol. The activity of the rat liver enzyme for 24-methylene-DHL was also lower than that for 24,25-dihydrolanosterol (DHL), while the activity of yeast P-45014DM for 24-methylene-DHL was considerably higher than that for DHL. Since 24-substituted sterols are not found in mammals and DHL is not an intermediate of ergosterol biosynthesis by yeast, above-mentioned different substrate specificities between the yeast and the mammalian 14a-demethylases may reflect certain evolutional alteration in their active sites in relation to the difference in their sterol biosynthetic pathways.
Collapse
Affiliation(s)
- Y Aoyama
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya Japan
| | | |
Collapse
|
36
|
Ouzounis CA, Melvin WT. Primary and secondary structural patterns in eukaryotic cytochrome P-450 families correspond to structures of the helix-rich domain of Pseudomonas putida cytochrome P-450cam. Indications for a similar overall topology. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:307-15. [PMID: 2040297 DOI: 10.1111/j.1432-1033.1991.tb16017.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An extensive sequence analysis of the eukaryotic cytochrome P-450 (P-450) protein families was conducted with a view to identifying conserved regions that might be related to secondary structural features in the Pseudomonas putida camphor hydroxylase (P-450cam). All sequences available on-line were collected, classified and aligned within families. Distinctively different sequences were chosen from each of seven eukaryotic families, and an unbiased multi-alignment was constructed. Profile patterns of the most conserved regions were generated and screened against the sequence of P-450cam, the structure of which has been elucidated by X-ray crystallography. While some of these profiles did not map on the P-450cam sequence, the structurally most important helices were clearly identified and the correlations were found to be statistically significant. Our analysis suggests that the helix-rich domain with the cysteine pocket and the oxygen-binding site is conserved in all P-450 forms. Helices I and L from P-450cam can be easily identified in all eukaryotic P-450 forms. Other helices which seem to exist in all P-450 forms include helices C, D, G and J. K. In the helix-poor domain of P-450cam, only structures b3/b4 seem to have been conserved. The obvious sequence conservation throughout the helix-rich domain of the P-450cam protein might be expected for a molecular class whose overall topology is preserved. Additional support for the conservation of structure between eukaryotic cytochromes P-450 and P-450cam comes from secondary structure prediction of the eukaryotic sequences.
Collapse
Affiliation(s)
- C A Ouzounis
- Department of Molecular and Cell Biology, University of Aberdeen, Marischal College, Scotland
| | | |
Collapse
|
37
|
Aoyama Y, Yoshida Y, Sonoda Y, Sato Y. Role of the side chain of lanosterol in substrate recognition and catalytic activity of lanosterol 14 alpha-demethylase (cytochrome P-450 (14DM)) of yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1081:262-6. [PMID: 1998745 DOI: 10.1016/0005-2760(91)90280-u] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 14 alpha-demethylation of 24,25-dihydrolanosterol (DHL) derivatives having trimmed side chains, 27-nor-DHL, 26,27-dinor-DHL, 25,26,27-trinor-DHL, 24,25,26,27-tetranor-DHL, 23,24,25,26,27-pentanor-DHL and 22,23,24,25,26,27-hexanor-DHL, was studied with the reconstituted lanosterol 14 alpha-demethylase system consisting of cytochrome P-450(14DM) and NADPH-cytochrome P-450 reductase both purified from yeast microsomes. The demethylase catalyzed the 14 alpha-demethylation of the derivatives having the side chains longer than tetranor but the activities for the trinor- and tetranor-derivatives were lower. Kinetic analysis indicated that affinity of the trinor-derivative for the demethylase was considerably higher than that of DHL. The affinities of the 27-nor- and dinor-derivatives were increased by this order and were the intermediates of DHL and the trinor derivative. On the other hand, Vmax values of the demethylase for the DHL derivatives were decreased depending on their side-chain lengths, and the substrate-dependent reduction rate of cytochrome P-450(14DM) was also decreased in the same manner. Based on these observations, it was concluded that interaction of the side chain of lanosterol especially C-25, 26 and 27 with the substrate site of lanosterol 14 alpha-demethylase was necessary for enhancing the catalytic activity of the enzyme. However, this interaction was considered not to be essential for substrate binding.
Collapse
Affiliation(s)
- Y Aoyama
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya Japan
| | | | | | | |
Collapse
|
38
|
Iwasaki M, Juvonen R, Lindberg R, Negishi M. Alteration of high and low spin equilibrium by a single mutation of amino acid 209 in mouse cytochromes P450. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67803-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Sariaslani FS. Microbial cytochromes P-450 and xenobiotic metabolism. ADVANCES IN APPLIED MICROBIOLOGY 1991; 36:133-78. [PMID: 1877380 DOI: 10.1016/s0065-2164(08)70453-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- F S Sariaslani
- Central Research and Development Department, E. I. du Pont de Nemours and Company, Inc., Wilmington, Delaware 19880
| |
Collapse
|
40
|
Kaergel E, Aoyama Y, Schunck WH, Mueller HG, Yoshida Y. Comparative study on cytochrome P-450 of yeasts using specific antibodies to cytochromes P-450alk and P-450(14DM). Yeast 1990; 6:61-7. [PMID: 2107648 DOI: 10.1002/yea.320060107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The occurrence of cytochrome P-450(14DM) (lanosterol 14 alpha-demethylase) and cytochrome P-450alk (long-chain alkane terminal hydroxylase) in various yeast strains was determined with immunological procedures. Cytochrome P-450(14DM), which is constitutive or housekeeping enzyme playing an essential role in ergosterol biogenesis, was found in all yeast strains so far tested. Cytochromes P-450(14DM) from different species of yeast were immunologically different, although they may have had a few common antigenic sites. In contrast, cytochrome P-450alk was detected only in the alkane-assimilating yeasts.
Collapse
Affiliation(s)
- E Kaergel
- Central Institute for Molecular Biology, National Academy of Science of G.D.R., Berlin-Buch
| | | | | | | | | |
Collapse
|
41
|
Abstract
Studies with biomimetic models can yield considerable insight into mechanisms of enzymatic catalysis. The discussion above indicates how such information has been important in the cases of flavoproteins, hemoproteins, and, to a lesser extent, the copper protein dopamine beta-hydroxylase. Some of the moieties that we generally accept as intermediates (i.e., high-valent iron oxygen complex in cytochrome P-450 reactions) would be extremely hard to characterize were it not for biomimetic models and more stable analogs such as peroxidase Compound I complexes. Although biomimetic models can be useful, we do need to keep them in perspective. It is possible to alter ligands and aspects of the environment in a way that may not reflect the active site of the protein. Eventually, the model work needs to be carried back to the proteins. We have seen that diagnostic substrates can be of considerable use in understanding enzymes and examples of elucidation of mechanisms through the use of rearrangements, mechanism-based inactivation, isotope labeling, kinetic isotope effects, and free energy relationships have been given. The point should be made that a myriad of approaches need to be applied to the study of each enzyme, for there is potential for misleading information if total reliance is placed on a single approach. The point also needs to be made that in the future we need information concerning the structures of the active sites of enzymes in order to fully understand them. Of the enzymes considered here, only a bacterial form of cytochrome P-450 (P-450cam) has been crystallized. The challenge to determine the three-dimensional structures of these enzymes, particularly the intrinsic membrane proteins, is formidable, yet our further understanding of the mechanisms of enzyme catalysis will remain elusive as long as we have to speak of putative specific residues, domains, and distances in anecdotal terms. The point should be made that there is actually some commonality among many of the catalytic mechanisms of oxidation, even among proteins with different structures and prosthetic groups. Thus, we see that cytochrome P-450 has some elements of a peroxidase and vice versa; indeed, the chemistry at the prosthetic group is probably very similar and the overall chemistry seems to be induced by the protein structure. The copper protein dopamine beta-hydroxylase appears to proceed with chemistry similar to that of the hemoprotein cytochrome P-450 and, although not so thoroughly studied, the non-heme iron protein P. oleovarans omega-hydroxylase.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
42
|
Aoyama Y, Yoshida Y, Sonoda Y, Sato Y. The 3-hydroxy group of lanosterol is essential for orienting the substrate site of cytochrome P-450(14DM) (lanosterol 14 alpha- demethylase). BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1006:209-13. [PMID: 2688742 DOI: 10.1016/0005-2760(89)90198-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interaction of lanosterol, 3-epilanosterol, 3-oxolanosta-8,24-diene, 3-methylenelanost-8-ene and lanosterol acetate with cytochrome P-450(14DM) were studied. The cytochrome mediated the 14alpha-demethylation of 3-epilanosterol with nearly the same activity as lanosterol but could not mediate the 14alpha-demethylation of the 3-methylene derivative and the 3-acetate. The cytochrome catalyzed the 14alpha-demethylation of the 3-oxo derivative with low rate. Based on these and some additional observations the hydrogen bond formation between the 3-hydroxy group of lanosterol and the specific amino acid residue in the substrate site is assumed to be essential for orienting the substrate in the substrate site of the cytochrome.
Collapse
Affiliation(s)
- Y Aoyama
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | | | | | | |
Collapse
|
43
|
Vanden Bossche H, Marichal P, Gorrens J, Coene MC, Willemsens G, Bellens D, Roels I, Moereels H, Janssen PA. Biochemical approaches to selective antifungal activity. Focus on azole antifungals. Mycoses 1989; 32 Suppl 1:35-52. [PMID: 2561184 DOI: 10.1111/j.1439-0507.1989.tb02293.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Azole antifungals (e.g. the imidazoles: miconazole, clotrimazole, bifonazole, imazalil, ketoconazole, and the triazoles: diniconazole, triadimenol, propiconazole, fluconazole and itraconazole) inhibit in fungal cells the 14 alpha-demethylation of lanosterol or 24-methylenedihydrolanosterol. The consequent inhibition of ergosterol synthesis originates from binding of the unsubstituted nitrogen (N-3 or N-4) of their imidazole or triazole moiety to the heme iron and from binding of their N-1 substituent to the apoprotein of a cytochrome P-450 (P-450(14)DM) of the endoplasmic reticulum. Great differences in both potency and selectivity are found between the different azole antifungals. For example, after 16h of growth of Candida albicans in medium supplemented with [14C]-acetate and increasing concentrations of itraconazole, 100% inhibition of ergosterol synthesis is achieved at 3 x 10(-8) M. Complete inhibition of this synthesis by fluconazole is obtained at 10(-5) M only. The agrochemical imidazole derivative, imazalil, shows high selectivity, it has almost 80 and 98 times more affinity for the Candida P-450(s) than for those of the piglet testes microsomes and bovine adrenal mitochondria, respectively. However, the topically active imidazole antifungal, bifonazole, has the highest affinity for P-450(s) of the testicular microsomes. The triazole antifungal itraconazole inhibits at 10(-5) M the P-450-dependent aromatase by 17.9, whereas 50% inhibition of this enzyme is obtained at about 7.5 x 10(-6)M of the bistriazole derivative fluconazole. The overall results show that both the affinity for the fungal P-450(14)DM and the selectivity are determined by the nitrogen heterocycle and the hydrophobic N-1 substituent of the azole antifungals. The latter has certainly a greater impact. The presence of a triazole and a long hypdrophobic nonligating portion form the basis for itraconazole's potency and selectivity.
Collapse
|
44
|
Lindberg RL, Negishi M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 1989; 339:632-4. [PMID: 2733794 DOI: 10.1038/339632a0] [Citation(s) in RCA: 320] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As a family of structurally-related enzymes, cytochrome P450 (P450) monooxygenases exhibit paradoxical characteristics: although collectively the enzymes display a broad range of substrate specificities, individually they are characterized by a high degree of substrate and product selectivity. Mouse P45015 alpha and P450coh, for example, which are expressed in female liver and male kidney cells, catalyse 15 alpha-hydroxylation of delta 4 3-ketone steroids, such as testosterone and 7-hydroxylation of coumarin, respectively. In spite of their divergent catalytic activities, however, these enzymes differ by only 11 amino acids within their 494 residues. To determine the structural basis of the different substrate specificities of P45015 alpha and P450coh we therefore altered each of these 11 residues by site-directed mutagenesis, expressing the mutant cytochromes in COS-1 cells. We report that the activities of both cytochromes depend critically on the identities of the amino acids at positions 117, 209 and 365 and, moreover, that a single mutation in which Phe 209 is substituted by Leu is sufficient to convert the specificity of P450coh from coumarin to steroid hydroxylation.
Collapse
Affiliation(s)
- R L Lindberg
- Pharmacogenetics Section, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
45
|
Sutter TR, Loper JC. Disruption of the Saccharomyces cerevisiae gene for NADPH-cytochrome P450 reductase causes increased sensitivity to ketoconazole. Biochem Biophys Res Commun 1989; 160:1257-66. [PMID: 2543395 DOI: 10.1016/s0006-291x(89)80139-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14 alpha-demethylase. Resistance is restored through complementation by the plasmid-borne wild type gene from either S. cerevisiae or Candida tropicalis. Neither Southern hybridization nor Western immunoblot techniques provided evidence for a second NADPH-cytochrome P450 reductase gene, suggesting that an alternate pathway may provide for the functions of this reductase in S. cerevisiae.
Collapse
Affiliation(s)
- T R Sutter
- Department of Environmental Health, University of Cincinnati College of Medicine, Ohio 45267-0524
| | | |
Collapse
|
46
|
Abstract
Enzymatic systems employed by microorganisms for oxidative transformation of various organic molecules include laccases, ligninases, tyrosinases, monooxygenases, and dioxygenases. Reactions performed by these enzymes play a significant role in maintaining the global carbon cycle through either transformation or complete mineralization of organic molecules. Additionally, oxidative enzymes are instrumental in modification or degradation of the ever-increasing man-made chemicals constantly released into our environment. Due to their inherent stereo- and regioselectivity and high efficiency, oxidative enzymes have attracted attention as potential biocatalysts for various biotechnological processes. Successful commercial application of these enzymes will be possible through employing new methodologies, such as use of organic solvents in the reaction mixtures, immobilization of either the intact microorganisms or isolated enzyme preparations on various supports, and genetic engineering technology.
Collapse
Affiliation(s)
- F S Sariaslani
- Central Research and Development Department, E.I. Du Pont de Nemours and Company, Wilmington, Delaware
| |
Collapse
|
47
|
Nebert DW, Nelson DR, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA (MARY ANN LIEBERT, INC.) 1989; 8:1-13. [PMID: 2651058 DOI: 10.1089/dna.1.1989.8.1] [Citation(s) in RCA: 445] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this update we provide a list of the 71 P450 genes and the four P450 pseudogenes that have been characterized as of September 30, 1988. The chromosomal locations of many of these genes are also summarized. A modest revision of the initially proposed nomenclature of the P450 superfamily (Nebert et al., DNA 6, 1-11, 1987) is described specifically for the human and mouse chromosomal loci. The motivation for this revision is to conform to the rules of nomenclature for human and mouse genes. Recommendations for the naming of chromosomal loci include the root symbol "CYP" for human ("Cyp" for mouse), denoting "cytochrome P450." We recommend that this root also be used for other organisms. For a chromosomal locus, the root symbol is followed by an Arabic numeral designating the P450 family, a letter indicating the subfamily, and an Arabic numeral representing the individual gene within the family or subfamily. Numbers of the individual genes usually will be assigned in the order the genes are identified. This system is consistent with our earlier proposed nomenclature for P450 families and gene products from all eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- D W Nebert
- Laboratory of Developmental Pharmacology, National Institute of Child Health and Human Development, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|