1
|
Toma L, Sanda GM, Stancu CS, Niculescu LS, Raileanu M, Sima AV. Oscillating Glucose Induces the Increase in Inflammatory Stress through Ninjurin-1 Up-Regulation and Stimulation of Transport Proteins in Human Endothelial Cells. Biomolecules 2023; 13:biom13040626. [PMID: 37189375 DOI: 10.3390/biom13040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Clinical data implicate fluctuations of high levels of plasma glucose in cardiovascular diseases. Endothelial cells (EC) are the first cells of the vessel wall exposed to them. Our aim was to evaluate the effects of oscillating glucose (OG) on EC function and to decipher new molecular mechanisms involved. Cultured human ECs (EA.hy926 line and primary cells) were exposed to OG (5/25 mM alternatively at 3 h), constant HG (25 mM) or physiological concentration (5 mM, NG) for 72 h. Markers of inflammation (Ninj-1, MCP-1, RAGE, TNFR1, NF-kB, and p38 MAPK), oxidative stress (ROS, VPO1, and HO-1), and transendothelial transport proteins (SR-BI, caveolin-1, and VAMP-3) were assessed. Inhibitors of ROS (NAC), NF-kB (Bay 11-7085), and Ninj-1 silencing were used to identify the mechanisms of OG-induced EC dysfunction. The results revealed that OG determined an increased expression of Ninj-1, MCP-1, RAGE, TNFR1, SR-B1, and VAMP-3 andstimulated monocyte adhesion. All of these effects were induced bymechanisms involving ROS production or NF-kB activation. NINJ-1 silencing inhibited the upregulation of caveolin-1 and VAMP-3 induced by OG in EC. In conclusion, OG induces increased inflammatory stress, ROS production, and NF-kB activation and stimulates transendothelial transport. To this end, we propose a novel mechanism linking Ninj-1 up-regulation to increased expression of transendothelial transport proteins.
Collapse
|
2
|
Devanaboyina M, Kaur J, Whiteley E, Lin L, Einloth K, Morand S, Stanbery L, Hamouda D, Nemunaitis J. NF-κB Signaling in Tumor Pathways Focusing on Breast and Ovarian Cancer. Oncol Rev 2022; 16:10568. [PMID: 36531159 PMCID: PMC9756851 DOI: 10.3389/or.2022.10568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 08/30/2023] Open
Abstract
Immune disorders and cancer share a common pathway involving NF-κb signaling. Through involvement with GM-CSF, NF-κB can contribute to proliferation and activation of T- and B- cells as well as immune cell migration to sites of inflammation. In breast cancer, this signaling pathway has been linked to resistance with endocrine and chemotherapies. Similarly, in ovarian cancer, NF-κB influences angiogenesis and inflammation pathways. Further, BRCA1 signaling common to both breast and ovarian cancer also has the capability to induce NF-κB activity. Immunotherapy involving NF-κB can also be implemented to combat chemoresistance. The complex signaling pathways of NF-κB can be harnessed for developing cancer therapeutics to promote immunotherapy for improving patient outcomes.
Collapse
Affiliation(s)
- Monika Devanaboyina
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Jasskiran Kaur
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Emma Whiteley
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Katelyn Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Susan Morand
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
3
|
The EPH/Ephrin System in Gynecological Cancers: Focusing on the Roots of Carcinogenesis for Better Patient Management. Int J Mol Sci 2022; 23:ijms23063249. [PMID: 35328669 PMCID: PMC8949008 DOI: 10.3390/ijms23063249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Gynecological cancers represent some of the most common types of malignancy worldwide. Erythropoietin-producing hepatocellular receptors (EPHs) comprise the largest subfamily of receptor tyrosine kinases, binding membrane-bound proteins called ephrins. EPHs/ephrins exhibit widespread expression in different cell types, playing an important role in carcinogenesis. The aim of the current review was to examine the dysregulation of the EPH/ephrin system in gynecological cancer, clarifying its role in ovarian, endometrial, and cervical carcinogenesis. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms ephrin, ephrin receptor, ovarian cancer, endometrial cancer, and cervical cancer were employed and we were able to identify 57 studies focused on gynecological cancer and published between 2001 and 2021. All researched ephrins seemed to be upregulated in gynecological cancer, whereas EPHs showed either significant overexpression or extensive loss of expression in gynecological tumors, depending on the particular receptor. EPHA2, the most extensively studied EPH in ovarian cancer, exhibited overexpression both in ovarian carcinoma cell lines and patient tissue samples, while EPHB4 was found to be upregulated in endometrial cancer in a series of studies. EPHs/ephrins were shown to exert their role in different stages of gynecological cancer and to influence various clinicopathological parameters. The analysis of patients’ gynecological cancer tissue samples, most importantly, revealed the significant role of the EPH/ephrin system in the development and progression of gynecological cancer, as well as overall patient survival. In conclusion, the EPH/ephrin system represents a large family of biomolecules with promising applications in the fields of diagnosis, prognosis, disease monitoring, and treatment of gynecological cancer, with an established important clinical impact.
Collapse
|
4
|
Lin TC, Germagian A, Liu Z. The NF-[Formula: see text]B Signaling and Wnt/[Formula: see text]-catenin Signaling in MCF-7 Breast Cancer Cells in Response to Bioactive Components from Mushroom Antrodia Camphorata. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:199-215. [PMID: 33371814 DOI: 10.1142/s0192415x21500117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cancer, accounting for approximately 15% cancer deaths in women worldwide. This study investigated the anti-inflammation and anticancer properties of two bioactive components from Antrodia camphorata(AC), a rare medicinal mushroom natively grown in Taiwan and commonly used in Chinese traditional medicine. The anti-inflammatory and antitumorigenic functions of Antroquinonol (AQ) and 4-Acetylantroquinonol B (4-AAQB) from AC were examined on breast cancer cell line MCF-7 with/without TNF-[Formula: see text] stimulation. Among nine inflammatory mediators (IL6, IL10, IL1[Formula: see text], IFN[Formula: see text], PTGS2, TGF[Formula: see text]1, TNF-[Formula: see text], CCL2 andCSF1) examined, AQ inhibited two of them (IL-10 and PTGS2), while 4-AAQB inhibited three of them (IL-10, PTGS2 andTNF-[Formula: see text] ([Formula: see text]¡ 0.05). TNF-[Formula: see text] stimulated expressions of five mediators (IL6, IL10, IFN[Formula: see text], PTGS2, and CCL2), and AQ and 4-AAQB inhibited IL6 elevation ([Formula: see text]¡ 0.05). Both components inhibited aromatase expression with/without TNF-[Formula: see text] stimulation, with 4-AAQB to be more effective ([Formula: see text]¡ 0.05). For immune checkpoint CD47, both components inhibited CD47 expression ([Formula: see text]¡ 0.05), but it did not respond to TNF-[Formula: see text] stimulation. For Wnt/[Formula: see text]- catenin signaling downstream genes (CCND1, C-MYC and AXIN2), both components have significant or marginal inhibitory effect on C-MYC in the condition with/without TNF-[Formula: see text] stimulation. The luciferase assay demonstrated that both components exhibited inhibitory effect on NF-[Formula: see text]B signaling and Wnt/[Formula: see text]-catenin signaling in the condition without TNF-[Formula: see text] stimulation. In conclusion, our results displayed an overall pattern that AQ and 4-AAQB possess potential anti-inflammatory and antitumorigenic functions in MCF-7 breast cancer cells and warranted further in vivo pre-clinical and clinical studies to explore their anticancer properties.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alison Germagian
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA.,Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
5
|
Díaz-Valdivia NI, Calderón CC, Díaz JE, Lobos-González L, Sepulveda H, Ortíz RJ, Martinez S, Silva V, Maldonado HJ, Silva P, Wehinger S, Burzio VA, Torres VA, Montecino M, Leyton L, Quest AFG. Anti-neoplastic drugs increase caveolin-1-dependent migration, invasion and metastasis of cancer cells. Oncotarget 2017; 8:111943-111965. [PMID: 29340103 PMCID: PMC5762371 DOI: 10.18632/oncotarget.22955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Expression of the scaffolding protein Caveolin-1 (CAV1) enhances migration and invasion of metastatic cancer cells. Yet, CAV1 also functions as a tumor suppressor in early stages of cancer, where expression is suppressed by epigenetic mechanisms. Thus, we sought to identify stimuli/mechanisms that revert epigenetic CAV1 silencing in cancer cells and evaluate how this affects their metastatic potential. We reasoned that restricted tissue availability of anti-neoplastic drugs during chemotherapy might expose cancer cells to sub-therapeutic concentrations, which activate signaling pathways and the expression of CAV1 to favor the acquisition of more aggressive traits. Here, we used in vitro [2D, invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question. Colon and breast cancer cells were identified where CAV1 levels were low due to epigenetic suppression and could be reverted by treatment with the methyltransferase inhibitor 5’-azacytidine. Exposure of these cells to anti-neoplastic drugs for short periods of time (24-48 h) increased CAV1 expression through ROS production and MEK/ERK activation. In colon cancer cells, increased CAV1 expression enhanced migration and invasion in vitro via pathways requiring Src-family kinases, as well as Rac-1 activity. Finally, elevated CAV1 expression in colon cancer cells following exposure in vitro to sub-cytotoxic drug concentrations increased their metastatic potential in vivo. Therefore exposure of cancer cells to anti-neoplastic drugs at non-lethal drug concentrations induces signaling events and changes in transcription that favor CAV1-dependent migration, invasion and metastasis. Importantly, this may occur in the absence of selection for drug-resistance.
Collapse
Affiliation(s)
- Natalia I Díaz-Valdivia
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudia C Calderón
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge E Díaz
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Hugo Sepulveda
- Gene Regulation Laboratory, Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Rina J Ortíz
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Universidad Bernardo O Higgins, Facultad de Salud, Departamento de Ciencias Químicas y Biológicas, Santiago, Chile
| | - Samuel Martinez
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Horacio J Maldonado
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Sergio Wehinger
- Faculty of Health Sciences, University of Talca, Interdisciplinary Excellence Research Program Healthy Ageing (PIEI-ES), Talca, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Faculty of Biological Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Gene Regulation Laboratory, Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Kadiyala V, Sasse SK, Altonsy MO, Berman R, Chu HW, Phang TL, Gerber AN. Cistrome-based Cooperation between Airway Epithelial Glucocorticoid Receptor and NF-κB Orchestrates Anti-inflammatory Effects. J Biol Chem 2016; 291:12673-12687. [PMID: 27076634 DOI: 10.1074/jbc.m116.721217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Antagonism of pro-inflammatory transcription factors by monomeric glucocorticoid receptor (GR) has long been viewed as central to glucocorticoid (GC) efficacy. However, the mechanisms and targets through which GCs exert therapeutic effects in diseases such as asthma remain incompletely understood. We previously defined a surprising cooperative interaction between GR and NF-κB that enhanced expression of A20 (TNFAIP3), a potent inhibitor of NF-κB. Here we extend this observation to establish that A20 is required for maximal cytokine repression by GCs. To ascertain the global extent of GR and NF-κB cooperation, we determined genome-wide occupancy of GR, the p65 subunit of NF-κB, and RNA polymerase II in airway epithelial cells treated with dexamethasone, TNF, or both using chromatin immunoprecipitation followed by deep sequencing. We found that GR recruits p65 to dimeric GR binding sites across the genome and discovered additional regulatory elements in which GR-p65 cooperation augments gene expression. GR targets regulated by this mechanism include key anti-inflammatory and injury response genes such as SERPINA1, which encodes α1 antitrypsin, and FOXP4, an inhibitor of mucus production. Although dexamethasone treatment reduced RNA polymerase II occupancy of TNF targets such as IL8 and TNFAIP2, we were unable to correlate specific binding sequences for GR or occupancy patterns with repressive effects on transcription. Our results suggest that cooperative anti-inflammatory gene regulation by GR and p65 contributes to GC efficacy, whereas tethering interactions between GR and p65 are not universally required for GC-based gene repression.
Collapse
Affiliation(s)
- Vineela Kadiyala
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Sarah K Sasse
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Mohammed O Altonsy
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206,; Department of Zoology, Sohag University, Sohag 825224, Egypt, and
| | - Reena Berman
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Hong W Chu
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Tzu L Phang
- Department of Medicine, University of Colorado, Denver, Colorado 80045
| | - Anthony N Gerber
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206,; Department of Medicine, University of Colorado, Denver, Colorado 80045.
| |
Collapse
|
7
|
Gharwan H, Bunch KP, Annunziata CM. The role of reproductive hormones in epithelial ovarian carcinogenesis. Endocr Relat Cancer 2015; 22:R339-63. [PMID: 26373571 DOI: 10.1530/erc-14-0550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
Epithelial ovarian cancer comprises ∼85% of all ovarian cancer cases. Despite acceptance regarding the influence of reproductive hormones on ovarian cancer risk and considerable advances in the understanding of epithelial ovarian carcinogenesis on a molecular level, complete understanding of the biologic processes underlying malignant transformation of ovarian surface epithelium is lacking. Various hypotheses have been proposed over the past several decades to explain the etiology of the disease. The role of reproductive hormones in epithelial ovarian carcinogenesis remains a key topic of research. Primary questions in the field of ovarian cancer biology center on its developmental cell of origin, the positive and negative effects of each class of hormones on ovarian cancer initiation and progression, and the role of the immune system in the ovarian cancer microenvironment. The development of the female reproductive tract is dictated by the hormonal milieu during embryogenesis. Intensive research efforts have revealed that ovarian cancer is a heterogenous disease that may develop from multiple extra-ovarian tissues, including both Müllerian (fallopian tubes, endometrium) and non-Müllerian structures (gastrointestinal tissue), contributing to its heterogeneity and distinct histologic subtypes. The mechanism underlying ovarian localization, however, remains unclear. Here, we discuss the role of reproductive hormones in influencing the immune system and tipping the balance against or in favor of developing ovarian cancer. We comment on animal models that are critical for experimentally validating existing hypotheses in key areas of endocrine research and useful for preclinical drug development. Finally, we address emerging therapeutic trends directed against ovarian cancer.
Collapse
Affiliation(s)
- Helen Gharwan
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kristen P Bunch
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christina M Annunziata
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Ende G, Poitz DM, Wiedemann E, Augstein A, Friedrichs J, Giebe S, Weinert S, Werner C, Strasser RH, Jellinghaus S. TNF-α-mediated adhesion of monocytes to endothelial cells-The role of ephrinA1. J Mol Cell Cardiol 2014; 77:125-35. [PMID: 25451169 DOI: 10.1016/j.yjmcc.2014.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 12/19/2022]
Abstract
The ligand ephrin A1 is more often discussed to play a role in the development of the atherosclerotic plaque and in this context especially in the monocyte adhesion to endothelial cells. As tumor necrosis factor-α (TNF-α) is known to induce monocyte adhesion to endothelium and ephrin A1 expression, the present study focuses on the involvement of ephrin A1 in TNF-α-mediated monocyte adhesion. The analysis of different members of the Eph/ephrin system in TNF-α-treated human umbilical vein endothelial cells (HUVEC) revealed that especially ephrinA1 was found to be highly regulated by TNF-α compared to other members of the Eph family. This effect is also present in arterial endothelial cells from the umbilical artery and from the coronary artery. This regulation is dependent on NFκB-activation as shown by the expression of a constitutive-active IκB-mutant. By using siRNA-mediated silencing and adenoviral overexpression of ephrinA1 in HUVEC, the involvement of ephrinA1 in the TNF-α triggered monocyte adhesion to endothelial cells could be demonstrated. In addition, these results could be verified by quantitative adhesion measurement using atomic force microscopy-based single-cell force spectroscopy and under flow conditions. Furthermore, this effect is mediated via the EphA4 receptor. EphrinA1 does not influence the mRNA or protein expression of the adhesion receptors VCAM-1 and ICAM-1 in endothelial cells. However, the surface presentation of these adhesion receptors is modulated in an ephrinA1-dependent manner. In conclusion, these data demonstrate that ephrinA1 plays an important role in the TNF-α-mediated adhesion of monocytes to endothelial cells, which might be of great importance in the context of atherosclerosis.
Collapse
Affiliation(s)
- Georg Ende
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany.
| | - David M Poitz
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| | - Elisa Wiedemann
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| | - Antje Augstein
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| | - Jens Friedrichs
- Institute for Biofunctional Polymer Materials Dresden, Leibniz Institute of Polymer Research, Germany
| | - Sindy Giebe
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Sönke Weinert
- Internal Medicine, Department of Cardiology, Angiology and Pneumology, Magdeburg University, Magdeburg, Germany
| | - Carsten Werner
- Institute for Biofunctional Polymer Materials Dresden, Leibniz Institute of Polymer Research, Germany
| | - Ruth H Strasser
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| | | |
Collapse
|
9
|
Walentowicz P, Krintus M, Sadlecki P, Grabiec M, Mankowska-Cyl A, Sokup A, Walentowicz-Sadlecka M. Serum inhibin A and inhibin B levels in epithelial ovarian cancer patients. PLoS One 2014; 9:e90575. [PMID: 24599287 PMCID: PMC3944095 DOI: 10.1371/journal.pone.0090575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/01/2014] [Indexed: 12/11/2022] Open
Abstract
The aim of our study was to examine serum inhibin A and inhibin B concentrations in ovarian cancer patients in relation to clinicopathological features and 5-year survival. Material and Methods We enrolled 90 epithelial ovarian cancer patients in our study, aged 45–81 years, who underwent optimal cytoreductive surgery. In all patients, serum inhibin A and inhibin B concentrations were measured using a two-step sandwich type enzyme immunoassay before surgery. Results In the group of patients with ovarian cancer median serum concentration of inhibin A was 3.87 pg/mL (0.96–10.09) and inhibin B was 13.9 pg/mL (5.1–45.0). Median concentrations of inhibin A and B in relation to FIGO stage and histological subtype did not differ significantly. Inhibin A levels were significantly higher in patients with lower grading (G1 and G2) in comparison to those with higher grade G3 (p = 0.001). There were no differences in inhibin B concentrations in relation to grading. The Kaplan-Meier analyses demonstrated no differences in survival rate in relation to inhibin A levels, while there was a stepwise impairment of 5-years survival with increased inhibin B level. In the group of patients with inhibin B levels higher than 20 pg/ml the survival rate was lower (p = 0,00625, log-rank test). Conclusion 1. Higher inhibin A serum levels were found in patients with highly differentiated ovarian carcinoma compared to the group of patients with a poorly differentiated cancer, which may confirm the influence of inhibin A on cell proliferation processes. 2. A significant importance of inhibin B was demonstrated in the prediction of death within less than a five year period. The probability of survival in patients featuring high inhibin B levels was lower with statistical significance. This may indicate the need for further studies on how to block the inhibin B activation pathway in the ovarian carcinoma therapy.
Collapse
Affiliation(s)
- Pawel Walentowicz
- Department of Obstetrics and Gynecology, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Magdalena Krintus
- Department of Laboratory Medicine, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Pawel Sadlecki
- Department of Obstetrics and Gynecology, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marek Grabiec
- Department of Obstetrics and Gynecology, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Aneta Mankowska-Cyl
- Department of Laboratory Medicine, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Alina Sokup
- Department of Gastroenterology, Angiology and Internal Diseases, Nicolaus Copernicus University, Dr. J. Biziel University Hospital, Bydgoszcz, Poland
| | - Malgorzata Walentowicz-Sadlecka
- Department of Obstetrics and Gynecology, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
- * E-mail:
| |
Collapse
|
10
|
Ephrin-A1 expression induced by S100A8 is mediated by the toll-like receptor 4. Biochem Biophys Res Commun 2013; 440:623-9. [DOI: 10.1016/j.bbrc.2013.09.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022]
|
11
|
Drummond AE, Fuller PJ. Activin and inhibin, estrogens and NFκB, play roles in ovarian tumourigenesis is there crosstalk? Mol Cell Endocrinol 2012; 359:85-91. [PMID: 21839804 DOI: 10.1016/j.mce.2011.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 01/24/2023]
Abstract
Ovarian cancer may be the most frequently lethal gynaecological malignancy but the heterogeneous nature of the disease and the advanced stage at which it is usually diagnosed, have contributed to the paucity of information relating to its aetiology and pathogenesis. Members of the TGF-β superfamily, estrogen and NFκB have all been implicated in the development and progression of cancers from a wide range of tissues. In the ovary, TGF-β superfamily members and estrogen play key roles in maintaining normal function. To date, little is known about the capacity of NFκB to influence normal ovarian function except that it is ubiquitously expressed. In this review we will highlight the roles that inhibin/activin, estrogen and NFκB, have been attributed within carcinogenesis and examine the potential for crosstalk between these pathways in ovarian cancer pathogenesis.
Collapse
Affiliation(s)
- Ann E Drummond
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
12
|
Ephs and ephrins in cancer: ephrin-A1 signalling. Semin Cell Dev Biol 2011; 23:109-15. [PMID: 22040911 DOI: 10.1016/j.semcdb.2011.10.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/17/2011] [Indexed: 11/21/2022]
Abstract
Ephrin-A1 and its primary receptor, EphA2, are involved in numerous physiological processes and have been intensely studied for their roles in malignancy. Ephrin-Eph signalling is complex on its own and is also cell-type dependent, making elucidation of the exact role of ephrin-A1 in neoplasia challenging. Multiple oncogenic signalling pathways, such as MAP/ERK and PI3K are affected by ephrin-A1, and in some cases evidence suggests the promotion of a specific pathway in one cell or cancer type and inhibition of the same pathway in another type of cell or cancer. Ephrin-A1 also plays an integral role in angiogenesis and tumor neovascularization. Until recently, studies investigating ephrins focused on the ligands as GPI-anchored proteins that required membrane anchoring or artificial clustering for Eph receptor activation. However, recent studies have demonstrated a functional role for soluble, monomeric ephrin-A1. This review will focus on various forms of ephrin-A1-specific signalling in human malignancy.
Collapse
|
13
|
A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis. J Neurosci 2011; 31:5414-25. [PMID: 21471377 DOI: 10.1523/jneurosci.2456-10.2011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural plasticity of dendritic spines and synapses is a fundamental mechanism governing neuronal circuits and may form an enduring basis for information storage in the brain. We find that the p65 subunit of the nuclear factor-κB (NF-κB) transcription factor, which is required for learning and memory, controls excitatory synapse and dendritic spine formation and morphology in murine hippocampal neurons. Endogenous NF-κB activity is elevated by excitatory transmission during periods of rapid spine and synapse development. During in vitro synaptogenesis, NF-κB enhances dendritic spine and excitatory synapse density and loss of endogenous p65 decreases spine density and spine head volume. Cell-autonomous function of NF-κB within the postsynaptic neuron is sufficient to regulate the formation of both presynaptic and postsynaptic elements. During synapse development in vivo, loss of NF-κB similarly reduces spine density and also diminishes the amplitude of synaptic responses. In contrast, after developmental synaptogenesis has plateaued, endogenous NF-κB activity is low and p65 deficiency no longer attenuates basal spine density. Instead, NF-κB in mature neurons is activated by stimuli that induce demand for new synapses, including estrogen and short-term bicuculline, and is essential for upregulating spine density in response to these stimuli. p65 is enriched in dendritic spines making local protein-protein interactions possible; however, the effects of NF-κB on spine density require transcription and the NF-κB-dependent regulation of PSD-95, a critical postsynaptic component. Collectively, our data define a distinct role for NF-κB in imparting transcriptional regulation required for the induction of changes to, but not maintenance of, excitatory synapse and spine density.
Collapse
|
14
|
Saad AF, Hu W, Sood AK. Microenvironment and pathogenesis of epithelial ovarian cancer. HORMONES & CANCER 2010; 1:277-90. [PMID: 21761359 PMCID: PMC3199131 DOI: 10.1007/s12672-010-0054-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple genetic alterations play a role in the pathogenesis of ovarian cancer. Although many key proteins and pathways involved in ovarian carcinogenesis and metastasis have been discovered, knowledge of the early steps leading to malignancy remains poorly understood. This poor understanding stems from lack of data from early-stage cancers and absence of a well-established premalignant state universal to all ovarian cancer subtypes. Existing evidence suggests that ovarian cancers develop either through a stepwise mutation process (low-grade pathway), through genetic instability resulting in hastened metastasis (high-grade pathway), or more recently through what has been described as the "'fimbrial-ovarian' serous neoplasia theory." In this latter model, ovarian serous cancers evolve from premalignant lesions in the distal fallopian tube called tubal intraepithelial carcinoma. In this manuscript, we review key genetic and molecular changes that occur in cancer cell progression and suggest a model of ovarian cancer pathogenesis involving both tumor cell mutations and microenvironmental factors.
Collapse
Affiliation(s)
- Antonio F. Saad
- Department of Obstetrics and Gynecology, U.T.M.B. Galveston Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Wei Hu
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA. Department of Cancer Biology, U.T.M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030, USA. Center for RNA Interference and Non-Coding RNA, 1515 Holcombe Boulevard, Houston, TX 77030, USA. Departments of Gynecologic Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA
| |
Collapse
|
15
|
Gómez-Ruiz A, Milagro FI, Campión J, Martínez JA, de Miguel C. Caveolin expression and activation in retroperitoneal and subcutaneous adipocytes: Influence of a high-fat diet. J Cell Physiol 2010; 225:206-13. [DOI: 10.1002/jcp.22241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Change in P-glycoprotein and caveolin protein expression in brain striatum capillaries in New Zealand obese mice with type 2 diabetes. Life Sci 2009; 85:775-81. [PMID: 19891976 DOI: 10.1016/j.lfs.2009.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 01/27/2023]
Abstract
AIMS To investigate the expression of P-gp and caveolins in brain striatum capillaries in inbred mice with type 2 diabetes. MAIN METHODS Inbred mice with type 2 diabetes (male New Zealand obese; NZO) were compared with related mice without diabetes (female NZO and New Zealand White). Protein expression of P-gp and caveolins in capillaries of the brain striatum was examined by immunohistochemical analysis. P-gp efflux pump activity in the blood-brain barrier (BBB) was measured by in vivo brain microdialysis. Regulation of P-gp and caveolin expression was examined in cultured adult rat brain endothelial cells (ARBEC). KEY FINDINGS In capillaries in the brain striatum, expression of P-gp and caveolins was higher and lower, respectively, in mice with type 2 diabetes compared with non-diabetic mice. Brain extracellular concentrations of intravenously injected rhodamine 123 were more than 50-60% lower in type 2 diabetic mice. Insulin and PMA treatments significantly increased P-gp expression, whereas the same treatments decreased caveolin expression in ARBEC. SIGNIFICANCE Protein expression of P-gp and caveolins can be regulated in animals with type 2 diabetes. These changes may be important in modulating P-gp activity in the BBB in type 2 diabetes.
Collapse
|
17
|
Affiliation(s)
- Anna Hoekstra
- Division of Gynecologic Oncology, NorthShore University HealthSystem, Suite 1507, Walgreen Building, Evanston Hospital, 2650 Ridge Ave., Evanston, IL 60201, USA
| | | |
Collapse
|
18
|
Boye K, Grotterød I, Aasheim HC, Hovig E, Maelandsmo GM. Activation of NF-kappaB by extracellular S100A4: analysis of signal transduction mechanisms and identification of target genes. Int J Cancer 2008; 123:1301-10. [PMID: 18548584 DOI: 10.1002/ijc.23617] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The metastasis-promoting protein S100A4 stimulates metastatic progression through both intracellular and extracellular functions. Extracellular activities of S100A4 include stimulation of angiogenesis, regulation of cell death and increased cell motility and invasion, but the exact molecular mechanisms by which extracellular S100A4 exerts these effects are incompletely elucidated. The aim of the present study was to characterize S100A4-induced signal transduction mechanisms and to identify S100A4 target genes. We demonstrate that extracellular S100A4 activates the transcription factor NF-kappaB in a subset of human cancer cell lines through induction of phosphorylation and subsequent degradation of the NF-kappaB inhibitor IkappaBalpha. Concomitantly, S100A4 induced a sustained activation of the MAP kinase JNK, whereas no increased activity of the MAP kinases p38 or ERK was observed. Microarray analyses identified 136 genes as being significantly regulated by S100A4 treatment, and potentially interesting S100A4-induced gene products include IkappaBalpha, p53, ephrin-A1 and optineurin. Increased expression of ephrin-A1 and optineurin was validated using RT-PCR, Western blotting and functional assays. Furthermore, S100A4-stimulated transcription of these target genes was dependent on activation of the NF-kappaB pathway. In conclusion, these findings contribute to the understanding of the complex molecular mechanisms responsible for the diverse biological functions of extracellular S100A4, and provide further evidence of how S100A4 may stimulate metastatic progression.
Collapse
Affiliation(s)
- Kjetil Boye
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, N-0310 Oslo, Norway.
| | | | | | | | | |
Collapse
|
19
|
Quest AFG, Gutierrez-Pajares JL, Torres VA. Caveolin-1: an ambiguous partner in cell signalling and cancer. J Cell Mol Med 2008; 12:1130-50. [PMID: 18400052 PMCID: PMC3865655 DOI: 10.1111/j.1582-4934.2008.00331.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caveolae are small plasma membrane invaginations that have been implicated in a variety of functions including transcytosis, potocytosis and cholesterol transport and signal transduction. The major protein component of this compartment is a family of proteins called caveolins. Experimental data obtained in knockout mice have provided unequivocal evidence for a requirement of caveolins to generate morphologically detectable caveolae structures. However, expression of caveolins is not sufficient per seto assure the presence of these structures. With respect to other roles attributed to caveolins in the regulation of cellular function, insights are even less clear. Here we will consider, more specifically, the data concerning the ambiguous roles ascribed to caveolin-1 in signal transduction and cancer. In particular, evidence indicating that caveolin-1 function is cell context dependent will be discussed.
Collapse
Affiliation(s)
- Andrew F G Quest
- FONDAP Centre for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
20
|
Landen CN, Birrer MJ, Sood AK. Early Events in the Pathogenesis of Epithelial Ovarian Cancer. J Clin Oncol 2008; 26:995-1005. [DOI: 10.1200/jco.2006.07.9970] [Citation(s) in RCA: 319] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ovarian carcinogenesis, as in most cancers, involves multiple genetic alterations. A great deal has been learned about proteins and pathways important in the early stages of malignant transformation and metastasis, as derived from studies of individual tumors, microarray data, animal models, and inherited disorders that confer susceptibility. However, a full understanding of the earliest recognizable events in epithelial ovarian carcinogenesis is limited by the lack of a well-defined premalignant state common to all ovarian subtypes and by the paucity of data from early-stage cancers. Evidence suggests that ovarian cancers can progress both through a stepwise mutation process (low-grade pathway) and through greater genetic instability that leads to rapid metastasis without an identifiable precursor lesion (high-grade pathway). In this review, we discuss many of the genetic and molecular disorders in each key process that is altered in cancer cells, and we present a model of ovarian pathogenesis that incorporates the role of tumor cell mutations and factors in the host microenvironment important to tumor initiation and progression.
Collapse
Affiliation(s)
- Charles N. Landen
- From the Department of Gynecologic Oncology and the Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX; and the Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Michael J. Birrer
- From the Department of Gynecologic Oncology and the Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX; and the Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Anil K. Sood
- From the Department of Gynecologic Oncology and the Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX; and the Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
21
|
|
22
|
Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 2005; 7:1630-47. [PMID: 16356126 DOI: 10.1089/ars.2005.7.1630] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. Many plant-derived polyphenols have been studied intently for their potential chemopreventive properties and are pharmacologically safe. These compounds include genistein, curcumin, resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities. How these polyphenols protect normal cells and sensitize tumor cells to treatment is discussed in this review.
Collapse
Affiliation(s)
- Amit K Garg
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
23
|
Estevam FR, Augusto SF, Rodrigues SA, Pinheiro MRR, Monteiro AF. Apoptosis and production of TNF-alpha by tumor-associated inflammatory cells in histological grade III breast cancer. Cancer Immunol Immunother 2005; 54:671-6. [PMID: 15625605 PMCID: PMC11032828 DOI: 10.1007/s00262-004-0639-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
Tumor necrosis factor alpha (TNF-alpha) is a cytokine that acts as an important mediator of the apoptotic process that also demonstrates selective citotoxicity against malignant breast tumor cells. In the present study, the presence of apoptotic tumor cells and the synthesis of TNF-alpha by inflammatory cells were investigated in tissue samples from grade III invasive breast cancer with long-term follow-up. In situ detection of tumor apoptotic cells was investigated by direct immuno-peroxidase of digoxigenin-labeled genomic DNA. The production of TNF-alpha and tumor cell proliferation were investigated by immunohistochemical procedures. Our data demonstrated that patients with a clinical history of cancer recurrence and metastasis presented a lower number of cancerous apoptotic cells, higher tumor proliferation rates, and lower TNF-alpha expression rates by inflammatory cells than what is observed among patients diagnosed with the same histopathological breast cancer type but in the absence of tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Farias Rogério Estevam
- Laboratory of Immunopathogy and Experimental Pathology, Reproduction Biology Center, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais Brazil
- Departament of Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | - Souza Andrezza Rodrigues
- Laboratory of Immunopathogy and Experimental Pathology, Reproduction Biology Center, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais Brazil
| | - Machado Raquel Rocha Pinheiro
- Laboratory of Immunopathogy and Experimental Pathology, Reproduction Biology Center, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais Brazil
| | - Aarestrup Fernando Monteiro
- Laboratory of Immunopathogy and Experimental Pathology, Reproduction Biology Center, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais Brazil
- Centro de Biologia da Reprodução-CBR, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, 36036-330 Brazil
| |
Collapse
|
24
|
Mendoza-Milla C, Machuca Rodríguez C, Córdova Alarcón E, Estrada Bernal A, Toledo-Cuevas EM, Martínez Martínez E, Zentella Dehesa A. NF-κB activation but not PI3K/Akt is required for dexamethasone dependent protection against TNF-α cytotoxicity in L929 cells. FEBS Lett 2005; 579:3947-52. [PMID: 16000198 DOI: 10.1016/j.febslet.2005.05.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 05/12/2005] [Accepted: 05/29/2005] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor alpha (TNF-alpha) is one of the best-described cell death promoters. In murine L929 fibroblasts, dexamethasone inhibits TNF-alpha-induced cytotoxicity. Since phosphatidyl inositol 3 kinase (PI3K) and nuclear factor kappa B (NF-kappaB) proteins regulate several survival pathways, we evaluated their participation in dexamethasone protection against TNF-alpha cell death. We interfered with these pathways by overexpressing a negative dominant mutant of PI3K or a non-degradable mutant of inhibitor of NF-kappaB alpha (IkappaBalpha) (the cytoplasmic inhibitor of NF-kappaB) in L929 cells. The mutant IkappaB, but not the mutant PI3K, abrogated dexamethasone-mediated protection. The loss of dexamethasone protection was associated with a diminished accumulation in XIAP and c-IAP proteins.
Collapse
Affiliation(s)
- Criselda Mendoza-Milla
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, México, D.F. 04510, México.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Nuclear factor of kappaB (NF-kappaB) is a group of sequence-specific transcription factors that is best known as a key regulator of the inflammatory and innate immune responses. Recent studies of genetically engineered mice have clearly indicated that NF-kappaB is also required for proper organogenesis of several epithelial tissues, including the mammary gland. Mice have shown severe lactation deficiency when NF-kappaB activation is specifically blocked in the mammary gland. In addition, there are strong suggestions that NF-kappaB may play an important role in the etiology of breast cancer. Elevated NF-kappaB DNA-binding activity is detected in both mammary carcinoma cell lines and primary human breast cancer tissues.
Collapse
Affiliation(s)
- Yixue Cao
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
26
|
Shen Q, Brown PH. Novel agents for the prevention of breast cancer: targeting transcription factors and signal transduction pathways. J Mammary Gland Biol Neoplasia 2003; 8:45-73. [PMID: 14587863 DOI: 10.1023/a:1025783221557] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transformation of breast cells occurs through loss or mutation of tumor suppressor genes, or activation or amplification of oncogenes, leading to deregulation of signal transduction pathways, abnormal amplification of growth signals, and aberrant expression of genes that ultimately transform the cells into invasive cancer. The goal of cancer preventive therapy, or "chemoprevention," is to eliminate premalignant cells or to block the progression of normal cells into cancer. Multiple alterations in signal pathways and transcription factors are observed in mammary gland tumorigenesis. In particular, estrogen receptor (ER) deregulation plays a critical role in breast cancer development and progress, and targeting ER with selective ER modulators (SERMs) has achieved significant reduction of breast cancer incidence in women at high risk for breast cancer. However, not all breast cancer is prevented by SERMs, because 30-40% of the tumors are ER-negative. Other receptors for retinoids, vitamin D analogs and peroxisome proliferator-activiator, along with transcription factors such as AP-1, NF-kappaB, and STATs (signal transducers and activators of transcription) affect breast tumorigenesis. This is also true for the signal transduction pathways, for example cyclooxygenase 2 (Cox-2), HER2/neu, mitogen-activated protein kinase (MAPK), and PI3K/Akt. Therefore, proteins in pathways that are altered during the process of mammary tumorigenesis may be promising targets of future chemopreventive drugs. Many newly-developed synthetic or natural compounds/agents are now under testing in preclinical studies and clinical trials. Receptor selective retinoids, receptor tyrosine kinase inhibitors (TKIs), SERMs, Cox-2 inhibitors, and others are some of the promising novel agents for the prevention of breast cancer. The chemopreventive activity of these agents and other novel signal transduction inhibitors are discussed in this chapter.
Collapse
Affiliation(s)
- Qiang Shen
- Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|