1
|
Naddafi M, Eghbal MA, Ghazi Khansari M, Sattari MR, Azarmi Y, Samadi M, Mehrizi AA. Sensing of oxidative stress biomarkers: The cardioprotective effect of taurine & grape seed extract against the poisoning induced by an agricultural pesticide aluminum phosphide. CHEMOSPHERE 2022; 287:132245. [PMID: 34543908 DOI: 10.1016/j.chemosphere.2021.132245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Aluminum phosphide is a well-known hazardous agent used as an agricultural pesticide to protect stored grains from insect damage. However, accidental consumption of a trivial amount of it caused irreversible damage to the human body or even death in acute cases. The present study used taurine and grape seed extract as a natural cardioprotective medicine against aluminum phosphide poisoning by decreasing oxidative stress. The activity of oxidative stress biomarkers (Malondialdehyde, Catalase, Protein carbonyl, and Superoxide dismutase) were evaluated in the cell line model on Human Cardiac Myocyte cells. In the beginning, to clarify the pure impact of aluminum phosphide poison, taurine, and grape seed extract on the human heart cells, their effects on the biomarkers quantity in cell line were measured. Subsequently, the effect of taurine and grape seed extract with various concentrations as a treatment on the oxidative stress biomarkers of the poisoned heart cells were studied. Data analysis reveals that taurine and grape seed extract treatment can successfully diminish the poisoning effect by their antioxidant properties. The oxidative markers values of the poisoned cells were recovered by taurine and grape seed extracts treatment. Taurine (2 g/l) can recover Malondialdehyde, Catalase, Protein carbonyl, and Superoxide dismutase by 56%, 78%, 88%, 78%, when the recovering power of grape seed extract (100 g/l) for the aforementioned enzymes are 56%, 0.71%,74%, 51%, respectively. Therefore, it is clear that the performance of taurine in the recovery of the biomarkers' value is better than grape seed extract.
Collapse
Affiliation(s)
- Mastoureh Naddafi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahmoud Ghazi Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Sattari
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Azarmi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahedeh Samadi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbasali Abouei Mehrizi
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
2
|
Madbouly N, Azmy A, Salama A, El-Amir A. The nephroprotective properties of taurine-amikacin treatment in rats are mediated through HSP25 and TLR-4 regulation. J Antibiot (Tokyo) 2021; 74:580-592. [PMID: 34253885 DOI: 10.1038/s41429-021-00441-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Amikacin (AMK) is one of the most effective aminoglycoside antibiotics. However, nephrotoxicity is a major deleterious and dose-limiting side effect associated with its clinical use especially in high dose AMK-treated patients. The present study assessed the ability of taurine (TAU) to alleviate or prevent AMK-induced nephrotoxicity if co-administrated with AMK focusing on inflammation, apoptosis, and fibrosis. Male Sprague Dawley rats were assigned to six equal groups. Group 1: rats received saline (normal control), group 2: normal rats received 50 mg kg-1 TAU intraperitoneally (i.p.). Groups 3 and 4: received AMK (25 or 50 mg kg-1; i.p.). Groups 5 and 6: received TAU (50 mg kg-1; i.p.) concurrently with AMK (25 or 50 mg kg-1; i.p.) for 3 weeks. AMK-induced nephrotoxicity is evidenced by elevated levels of serum creatinine (CRE), blood urea nitrogen (BUN), and uric acid (UA). Histopathological investigations provoked damaging changes in the renal tissues. Heat shock proteins (HSP)25 and Toll-like receptor-4 (TLR-4) elevated levels were involved in the induction of inflammatory reactions and focal fibrosis. The improved activation of TLR-4 may stimulate monocytes to upgrade Interleukin (IL)-18 production rather than IL-10. TAU proved therapeutic effectiveness against AMK-induced renal toxicity through downregulation of HSP25, TLR-4, caspase-3, and IL-18 with up-regulation of IL-10 levels.
Collapse
Affiliation(s)
- Neveen Madbouly
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Ayman Azmy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Azza El-Amir
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ommati MM, Farshad O, Jamshidzadeh A, Heidari R. Taurine enhances skeletal muscle mitochondrial function in a rat model of resistance training. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Vargas DA, Prieto MD, Martínez-Valencia AJ, Cossio A, Burgess KEV, Burchmore RJS, Gómez MA. Pharmacometabolomics of Meglumine Antimoniate in Patients With Cutaneous Leishmaniasis. Front Pharmacol 2019; 10:657. [PMID: 31281253 PMCID: PMC6595045 DOI: 10.3389/fphar.2019.00657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/20/2019] [Indexed: 12/04/2022] Open
Abstract
Control of cutaneous leishmaniasis (CL) in the Americas is dependent on chemotherapy with parenteral pentavalent antimonials. High rates of treatment failure urge the search for predictive and prognostic markers of therapeutic responsiveness. In this study, we aimed to identify biomarkers of therapeutic response during treatment with meglumine antimoniate (MA). We conducted untargeted metabolomic profiling of plasma samples from CL patients (n = 39; 25 who cured and 14 who did not cure), obtained before and at the end of treatment. Exposure to MA induced metabolic perturbations primarily reflecting alteration in long-chain fatty acid β-oxidation and energy production. Allantoin, N-acetylglutamine, taurine, and pyruvate were significantly more abundant in samples from patients who responded to treatment, and were predictive and prognostic of treatment outcome in this patient cohort (AUC > 0.7). In an ex vivo model of infection, allantoin but not taurine enhanced the MA-dependent killing of intracellular Leishmania (Viannia) panamensis. Our results support the participation of metabolites mediating antioxidant and wound healing responses in clinical cure of CL, revealing relationships between metabolism and immune responses in the outcome of antileishmanial treatment.
Collapse
Affiliation(s)
- Deninson Alejandro Vargas
- Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cali, Colombia.,Universidad de Valle, Cali, Colombia
| | - Miguel Dario Prieto
- Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cali, Colombia
| | | | - Alexandra Cossio
- Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cali, Colombia.,Universidad ICESI, Cali, Colombia
| | - Karl E V Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard J S Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - María Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cali, Colombia.,Universidad ICESI, Cali, Colombia
| |
Collapse
|
5
|
Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpira N, Vazin A. The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother 2019; 109:103-111. [DOI: 10.1016/j.biopha.2018.10.093] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
|
6
|
Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H. Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp Hepatol 2018; 4:72-82. [PMID: 29904723 PMCID: PMC6000746 DOI: 10.5114/ceh.2018.75956] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/26/2017] [Indexed: 01/04/2023] Open
Abstract
AIM OF THE STUDY Hepatic encephalopathy and hyperammonemia is a clinical complication associated with liver cirrhosis. The brain is the target organ for ammonia toxicity. Ammonia-induced brain injury is related to oxidative stress, locomotor activity dysfunction, and cognitive deficit, which could lead to permanent brain injury, coma and death if not appropriately managed. There is no promising pharmacological intervention against cirrhosis-associated brain injury. Taurine (TAU) is one of the most abundant amino acids in the human body. Several physiological and pharmacological roles have been attributed to TAU. TAU may act as an antioxidant and is an excellent neuroprotective agent. This study aimed to evaluate the effect of TAU supplementation on cirrhosis-associated locomotor activity disturbances and oxidative stress in the brain. MATERIAL AND METHODS Rats underwent bile duct ligation (BDL) surgery, and plasma and brain ammonia level, plasma biochemical parameters, and rats' locomotor function were monitored. Furthermore, brain tissue markers of oxidative stress were assessed. RESULTS It was found that plasma and brain ammonia was increased, and markers of liver injury were significantly elevated in the cirrhotic group. Impaired locomotor activity was also evident in BDL rats. Moreover, an increase in brain tissue markers of oxidative stress was detected in the brain of cirrhotic animals. It was found that TAU supplementation (50, 100, and 200 mg/kg, gavage) alleviated brain tissue markers of oxidative stress and improved animals' locomotor activity. CONCLUSIONS These data suggest that TAU is a potential protective agent against cirrhosis-associated brain injury.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Department of Animal Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Akande M, Ahmed U. Taurine abated subacute dichlorvos toxicity. Toxicol Rep 2017; 4:463-466. [PMID: 28959675 PMCID: PMC5615161 DOI: 10.1016/j.toxrep.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022] Open
Abstract
The aim of the study was to determine the effects of taurine in rats exposed to subacute dichlorvos toxicity. Fifty rats were weighed and assigned into five groups of ten rats each. The groups received: distilled water, soya oil (1 ml/kg), taurine (50 mg/kg), dichlorvos (10 mg/kg) and the combination treatment group received taurine first and then dichlorvos 30 min later. The treatments were administered once daily by oral gavage for 4 weeks. The rats were euthanized and blood samples were collected after the termination of the study. Serum samples were analysed for malondialdehyde concentration and activities of antioxidant enzymes (superoxide dismutase and catalase). Dichlorvos increased malondialdehyde concentration and reduced the activities of superoxide dismutase and catalase. There was attenuation of malondialdehyde concentration and improvement of activities of superoxide dismutase (P = 0.0273) and catalase (P < 0.0001) in rats treated with taurine. It is postulated that taurine ameliorated dichlorvos-induced oxidative stress through the reduction of malondialdehyde concentration and the enhancement of activities of antioxidant enzymes.
Collapse
Affiliation(s)
- M.G. Akande
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Abuja, Federal Capital Territory 900001, Nigeria
| | | |
Collapse
|
8
|
Romano MR, Biagioni F, Carrizzo A, Lorusso M, Spadaro A, Micelli Ferrari T, Vecchione C, Zurria M, Marrazzo G, Mascio G, Sacchetti B, Madonna M, Fornai F, Nicoletti F, Lograno MD. Effects of vitamin B12 on the corneal nerve regeneration in rats. Exp Eye Res 2014; 120:109-17. [PMID: 24486457 DOI: 10.1016/j.exer.2014.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 12/19/2022]
Abstract
The study was designed to investigate the effects of a new ophthalmic solution containing 0.05% vitamin B12 0.05% on corneal nerve regeneration in rats after corneal injury. Eyes of anesthetized male Wistar rats were subjected to corneal injury by removing the corneal epithelium with corneal brush (Algerbrush). After the epithelial debridement, the right eye of each animal received the instillation of one drop of the ophthalmic solution containing vitamin B12 0.05% plus taurine 0.5% and sodium hyaluronate 0.5% four time per day for 10 or 30 days. Left eyes were used as control and treated with solution containing taurine 0.5% and sodium hyaluronate 0.5% alone following the same regimen. Fluorescein staining by slit-lamp and morphological analysis was used to determine corneal wound healing. Immunohistochemistry, immunoblot and confocal microscopy were used to examine corneal re-innervation. Slit-lamp and histological analyses showed that re-epithelization of the corneas was accelerated in rats treated with vitamin B12. A clear-cut difference between the two groups of rats was seen after 10 days of treatment, whereas a near-to-complete re-epithelization was observed in both groups at 30 days. Vitamin B12 treatment had also a remarkable effect on corneal re-innervation, as shown by substantial increased in the expression of neurofilament 160 and β-III tubulin at both 10 and 30 days. The presence of SV2A-positive nerve endings suggests the presence of synapse-like specialized structures in corneal epithelium of the eye treated with vitamin B12. Our findings suggest that vitamin B12 treatment represents a powerful strategy to accelerate not only re-epithelization but also corneal re-innervation after mechanical injury.
Collapse
Affiliation(s)
- Maria Rosaria Romano
- Department of Pharmacy-Pharmacological Sciences, University of Bari, Via Orabona 4, Bari, Italy.
| | | | | | - Massimo Lorusso
- Ecclesiastical Authority Regional General Hospital Miulli, Acquaviva delle Fonti, BA, Italy
| | - Angelo Spadaro
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | - Carmine Vecchione
- IRCSS, I.N.M., Neuromed, Pozzilli, IS, Italy; Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | | | | | | | | | | | - Francesco Fornai
- IRCSS, I.N.M., Neuromed, Pozzilli, IS, Italy; Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Ferdinando Nicoletti
- IRCSS, I.N.M., Neuromed, Pozzilli, IS, Italy; Department of Physiology and Pharmacology, University "Sapienza", Roma, Italy
| | - Marcello Diego Lograno
- Department of Pharmacy-Pharmacological Sciences, University of Bari, Via Orabona 4, Bari, Italy
| |
Collapse
|
9
|
Ahmad MK, Khan AA, Mahmood R. Taurine ameliorates potassium bromate-induced kidney damage in rats. Amino Acids 2013; 45:1109-21. [DOI: 10.1007/s00726-013-1563-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/16/2013] [Indexed: 11/24/2022]
|
10
|
The Effects of Taurine on Permethrininduced Cytogenetic and Oxidative Damage in Cultured Human Lymphocytes. Arh Hig Rada Toksikol 2012; 63:27-34. [DOI: 10.2478/10004-1254-63-2012-2114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Effects of Taurine on Permethrininduced Cytogenetic and Oxidative Damage in Cultured Human LymphocytesPermethrin (PM) is a common pyrethroid pesticide used to control pests in agriculture, forestry, horticulture, health care, homes, and textile industry. It is confirmed as a strong mutagen in animals and humans. Taurine (TA) is an amino acid found in mammalian tissues that protects the cell against DNA damage. In this study, we investigated whether supplementation of human lymphocyte cultures with TA (in the concentrations of 25 μg mL-1, 50 μg mL-1and 100 μg mL-1) provided any protection against PM toxicity applied in the concentration of 200 μg mL-1. Genotoxicity was assessed using the micronucleus (MN) and sister chromatid exchanges (SCE) tests. In addition, we measured the total antioxidant capacity (TAC) and total oxidative stress (TOS) levels in the plasma to determine oxidative effects. PM increased SCE and MN levels and altered TAC and TOS levels. TA alone did not affect SCE and MN levels compared to controls, regardless of the concentration applied. In addition, it increased TAC levels without changing TOS levels. Moreover, it significantly buffered the negative cytogenetic and oxidative effects induced by PM in a clear dose-dependent manner. In conclusion, this study is the first to evidence the beneficial effects of TA against PM-induced DNA and oxidative damagesin vitro.
Collapse
|
11
|
Shalby AB, Assaf N, Ahmed HH. Possible mechanisms for N-acetyl cysteine and taurine in ameliorating acute renal failure induced by cisplatin in rats. Toxicol Mech Methods 2011; 21:538-46. [DOI: 10.3109/15376516.2011.568985] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Devi SL, Anuradha CV. Oxidative and nitrosative stress in experimental rat liver fibrosis: Protective effect of taurine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:104-110. [PMID: 21787590 DOI: 10.1016/j.etap.2009.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/30/2009] [Accepted: 11/18/2009] [Indexed: 05/31/2023]
Abstract
Taurine (TAU) has protective effects on experimental liver fibrosis. The present study investigates whether benefits of TAU are mediated through attenuation of oxidative and nitrosative stresses. Liver fibrosis was induced in male Wistar rats by simultaneous administration of iron (0.5%, w/w) and ethanol (6g/kg/day) for 60 days consecutively. Significant increases in thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, protein carbonyl content and loss of non-protein, protein and total thiols were observed in the liver of iron plus alcohol-fed rats. Nitrosative stress was marked by increased levels of S-nitrosothiols and decreased nitrite content. Accumulation of nitrated and oxidatively modified proteins in liver was further evidenced by immunohistochemical localization with specific antibodies for 4-hydroxynonenol (4-HNE), 3-nitrotyrosine (3-NT) and dinitrophenol (DNP). Decrease in mitochondrial ion-transport enzymes and disturbances in calcium and iron levels were also observed in these rats. TAU administration (2% (w/v) in drinking water) significantly reduced the levels of lipid hydroperoxides, TBARS, protein carbonyl with concomitant elevation in thiol levels. The presence of 4-HNE, 3-NT and DNP-protein adducts was minimal. TAU also improved mitochondrial enzyme activities and regulated iron and calcium levels. These results show that the restorative effect of taurine in fibrosis involves amelioration of protein and lipid damage by decreasing oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Shanmugam Lakshmi Devi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608002, Chidambaram, Tamil Nadu, India
| | | |
Collapse
|
13
|
Schaffer SW, Azuma J, Mozaffari M. Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 2009; 87:91-9. [PMID: 19234572 DOI: 10.1139/y08-110] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The unifying hypothesis of diabetes maintains that reactive oxygen species (ROS) generated in the mitochondria of glucose-treated cells promote reactions leading to the development of diabetic complications. Although the unifying hypothesis attributes the generation of oxidants solely to impaired glucose and fatty acid metabolism, diabetes is also associated with a decline in the levels of the endogenous antioxidant taurine in a number of tissues, raising the possibility that changes in taurine status might also contribute to the severity of oxidant-mediated damage. There is overwhelming evidence that taurine blocks toxicity caused by oxidative stress, but the mechanism underlying the antioxidant activity remains unclear. One established antioxidant action of taurine is the detoxification of hypochlorous acid. However, not all of the antioxidant actions of taurine are related to hypochlorous acid because they are detected in isolated cell systems lacking neutrophils. There are a few studies showing that taurine either modulates the antioxidant defenses or blocks the actions of the oxidants, but other studies oppose this interpretation. Although taurine is incapable of directly scavenging the classic ROS, such as superoxide anion, hydroxyl radical, and hydrogen peroxide, there are numerous studies suggesting that it is an effective inhibitor of ROS generation. The present review introduces a novel antioxidant hypothesis, which takes into consideration the presence of taurine-conjugated tRNAs in the mitochondria. Because tRNA conjugation is required for normal translation of mitochondrial-encoded proteins, taurine deficiency reduces the expression of these respiratory chain components. As a result, flux through the electron transport chain decreases. The dysfunctional respiratory chain accumulates electron donors, which divert electrons from the respiratory chain to oxygen, forming superoxide anion in the process. Restoration of taurine levels increases the levels of conjugated tRNA, restores respiratory chain activity, and increases the synthesis of ATP at the expense of superoxide anion production. The importance of this and other actions of taurine in diabetes is discussed.
Collapse
Affiliation(s)
- Stephen W Schaffer
- Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL 36688, USA.
| | | | | |
Collapse
|
14
|
Li Z, Nickkholgh A, Yi X, Bruns H, Gross ML, Hoffmann K, Mohr E, Zorn M, Büchler MW, Schemmer P. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J Pineal Res 2009; 46:365-72. [PMID: 19552759 DOI: 10.1111/j.1600-079x.2009.00672.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free radicals are involved in pathophysiology of ischemia/reperfusion injury (IRI). Melatonin is a potent scavenger of reactive oxygen and nitrogen species. Thus, this study was designed to elucidate its effects in a model of rat kidney transplantation. Twenty Lewis rats were randomly divided into 2 groups (n = 10 animals each). Melatonin (50 mg/kg BW) dissolved in 5 mL milk was given to one group via gavage 2 hr before left donor nephrectomy. Controls were given the same volume of milk only. Kidney grafts were then transplanted into bilaterally nephrectomized syngeneic recipients after 24 hr of cold storage in Histidine-Tryptophan-Ketoglutarate solution. Both graft function and injury were assessed after transplantation through serum levels of blood urea nitrogen (BUN), creatinine, transaminases, and lactate dehydrogenase (LDH). Biopsies were taken to evaluate tubular damage, the enzymatic activity of superoxide dismutase (SOD) and lipid hydroperoxide (LPO), and the expression of NF-kBp65, inducible nitric oxide synthase (iNOS), caspase-3 as indices of oxidative stress, necrosis, and apoptosis, respectively. Melatonin improved survival (P < 0.01) while decreasing BUN, creatinine, transaminases, and LDH values up to 39-71% (P < 0.05). Melatonin significantly reduced the histological index for tubular damage, induced tissue enzymatic activity of SOD while reducing LPO. At the same time, melatonin down-regulated the expression of NF-kBp65, iNOS, and caspase-3. In conclusion, donor preconditioning with melatonin protected kidney donor grafts from IRI-induced renal dysfunction and tubular injury most likely through its anti-oxidative, anti-apoptotic and NF-kB inhibitory capacity.
Collapse
Affiliation(s)
- Zhanqing Li
- Department of General Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lakshmi Devi S, Anuradha CV. Mitochondrial damage, cytotoxicity and apoptosis in iron-potentiated alcoholic liver fibrosis: amelioration by taurine. Amino Acids 2009; 38:869-79. [PMID: 19381777 DOI: 10.1007/s00726-009-0293-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 04/03/2009] [Indexed: 12/20/2022]
Abstract
Taurine effectively prevents ischemia-induced apoptosis in the cardiomyocytes and hypothalamic nuclei. The present study explores the influence of taurine on mitochondrial damage, oxidative stress and apoptosis in experimental liver fibrosis. Male albino Wistar rats were divided into six groups and maintained for a period of 60 days as follows: Group I, control; Group II, ethanol treatment [6 g/(kg/day)]; Group III, fibrosis induced by ethanol and iron (0.5% w/w); Group IV, ethanol + iron + taurine (2% w/v); Group V, ethanol + taurine treatment and Group VI, control + taurine treatment. Hepatocytes isolated from ethanol plus iron-treated rats showed decreased cell viability and redox ratio, increased reactive oxygen species formation, lipid peroxidation, DNA fragmentation, and formation of apoptotic bodies. Liver mitochondria showed increased susceptibility to swell, diminished activities of mitochondrial respiratory chain complexes and antioxidants. Taurine administration to fibrotic rats restored mitochondrial function, reduced reactive oxygen species formation, prevented DNA damage, and apoptosis. Thus taurine might contribute to the amelioration of the disease process.
Collapse
Affiliation(s)
- S Lakshmi Devi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram 608 002, Tamil Nadu, India
| | | |
Collapse
|
16
|
Guan X, Dei-Anane G, Liang R, Gross ML, Nickkholgh A, Kern M, Ludwig J, Zeier M, Büchler MW, Schmidt J, Schemmer P. Donor Preconditioning with Taurine Protects Kidney Grafts from Injury After Experimental Transplantation. J Surg Res 2008; 146:127-34. [DOI: 10.1016/j.jss.2007.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/29/2007] [Accepted: 06/08/2007] [Indexed: 11/26/2022]
|
17
|
Taranukhin AG, Taranukhina EY, Saransaari P, Djatchkova IM, Pelto-Huikko M, Oja SS. Taurine reduces caspase-8 and caspase-9 expression induced by ischemia in the mouse hypothalamic nuclei. Amino Acids 2007; 34:169-74. [PMID: 17297564 DOI: 10.1007/s00726-006-0405-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/23/2006] [Indexed: 02/03/2023]
Abstract
Taurine is a sulphur-containing amino acid abundant in the nervous system. It protects cells from ischemia-induced apoptosis, but the mechanism underlying this is not well established. The aim of our study was to explore the effects of taurine on two main pathways of apoptosis induced by ischemia: receptor-mediated and mitochondrial cell death. Brain slices containing the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus were incubated in vitro under control and simulated ischemic (oxygen-glucose deprivation for 30 min) conditions in the absence and presence of 20 mM taurine. Brain slices were harvested after the 180-min "postischemic" period and fixed in 4% paraformaldehyde. To estimate apoptosis, immunostaining was done for caspase-8 and caspase-9 in paraffin-embedded sections. Immunoreactive caspase-8 and caspase-9 cells were observed in SON and PVN in all experimental groups, but in the "ischemic" group the expression of caspase-8 and caspase-9 and the number of immunoreactive cells was significantly increased in both hypothalamic nuclei. Addition of taurine (20 mM) to the incubation medium induced a marked decrease in caspase-8 and caspase-9 immunoreactivity after ischemia in SON and PVN when compared with the taurine-untreated "ischemic" group. Taurine reduces ischemia-induced caspase-8 and caspase-9 expression, the key inductors of apoptosis in SON and PVN.
Collapse
Affiliation(s)
- A G Taranukhin
- Brain Research Center, University of Tampere Medical School, Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
18
|
A. Al-Maje A. Genetic and Biochemical Toxicity of Guarana After Sub-Acute Treatment in Somatic and Germ Cells of Swiss Albino Mice. INT J PHARMACOL 2006. [DOI: 10.3923/ijp.2006.226.232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH. Taurine Supplementation Reduces Oxidative Stress and Improves Cardiovascular Function in an Iron-Overload Murine Model. Circulation 2004; 109:1877-85. [PMID: 15037530 DOI: 10.1161/01.cir.0000124229.40424.80] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Iron overload has an increasing worldwide prevalence and is associated with significant cardiovascular morbidity and mortality. Elevated iron levels in the myocardium lead to impaired systolic and diastolic function and elevated oxidative stress. Taurine accounts for 25% to 50% of the amino acid pool in myocardium, possesses antioxidant properties, and can inhibit L-type Ca2+ channels. Thus, we hypothesized that this agent would reduce the cardiovascular effects of iron overload. METHODS AND RESULTS Iron-overloaded mice were generated by intraperitoneal injection of iron either chronically (5 days per week for 13 weeks) or subacutely (5 days per week for 4 weeks). Iron overload causes increased mortality, elevated oxidative stress, systolic and diastolic dysfunction, hypotension, and bradycardia. Taurine supplementation increased myocardial taurine levels by 45% and led to reductions in mortality and improved cardiac function, heart rate, and blood pressure in iron-overloaded mice. Histological examination of the myocardium revealed reduced apoptosis and interstitial fibrosis in iron-overloaded mice supplemented with taurine. Taurine mediated reduced oxidative stress in iron-overloaded mice along with attenuation of myocardial lipid peroxidation and protection of reduced glutathione level. CONCLUSIONS These results demonstrate that treatment with taurine reduces iron-mediated myocardial oxidative stress, preserves cardiovascular function, and improves survival in iron-overloaded mice. The role of taurine in protecting reduced glutathione levels provides an important mechanism by which oxidative stress-induced myocardial damage can be curtailed. Taurine, as a dietary supplement, represents a potential new therapeutic agent to reduce the cardiovascular burden from iron-overload conditions.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Department of Physiology, Toronto General Hospital, University Health Network, Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schaffer S, Azuma J, Takahashi K, Mozaffari M. Why is taurine cytoprotective? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 526:307-21. [PMID: 12908615 DOI: 10.1007/978-1-4615-0077-3_39] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Stephen Schaffer
- Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL, USA
| | | | | | | |
Collapse
|
21
|
Michalk DV, Hoffmann B, Minor T. Taurine reduces renal ischemia/reperfusion injury in the rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 526:49-56. [PMID: 12908583 DOI: 10.1007/978-1-4615-0077-3_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- D V Michalk
- Department of Pediatrics, University of Cologne, Germany
| | | | | |
Collapse
|
22
|
Synthesis of new C-sulfosugars and C-sulfoalditols: Amadori rearrangement of 6-C-sulfo-d-fucose. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0957-4166(03)00160-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|