1
|
Lazzarato L, Bianchi L, Andolfo A, Granata A, Lombardi M, Sinelli M, Rolando B, Carini M, Corsini A, Fruttero R, Arnaboldi L. Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms. Molecules 2023; 28:5724. [PMID: 37570694 PMCID: PMC10420201 DOI: 10.3390/molecules28155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.
Collapse
Affiliation(s)
- Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy;
| | - Agnese Granata
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Lombardi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Sinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Marina Carini
- Department of Pharmaceutical Sciences “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| |
Collapse
|
2
|
Ponticelli C, Arnaboldi L, Moroni G, Corsini A. Treatment of dyslipidemia in kidney transplantation. Expert Opin Drug Saf 2020; 19:257-267. [DOI: 10.1080/14740338.2020.1732921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Claudio Ponticelli
- Divisione di Nefrologia, Istituto Scientifico Ospedale Maggiore, Milano, Italy (retired)
| | - Lorenzo Arnaboldi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DISFeB), Università degli Studi di Milano, Milano, Italy
| | - Gabriella Moroni
- Nefrologia e Dialisi, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DISFeB), Università degli Studi di Milano, Milano, Italy
- IRCCS Multimedica, Milano, Italy
| |
Collapse
|
3
|
Plant-Derived Products for Treatment of Vascular Intima Hyperplasia Selectively Inhibit Vascular Smooth Muscle Cell Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3549312. [PMID: 30405738 PMCID: PMC6201497 DOI: 10.1155/2018/3549312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/01/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
Natural products are used widely for preventing intimal hyperplasia (IH), a common cardiovascular disease. Four different cells initiate and progress IH, namely, vascular smooth muscle, adventitial and endothelial cells, and circulation or bone marrow-derived cells. Vascular smooth muscle cells (VSMCs) play a critical role in initiation and development of intimal thickening and formation of neointimal hyperplasia. In this review, we describe the different originating cells involved in vascular IH and emphasize the effect of different natural products on inhibiting abnormal cellular functions, such as VSMC proliferation and migration. We further present a classification for the different natural products like phenols, flavonoids, terpenes, and alkaloids that suppress VSMC growth. Abnormal VSMC physiology involves disturbance in MAPKs, PI3K/AKT, JAK-STAT, FAK, and NF-κB signal pathways. Most of the natural isolate studies have revealed G1/S phase of cell cycle arrest, decreased ROS production, induced cell apoptosis, restrained migration, and downregulated collagen deposition. It is necessary to screen optimal drugs from natural sources that preferentially inhibit VSMC rather than vascular endothelial cell growth to prevent early IH, restenosis following graft implantation, and atherosclerotic diseases.
Collapse
|
4
|
Pentz R, Kaun C, Thaler B, Stojkovic S, Lenz M, Krychtiuk KA, Zuckermann A, Huber K, Wojta J, Hohensinner PJ, Demyanets S. Cardioprotective cytokine interleukin-33 is up-regulated by statins in human cardiac tissue. J Cell Mol Med 2018; 22:6122-6133. [PMID: 30216659 PMCID: PMC6237563 DOI: 10.1111/jcmm.13891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Interleukin (IL)‐33 is a member of the IL‐1 family and is able to act cardioprotective. The aim of this study was to investigate the regulation of IL‐33 by 3‐hydroxy‐3‐methylglutaryl‐coenzyme‐A (HMG‐CoA) reductase inhibitors (statins) and bisphosphonates (BPs) in human cardiac tissue. The lipophilic fluvastatin, simvastatin, atorvastatin, and lovastatin as well as the nitrogenous BPs alendronate and ibandronate, but not hydrophilic pravastatin increased IL‐33 mRNA and intracellular IL‐33 protein levels in both human adult cardiac myocytes (HACM) and fibroblasts (HACF). Additionally, fluvastatin reduced soluble ST2 secretion from HACM. IL‐33 was also up‐regulated by the general inhibitor of prenylation perillic acid, a RhoA kinase inhibitor Y‐27632, and by latrunculin B, but statin‐induced IL‐33 expression was inhibited by mevalonate, geranylgeranyl pyrophosphate (GGPP) and RhoA activator U‐46619. The IL‐33 promoter was 2.3‐fold more accessible in statin‐treated HACM compared to untreated cells (P = 0.037). In explanted hearts of statin‐treated patients IL‐33 protein was up‐regulated as compared with the hearts of non‐statin‐treated patients (P = 0.048). As IL‐33 was previously shown to exert cardioprotective effects, one could speculate that such up‐regulation of IL‐33 expression in human cardiac cells, which might happen mainly through protein geranylgeranylation, could be a novel mechanism contributing to known cardioprotective effects of statins and BPs.
Collapse
Affiliation(s)
- Richard Pentz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Barbara Thaler
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Max Lenz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Konstantin A Krychtiuk
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Kurt Huber
- 3rd Medical Department, Cardiology and Intensive Care Medicine, Wilhelminen Hospital, Vienna, Austria.,Medical Faculty, Sigmund Freud Private University, Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria.,Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Philipp J Hohensinner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells Phenotype in Type 2 Diabetes. Int J Mol Sci 2015; 16:24353-68. [PMID: 26473856 PMCID: PMC4632754 DOI: 10.3390/ijms161024353] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease reaching a pandemic proportion in developed countries and a major risk factor for almost all cardiovascular diseases and their adverse clinical manifestations. T2DM leads to several macrovascular and microvascular alterations that influence the progression of cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are fundamental players in macrovascular alterations of T2DM patients. VSMCs display phenotypic and functional alterations that reflect an altered intracellular biomolecular scenario of great vessels of T2DM patients. Hyperglycemia itself and through intraparietal accumulation of advanced glycation-end products (AGEs) activate different pathways, in particular nuclear factor-κB and MAPKs, while insulin and insulin growth-factor receptors (IGFR) are implicated in the activation of Akt and extracellular-signal-regulated kinases (ERK) 1/2. Nuclear factor-κB is also responsible of increased susceptibility of VSMCs to pro-apoptotic stimuli. Down-regulation of insulin growth-factor 1 receptors (IGFR-1R) activity in diabetic vessels also influences negatively miR-133a levels, so increasing apoptotic susceptibility of VSMCs. Alterations of those bimolecular pathways and related genes associate to the prevalence of a synthetic phenotype of VSMCs induces extracellular matrix alterations of great vessels. A better knowledge of those biomolecular pathways and related genes in VSMCs will help to understand the mechanisms leading to macrovascular alterations in T2DM patients and to suggest new targeted therapies.
Collapse
|
6
|
Role of small GTPase protein Rac1 in cardiovascular diseases: development of new selective pharmacological inhibitors. J Cardiovasc Pharmacol 2014; 62:425-35. [PMID: 23921306 DOI: 10.1097/fjc.0b013e3182a18bcc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A pathway-based genome-wide association analysis has recently identified Rac1 as one of the biologically important gene in coronary heart diseases. The role of the small GTPase Rac1 in cardiac hypertrophy and atherosclerosis has also been documented in clinical studies with the HMG-CoA reductase inhibitors and in in vitro and in vivo settings using transgenic and knockout mice. Thus, Rac1 has emerged as a new pharmacological target for the treatment of cardiovascular diseases. The activation state of Rac1 depends on the release of guanosine diphosphate and the binding of guanosine triphosphate. This cycling is regulated by the guanine nucleotide exchange factors, as activators, and by the GTPase-activating proteins. Three categories of selective Rac1 inhibitors have been developed affecting different steps of this pathway: antagonists of Rac1-guanine nucleotide exchange factor interaction, allosteric inhibitors of nucleotide binding to Rac1, and antagonists of Rac1-mediated NADPH oxidase activity. These chemical compounds have shown to selectively inhibit Rac1 activation in cultured cell lines without affecting the homologous proteins RhoA and Cdc42. Moreover, pioneer studies have been conducted with Rac1 inhibitors in in vivo experimental models of cardiovascular diseases with encouraging results. The present review summarizes the current knowledge of the role of Rac1 in cardiovascular diseases and the pharmacological approaches that have been developed to selectively inhibit its function.
Collapse
|
7
|
Duelund L, Amiot A, Fillon A, Mouritsen OG. Influence of the active compounds of Perilla frutescens leaves on lipid membranes. JOURNAL OF NATURAL PRODUCTS 2012; 75:160-166. [PMID: 22272932 DOI: 10.1021/np200713q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The leaves of the annual plant Perilla frutescens are used widely as a spice and a preservative in Asian food as well as in traditional medicine. The active compounds in the leaves are the cyclic monoterpene limonene (1) and its bio-oxidation products, perillaldehyde (2), perillyl alcohol (3), and perillic acid (4). These compounds are known to be biologically active and exhibit antimicrobial, anticancer, and anti-inflammatory effects that could all be membrane mediated. In order to assess the possible biophysical effects of these compounds on membranes quantitatively, the influence of limonene and its bio-oxidation products has been investigated on a membrane model composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), and electron paramagnetic resonance spectroscopy (EPR). It was found that limonene (1), perillyl alcohol (2), and perillaldehyde (3) partitioned into the DMPC membrane, whereas perillic acid (4) did not. The DSC results demonstrated that all the partitioning compounds strongly perturbed the phase transition of DMPC, whereas no perturbation of the local membrane order was detected by EPR spectroscopy. The results of the study showed that limonene (1) and its bio-oxidation products affect membranes in rather subtle ways.
Collapse
Affiliation(s)
- Lars Duelund
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
8
|
Clerici F, Contini A, Corsini A, Ferri N, Grzesiak S, Pellegrino S, Sala A, Yokoyama K. Isothiazoles. Part XV. A mild and efficient synthesis of new antiproliferative 5-sulfanylsubstituted 3-alkylaminoisothiazole 1,1-dioxides. Eur J Med Chem 2006; 41:675-82. [PMID: 16540206 DOI: 10.1016/j.ejmech.2006.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
5-Sulfanyl-3-alkylaminoisothiazole dioxide derivatives have been identified as a new class of potent inhibitors of rat aortic myocite proliferation. They were prepared by applying a simple methodology able to introduce a heteroatom on C-5 of the 3-alkylaminoisothiazole dioxide system. 3-Aminosubstituted-5-chloroisothiazole dioxides react smoothly not only with S-nucleophiles but also with N- and O-nucleophiles affording the corresponding 5-heterosubstituted isothiazole dioxides through an addition-elimination reaction. The behavior of 3-alkylamino-4-bromo-isothiazole 1,1-dioxide with S-, N- and O-nucleophiles affording the same products has also been described. On the contrary, the 3-amino-4,5-unsubstituted isothiazole dioxide system reacts easily only with sulfur nucleophiles affording the corresponding 4,5-dihydro-5-sulfanylderivatives through a simple Michael addition reaction.
Collapse
Affiliation(s)
- F Clerici
- Istituto di Chimica Organica A. Marchesini, Facoltà di Farmacia, Università di Milano, via Venezian 21, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ferri N, Clerici F, Yokoyama K, Pocar D, Corsini A. Isothiazole dioxide derivative 6n inhibits vascular smooth muscle cell proliferation and protein farnesylation. Biochem Pharmacol 2005; 70:1735-43. [PMID: 16257390 DOI: 10.1016/j.bcp.2005.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/15/2005] [Accepted: 09/21/2005] [Indexed: 11/21/2022]
Abstract
Isothiazole dioxides have been shown to inhibit Trypanosoma brucei protein farnesyltransferase (PFTase) in isolated enzyme, but elicited only a minor effect on mammalian PFTase. In the present study we have evaluated the effect of 3-diethylamino-4-(4-methoxyphenyl)-isothiazole 1,1-dioxides with different substituents at C5, on rat PFTase and protein geranylgeranyltransferase-I (PGGTase-I) with the final aims to improve the potency against mammalian PFTase and to identify new compounds with antiproliferative properties. For these purposes, in vitro and cell culture models have been utilized. The results showed that isothiazole dioxides with C4-C5 double bond and sulfaryl substituted at the C5 position but none of the dihydro-derivatives, were able to inhibit in vitro PFTase in a concentration dependent manner (IC50 ranging from 8.56 to 1015 microM). Among those, compound 6n (C5; methyl-S) displayed 500-fold higher inhibitory potency on PFTase than PGGTase-I. Compound 6n was shown to affect rat smooth muscle cell (SMC) proliferation at concentrations similar (IC50 = 61.4 microM) to those required to inhibit [3H]-farnesol incorporation into cellular proteins (-44.1% at 100 microM). Finally, compound 6n interferes with rat SMC proliferation by blocking the progression of G0/G1 phase without inducing apoptosis, as assessed by [3H]-thymidine incorporation assay and flow cytometry analysis. Taken together, we described a new PFTase inhibitor containing the isothiazole dioxide moiety that affects mammalian protein farnesylation and SMC proliferation by inhibiting G0/G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Pharmacological Sciences, University of Milan, Milan 20133, Italy.
| | | | | | | | | |
Collapse
|
10
|
Ferri N, Paoletti R, Corsini A. Lipid-modified proteins as biomarkers for cardiovascular disease: a review. Biomarkers 2005; 10:219-37. [PMID: 16191483 DOI: 10.1080/13547500500216660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid-modified proteins are classified based on the identity of the attached lipid, a post- or co-translational modification required for their biological function. At least five different lipid modifications of cysteines, glycines and other residues on the COOH- and NH(2)-terminal domains have been described. Cysteine residues may be modified by the addition of a 16-carbon saturated fatty acyl group by a labile thioester bond (palmitoylation) or by prenylation processes that catalyze the formation of thioether bond with mevalonate derived isoprenoids, farnesol and geranylgeraniol. The NH(2)-terminal glycine residues may undergo a quite distinct process involving the formation of an amide bond with a 14-carbon saturated acyl group (myristoylation), while glycine residues in the COOH-terminal may be covalently attached with a cholesterol moiety by an ester bond. Finally, cell surface proteins can be anchored to the membrane through the addition of glycosylphosphatidylinositol moiety. Several lines of evidence suggest that lipid-modified proteins are directly involved in different steps of the development of lesions of atherosclerosis, from leukocyte recruitment to plaque rupture, and their expression or lipid modification are likely altered during atherogenesis. This review will briefly summarize the different enzymatic pathways of lipid modification and propose a series of lipid-modified proteins that can be used as biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- N Ferri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
11
|
Duncan RE, Lau D, El-Sohemy A, Archer MC. Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochem Pharmacol 2004; 68:1739-47. [PMID: 15450939 DOI: 10.1016/j.bcp.2004.06.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/07/2004] [Indexed: 11/30/2022]
Abstract
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the formation of mevalonate, a precursor of cholesterol that is also required for cell proliferation. Mevalonate depletion results in a G1 phase cell cycle arrest that is mediated in part by impaired activity of cyclin-dependent kinase (CDK) 2, and decreased expression of positive regulators of G1 to S phase progression. Inhibition of mevalonate synthesis may, therefore, be a useful strategy to impair the growth of malignant cells. Plant isoprenoids, including beta-ionone and geraniol, have previously been shown to inhibit rodent mammary tumor development, and rodent and avian hepatic HMG-CoA reductase activity. We hypothesized that the putative anti-proliferative and cell cycle inhibitory effects of beta-ionone and geraniol on MCF-7 human breast cancer cells in culture are mediated by mevalonate depletion resulting from inhibition of HMG-CoA reductase activity. Flow cytometric analysis showed a G1 arrest in isoprenoid-treated MCF-7 cells, and also a G2/M arrest at higher concentrations of isoprenoids. These compounds minimally affected the growth of MCF-10F normal breast epithelial cells. Both beta-ionone and geraniol inhibited CDK 2 activity and dose-dependently decreased the expression of cyclins D1, E, and A, and CDK 2 and 4, without changing the expression of p21cip1 or p27kip1. Although both beta-ionone and geraniol also inhibited MCF-7 proliferation, only geraniol inhibited HMG-CoA reductase activity. While these effects were significantly correlated (r2=0.89, P <0.01), they were not causally related, since exogenous mevalonate did not restore growth in geraniol-inhibited cells. These findings indicate that mechanisms other than impaired mevalonate synthesis mediate the anti-proliferative and cell cycle regulatory effects of beta-ionone and geraniol in human breast cancer cells.
Collapse
Affiliation(s)
- Robin E Duncan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Fitzgerald Building, 150 College Street, Toronto, Ont., Canada M5S 3E2
| | | | | | | |
Collapse
|
12
|
Mo H, Elson CE. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp Biol Med (Maywood) 2004; 229:567-85. [PMID: 15229351 DOI: 10.1177/153537020422900701] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pools of farnesyl diphosphate and other phosphorylated products of the mevalonate pathway are essential to the post-translational processing and physiological function of small G proteins, nuclear lamins, and growth factor receptors. Inhibitors of enzyme activities providing those pools, namely, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase and mevalonic acid-pyrophosphate decarboxylase, and of activities requiring substrates from the pools, the prenyl protein transferases, have potential for development as novel chemotherapeutic agents. Their potentials as suggested by the clinical responses recorded in Phase I and II investigations of inhibitors of HMG CoA reductase (the statins), of mevalonic acid-pyrophosphate decarboxylase (sodium phenylacetate and sodium phenylbutyrate), and of farnesyl protein transferase (R115777, SCH66336, BMS-214662, Tipifarnib, L-778,123, and, prematurely, perillyl alcohol) are dimmed by dose-limiting toxicities. These nondiscriminant growth-suppressive agents induce G1 arrest and initiate apoptosis and differentiation, effects attributed to modulation of cell signaling pathways either by modulating gene expression, suppressing the post-translational processing of signaling proteins and growth factor receptors, or altering diacylglycerol signaling. Diverse isoprenoids and the HMG CoA reductase inhibitor, lovastatin, modulate cell growth, induce cell cycle arrest, initiate apoptosis, and suppress cellular signaling activities. Perillyl alcohol, the isoprenoid of greatest clinical interest, initially was considered to inhibit farnesyl protein transferase; follow-up studies revealed that perillyl alcohol suppresses the synthesis of small G proteins and HMG CoA reductase. In sterologenic tissues, sterol feedback control, mediated by sterol regulatory element binding proteins (SREBPs) 1a and 2, exerts the primary regulation on HMG CoA reductase activity at the transcriptional level. Secondary regulation, a nonsterol isoprenoid-mediated fine-tuning of reductase activity, occurs at the levels of reductase translation and degradation. HMG CoA reductase activity in tumors is elevated and resistant to sterol feedback regulation, possibly as a consequence of aberrant SREBP activities. Nonetheless, tumor reductase remains sensitive to isoprenoid-mediated post-transcriptional downregulation. Farnesol, an acyclic sesquiterpene, and farnesyl homologs, gamma-tocotrienol and various farnesyl derivatives, inhibit reductase synthesis and accelerate reductase degradation. Cyclic monoterpenes, d-limonene, menthol and perillyl alcohol and beta-ionone, a carotenoid fragment, lower reductase mass; perillyl alcohol and d-limonene lower reductase mass by modulating translational efficiency. The elevated reductase expression and greater demand for nonsterol products to maintain growth amplify the susceptibility of tumor reductase to isoprenoids, therein rendering tumor cells more responsive than normal cells to isoprenoid-mediated growth suppression. Blends of lovastatin, a potent nondiscriminant inhibitor of HMG CoA reductase, and gamma-tocotrienol, a potent isoprenoid shown to post-transcription-ally attenuate reductase activity with specificity for tumors, synergistically affect the growth of human DU145 and LNCaP prostate carcinoma cells and pending extensive preclinical evaluation, potentially offer a novel chemotherapeutic strategy free of the dose-limiting toxicity associated with high-dose lovastatin and other nondiscriminant mevalonate pathway inhibitors.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76204, USA.
| | | |
Collapse
|
13
|
Risé P, Ghezzi S, Levati MG, Mirtini R, Colombo C, Galli C. Pharmacological modulation of fatty acid desaturation and of cholesterol biosynthesis in THP-1 cells. Lipids 2003; 38:841-6. [PMID: 14577663 DOI: 10.1007/s11745-003-1134-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In THP-1 cells, simvastatin decreases, in a concentration-dependent manner, cholesterol synthesis and increases linoleic acid (LA) conversion to its long-chain derivatives, in particular to arachidonic acid, activating delta6 and delta5 fatty acid (FA) desaturases. The intermediates in cholesterol synthesis, mevalonate and geranylgeraniol, partially reverse the effects of simvastatin on the LA conversion. The aims of this work were to evaluate: (i) the correlation between cholesterol synthesis and desaturase activity and (ii) the possible involvement of protein isoprenylation in desaturase activity, assessed through pharmacological treatments. THP-1 cells were incubated with [1-14C]LA or with [1-14C]di-homo-gamma-linolenic acid (DHGLA) and treated with simvastatin or with curcumin and nicardipine, inhibitors of desaturases. Curcumin was more active than nicardipine in inhibiting LA and DHGLA conversion: 20 microM curcumin, alone or with simvastatin, totally inhibited delta6 and delta5 desaturation steps; 10 microM nicardipine only partially inhibited the enzymes, being more active on delta5 desaturase. Simvastatin treatment decreased the incorporation of acetate in cholesterol (-93.8%) and cholesterol esters (-70.2%), as expected. Curcumin and nicardipine also decreased cholesterol synthesis and potentiated simvastatin. Finally, the isoprenylation inhibitors (perillic acid and GGTI-286) neither affected the conversion of LA nor inhibited the delta5 desaturase activity. In conclusion, our results indicate that there is no direct relationship between cholesterol synthesis and desaturase activity. In fact, simvastatin decreased cholesterol synthesis and enhanced LA conversion (mainly delta5 desaturation), whereas curcumin and nicardipin decreased delta5 desaturation, with a limited effect on cholesterol synthesis.
Collapse
Affiliation(s)
- P Risé
- Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Ferri N, Yokoyama K, Sadilek M, Paoletti R, Apitz-Castro R, Gelb MH, Corsini A. Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation. Br J Pharmacol 2003; 138:811-8. [PMID: 12642382 PMCID: PMC1573737 DOI: 10.1038/sj.bjp.0705126] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) Ajoene is a garlic compound with anti-platelet properties and, in addition, was shown to inhibit cholesterol biosynthesis by affecting 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase and late enzymatic steps of the mevalonate (MVA) pathway. (2) MVA constitutes the precursor not only of cholesterol, but also of a number of non-sterol isoprenoids, such as farnesyl and geranylgeranyl groups. Covalent attachment of these MVA-derived isoprenoid groups (prenylation) is a required function of several proteins that regulate cell proliferation. We investigated the effect of ajoene on rat aortic smooth muscle cell proliferation as related to protein prenylation. (3) Cell counting, DNA synthesis, and cell cycle analysis showed that ajoene (1-50 micro M) interfered with the progression of the G1 phase of the cell cycle, and inhibited rat SMC proliferation. (4) Similar to the HMG-CoA reductase inhibitor simvastatin, ajoene inhibited cholesterol biosynthesis. However, in contrast to simvastatin, the antiproliferative effect of ajoene was not prevented by the addition of MVA, farnesol (FOH), and geranylgeraniol (GGOH). Labelling of smooth muscle cell cellular proteins with [3H]-FOH and [3H]-GGOH was significantly inhibited by ajoene. (5) In vitro assays for protein farnesyltransferase (PFTase) and protein geranylgeranyltransferase type I (PGGTase-I) confirmed that ajoene inhibits protein prenylation. High performance liquid chromatography (HPLC) and mass spectrometry analyses also demonstrated that ajoene causes a covalent modification of the cysteine SH group of a peptide substrate for protein PGGTase-I. (6) Altogether, our results provide evidence that ajoene interferes with the protein prenylation reaction, an effect that may contribute to its inhibition of SMC proliferation.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Kohei Yokoyama
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Martin Sadilek
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Rodolfo Paoletti
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Alberto Corsini
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
- Author for correspondence:
| |
Collapse
|