1
|
Chen YC, Gowda K, Amin S, Schell TD, Sharma AK, Robertson GP. Pharmacological agents targeting drug-tolerant persister cells in cancer. Pharmacol Res 2024; 203:107163. [PMID: 38569982 DOI: 10.1016/j.phrs.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Pennsylvania State University Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
2
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
3
|
Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method. Biosci Rep 2021; 41:228584. [PMID: 33950219 PMCID: PMC8493444 DOI: 10.1042/bsr20210491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Selective modulation of retinaldehyde dehydrogenases (RALDHs)-the main aldehyde dehydrogenase (ALDH) enzymes converting retinal into retinoic acid (RA), is very important not only in the RA signaling pathway but also for the potential regulatory effects on RALDH isozyme-specific processes and RALDH-related cancers. However, very few selective modulators for RALDHs have been identified, partly due to variable overexpression protocols of RALDHs and insensitive activity assay that needs to be addressed. In the present study, deletion of the N-terminal disordered regions is found to enable simple preparation of all RALDHs and their closest paralog ALDH2 using a single protocol. Fluorescence-based activity assay was employed for enzymatic activity investigation and screening for RALDH-specific modulators from extracts of various spices and herbs that are well-known for containing many phyto-derived anti-cancer constituents. Under the established conditions, spice and herb extracts exhibited differential regulatory effects on RALDHs/ALDH2 with several extracts showing potential selective inhibition of the activity of RALDHs. In addition, the presence of magnesium ions was shown to significantly increase the activity for the natural substrate retinal of RALDH3 but not the others, while His-tag cleavage considerably increased the activity of ALDH2 for the non-specific substrate retinal. Altogether we propose a readily reproducible workflow to find selective modulators for RALDHs and suggest potential sources of selective modulators from spices and herbs.
Collapse
|
4
|
Liu C, Zhang Y, Liang S, Ying Y. Aldehyde dehydrogenase 1, a target of miR-222, is expressed at elevated levels in cervical cancer. Exp Ther Med 2020; 19:1673-1680. [PMID: 32104219 PMCID: PMC7027150 DOI: 10.3892/etm.2020.8425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the expression of microRNA-222 (miR-222) and aldehyde dehydrogenase 1 (ALDH1) in tissues and peripheral blood of cervical cancer patients, and to elucidate their underlying mechanisms of action. Tumor tissues and tumor-adjacent tissues were obtained from 33 cervical cancer patients and peripheral blood was obtained from these patients and 28 healthy subjects. The expression of miR-222 and ALDH1 mRNA was evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To examine the levels of ALDH1 protein in tissues and blood, western blotting and ELISA were used. To confirm a direct interaction between miR-222 and ALDH1 mRNA, a dual luciferase reporter assay was performed. HeLA cells were transfected with agomiR-222 and expression of ALDH1 in the cells was measured by RT-qPCR and western blotting. MTT assay was preform to investigate the proliferation of HeLA cells. Expression of ALDH1 mRNA and protein was elevated in cervical cancer tissues and peripheral blood from patients compared with tumor-adjacent tissues and healthy controls, while the expression of miR-222 was reduced. Upregulation of miR-222 inhibited HeLA cell proliferation possibly due to a reduction in the expression of ALDH1. A dual luciferase reporter assay showed that miR-222 can bind with the 3′-untranslated seed region of ALDH1 mRNA to regulate its expression. miR-222 regulation of ALDH1 expression may play a role in the prevention of cervical cancer.
Collapse
Affiliation(s)
- Changde Liu
- Clinical Laboratory, The Hui People Hospital of Beijing, Beijing 100054, P.R. China
| | - Yan Zhang
- Clinical Laboratory, Yuquan Hospital of Tsinghua University, Beijing 100049, P.R. China
| | - Shanghua Liang
- Department of Pathology, Beijing Dian Medical Testing Laboratory Co., Beijing 102609, P.R. China
| | - Yuhua Ying
- Department of Gynaecology, Yuquan Hospital of Tsinghua University, Beijing 100049, P.R. China
| |
Collapse
|
5
|
Lipid Metabolism and Lipid Droplets in Pancreatic Cancer and Stellate Cells. Cancers (Basel) 2017; 10:cancers10010003. [PMID: 29295482 PMCID: PMC5789353 DOI: 10.3390/cancers10010003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second deadliest cancer by 2030, and the overall 5-year survival rate is currently less than 7%. Cancer cells frequently exhibit reprogramming of their metabolic activity. It is increasingly recognized that aberrant de novo lipid synthesis and reprogrammed lipid metabolism are both associated with the development and progression of various cancers, including pancreatic cancer. In this review, the current knowledge about lipid metabolism and lipid droplets in pancreatic cancer is discussed. In the first part, molecular mechanisms of lipid metabolism and roles of enzymes involved in lipid metabolism which are relevant for pancreatic cancer research are presented. Further, preclinical studies and clinical trials with drugs/inhibitors targeting cancer metabolic systems in cancer are summarized. An increase of our knowledge in lipid metabolism in pancreatic cancer cells and in tumor stroma is important for developing novel strategies of future individualized therapies of pancreatic cancer.
Collapse
|
6
|
Pérez-Alea M, McGrail K, Sánchez-Redondo S, Ferrer B, Fournet G, Cortés J, Muñoz E, Hernandez-Losa J, Tenbaum S, Martin G, Costello R, Ceylan I, Garcia-Patos V, Recio JA. ALDH1A3 is epigenetically regulated during melanocyte transformation and is a target for melanoma treatment. Oncogene 2017; 36:5695-5708. [PMID: 28581514 DOI: 10.1038/onc.2017.160] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
Despite the promising targeted and immune-based interventions in melanoma treatment, long-lasting responses are limited. Melanoma cells present an aberrant redox state that leads to the production of toxic aldehydes that must be converted into less reactive molecules. Targeting the detoxification machinery constitutes a novel therapeutic avenue for melanoma. Here, using 56 cell lines representing nine different tumor types, we demonstrate that melanoma cells exhibit a strong correlation between reactive oxygen species amounts and aldehyde dehydrogenase 1 (ALDH1) activity. We found that ALDH1A3 is upregulated by epigenetic mechanisms in melanoma cells compared with normal melanocytes. Furthermore, it is highly expressed in a large percentage of human nevi and melanomas during melanocyte transformation, which is consistent with the data from the TCGA, CCLE and protein atlas databases. Melanoma treatment with the novel irreversible isoform-specific ALDH1 inhibitor [4-dimethylamino-4-methyl-pent-2-ynthioic acid-S methylester] di-methyl-ampal-thio-ester (DIMATE) or depletion of ALDH1A1 and/or ALDH1A3, promoted the accumulation of apoptogenic aldehydes leading to apoptosis and tumor growth inhibition in immunocompetent, immunosuppressed and patient-derived xenograft mouse models. Interestingly, DIMATE also targeted the slow cycling label-retaining tumor cell population containing the tumorigenic and chemoresistant cells. Our findings suggest that aldehyde detoxification is relevant metabolic mechanism in melanoma cells, which can be used as a novel approach for melanoma treatment.
Collapse
Affiliation(s)
- M Pérez-Alea
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Oncology Program, Vall d'Hebron Research institute VHIR-Vall d'Hebron Hospital, Barcelona-UAB, Spain
| | - K McGrail
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Oncology Program, Vall d'Hebron Research institute VHIR-Vall d'Hebron Hospital, Barcelona-UAB, Spain
| | - S Sánchez-Redondo
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Oncology Program, Vall d'Hebron Research institute VHIR-Vall d'Hebron Hospital, Barcelona-UAB, Spain
| | - B Ferrer
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Oncology Program, Vall d'Hebron Research institute VHIR-Vall d'Hebron Hospital, Barcelona-UAB, Spain.,Anatomy Pathology Department, Vall d'Hebron Hospital, Barcelona-UAB, Spain
| | - G Fournet
- Institut de Chimie et Biochimie Moléculaire et Supramoléculaire, UMR-CNRS 5246, Université de Lyon, Université Claude Bernard-Lyon1, Villeurbanne, France
| | - J Cortés
- Ramon y Cajal University Hospital, Madrid, Spain.,Clinical Oncology Program, Vall d'Hebron Institute of Oncology-VHIO, Vall d'Hebron Hospital, Barcelona-UAB, Spain
| | - E Muñoz
- Clinical Oncology Program, Vall d'Hebron Institute of Oncology-VHIO, Vall d'Hebron Hospital, Barcelona-UAB, Spain
| | - J Hernandez-Losa
- Anatomy Pathology Department, Vall d'Hebron Hospital, Barcelona-UAB, Spain
| | - S Tenbaum
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - G Martin
- Advanced BioDesign, Parc Technologique de Lyon, Woodstock - Bâtiment Cèdre 1, Saint Priest, France
| | - R Costello
- Service d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire La Conception, Marseille, France
| | - I Ceylan
- Advanced BioDesign, Parc Technologique de Lyon, Woodstock - Bâtiment Cèdre 1, Saint Priest, France
| | - V Garcia-Patos
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Oncology Program, Vall d'Hebron Research institute VHIR-Vall d'Hebron Hospital, Barcelona-UAB, Spain.,Dermatology Department, Vall d'Hebron Hospital, Barcelona-UAB, Spain
| | - J A Recio
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory-Oncology Program, Vall d'Hebron Research institute VHIR-Vall d'Hebron Hospital, Barcelona-UAB, Spain
| |
Collapse
|
7
|
Zhang X, Shen D, Lü ZR, Zhan Y, Si N, Li MM, Yang JM, Zhou HM, Park YD, Zhang Q, Lee J. Effects of hydroxysafflor yellow A on ALDH1: Inhibition kinetics and molecular dynamics simulation. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Biological evaluation and 3D-QSAR studies of curcumin analogues as aldehyde dehydrogenase 1 inhibitors. Int J Mol Sci 2014; 15:8795-807. [PMID: 24840575 PMCID: PMC4057759 DOI: 10.3390/ijms15058795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/13/2014] [Accepted: 03/24/2014] [Indexed: 01/02/2023] Open
Abstract
Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor.
Collapse
|
9
|
Kahlert C, Gaitzsch E, Steinert G, Mogler C, Herpel E, Hoffmeister M, Jansen L, Benner A, Brenner H, Chang-Claude J, Rahbari N, Schmidt T, Klupp F, Grabe N, Lahrmann B, Koch M, Halama N, Büchler M, Weitz J. Expression analysis of aldehyde dehydrogenase 1A1 (ALDH1A1) in colon and rectal cancer in association with prognosis and response to chemotherapy. Ann Surg Oncol 2012; 19:4193-201. [PMID: 22878609 DOI: 10.1245/s10434-012-2518-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Aldehyde dehydrogenase 1A1 (ALDH1A1) has been described as a cancer stem cell marker and as a regulator of cellular chemoresistance. Therefore, ALDH1A1 has been suggested as potential biomarker to stratify patients into different risk categories for a "personalized" therapy approach. We have investigated the prognostic role of ALDH1A1 in primary colorectal cancer and its value in predicting response to chemotherapy in metastatic colorectal cancer. METHODS Immunostaining against ALDH1A1 was performed on a paraffin-embedded tissue microarray including 659 primary colon cancer samples and 338 rectal cancer samples. Likewise, tissue of 44 palliatively resected colorectal liver metastases on whole-mount tissue slides was immunostained against ALDH1A1. Cytoplasmic, nuclear, and stromal expression of ALDH1A1 was assessed and merged with histopathological and clinical data. RESULTS Univariate and multivariate analysis revealed that cytoplasmic and stromal expression of ALDH1A1 is not significantly associated with prognosis either in colon or in rectal cancer. Furthermore, cytoplasmic expression of ALDH1A1 does not predict response to palliative chemotherapy in patients with metastatic diseases. Intriguingly, as a novel finding, nuclear expression of ALDH1A1 was observed in a small subgroup of patients with colon cancer and rectal cancer. In colon cancer, nuclear expression was significantly associated with shortened overall survival by univariate and multivariate analysis. CONCLUSIONS Immunohistochemical expression analysis of ALDH1A1 in colon cancer is useful for the detection of nuclear expression in a small subpopulation of patients and is associated with shorter survival. Cytoplasmic expression fails to be of clinical relevance as prognostic or predictive marker in colorectal cancer.
Collapse
Affiliation(s)
- Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fujiwara SI, Asai A, Makita Y, Kambe N. Synthesis of thiol esters by the use of carbonyl sulfide as a thiocarboxylation agent. J Sulphur Chem 2009. [DOI: 10.1080/17415990902894281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shin-ichi Fujiwara
- a Department of Chemistry , Osaka Dental University , Hirakata, Osaka, 573-1121, Japan
| | - Akira Asai
- b Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita, Osaka, 565-0871, Japan
| | - Yoshimasa Makita
- a Department of Chemistry , Osaka Dental University , Hirakata, Osaka, 573-1121, Japan
| | - Nobuaki Kambe
- b Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Murai T, Fukushima K, Mutoh Y. Synthesis and Properties of 1-Methylthiopropargylammonium Salts and Their Use as Key Precursors to Sulfur-Containing Enediynes. Org Lett 2007; 9:5295-8. [DOI: 10.1021/ol7024923] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Toshiaki Murai
- Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Kozue Fukushima
- Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Yuichiro Mutoh
- Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
12
|
Roy P, Waxman DJ. Activation of oxazaphosphorines by cytochrome P450: Application to gene-directed enzyme prodrug therapy for cancer. Toxicol In Vitro 2006; 20:176-86. [PMID: 16293390 DOI: 10.1016/j.tiv.2005.06.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/01/2005] [Accepted: 06/01/2005] [Indexed: 11/22/2022]
Abstract
Cancer chemotherapeutic prodrugs, such as the oxazaphosphorines cyclophosphamide and ifosfamide, are metabolized by liver cytochrome P450 enzymes to yield therapeutically active, cytotoxic metabolites. The effective use of these prodrugs is limited by host toxicity associated with the systemic distribution of cytotoxic metabolites formed in the liver. This problem can, in part, be circumvented by implementation of cytochrome P450 gene-directed enzyme prodrug therapy (P450 GDEPT), a prodrug activation strategy for cancer treatment that augments tumor cell exposure to cytotoxic drug metabolites generated locally by a prodrug-activating cytochrome P450 enzyme. P450 GDEPT has been exemplified in preclinical rodent and human tumor models, where chemosensitivity to a P450 prodrug can be greatly increased by introduction of a prodrug-activating P450 gene. Further enhancement of the efficacy of P450-based gene therapy can be achieved: by co-expression of P450 with the flavoenzyme NADPH-P450 reductase, which provides electrons required for P450 metabolic activity; by metronomic (anti-angiogenic) scheduling of the prodrug; by localized delivery of the prodrug to the tumor; and by combination with anti-apoptotic factors, which slow the death of the P450 'factory' cells and thereby enhance the bystander cytotoxic response. P450 GDEPT has several important features that make it a clinically attractive strategy for cancer treatment. These include: the substantial bystander cytotoxicity of P450 prodrugs such as cyclophosphamide and ifosfamide; the ability to use human P450 genes and thereby avoid an immune response to the therapeutic gene; the use of well-established conventional chemotherapeutic prodrugs, as well as bioreductive drugs activated by P450/P450 reductase in a hypoxic tumor environment; and the potential to decrease systemic exposure to active drug metabolites by selective inhibition of hepatic P450 activity. Recent advances in this area of research are reviewed, and two proof-of-concept clinical trials that highlight the utility of this strategy are discussed.
Collapse
Affiliation(s)
- Partha Roy
- Forest Research Institute, A Division of Forest Laboratories, Inc., Harborside Financial Center, Plaza V, Jersey City, NJ 07311, USA.
| | | |
Collapse
|
13
|
Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2006; 37:611-703. [PMID: 16393888 DOI: 10.1080/03602530500364023] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, beta-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and epsilon. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
14
|
Courvoisier C, Paret MJ, Chantepie J, Goré J, Fournet G, Quash G. Synthesis and effects of 3-methylthiopropanoyl thiolesters of lipoic acid, methional metabolite mimics. Bioorg Chem 2006; 34:49-58. [PMID: 16387348 DOI: 10.1016/j.bioorg.2005.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/15/2005] [Accepted: 11/18/2005] [Indexed: 12/23/2022]
Abstract
6S,8S-Bis(3-methylthiopropanoyl) thiolesters of lipoic acid were synthesized with the carboxyl moiety of lipoate modified as methyl or water soluble choline esters. Evaluation on different cell lines in culture showed that they possessed modest antiproliferative activity. However, the 6-fold decrease in IC50 (from 270 to 45 microM) observed with the water soluble 6S,8S-bis(3-methylthiopropenoyl) thiolester dehydro derivative on a human epithelial prostate cancer cell line (DU145) argues in favor of 3-methylthiopropanoyl metabolites as endogenous growth regulatory (apoptogenic) compounds derived from methionine.
Collapse
Affiliation(s)
- Celine Courvoisier
- LCO1, UMR 5181 (cpe) UCB Lyon 1, 43 bd du 11 nov 1918, 69622 Villeurbanne cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Monneuse O, Mestrallet JP, Quash G, Gilly FN, Glehen O. Intraperitoneal treatment with dimethylthioampal (DIMATE) combined with surgical debulking is effective for experimental peritoneal carcinomatosis in a rat model. J Gastrointest Surg 2005; 9:769-74. [PMID: 15985231 DOI: 10.1016/j.gassur.2005.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/01/2005] [Indexed: 01/31/2023]
Abstract
The goal was to evaluate the efficiency of intraperitoneal administration of dimethylthioampal (DIMATE), a cellular apoptosis inducer, combined, or not, with cytoreductive surgery on rats with peritoneal adenocarcinomatosis. Peritoneal carcinomatosis was induced in rats by intraperitoneal injection of adenocarcinoma cell line DHD/K12/pro B. Intraperitoneal DIMATE was given at 17.3 mg/kg. Rats were randomized into five groups of eight animals, regarding the day of treatment (2 days or 20 days after peritoneal carcinomatosis induction) and the combination with cytoreductive surgery. All rats were killed at 30 days to evaluate carcinomatosis extent (quantitative score) and ascites volume. The quantitative score of carcinomatosis and the ascites volume were significantly reduced in the groups treated with DIMATE at day 2 (P = 0.005 and P < 0.001, respectively) and when DIMATE was used with cytoreductive surgery at day 20 (P = 0.009 and P < 0.001, respectively). Cytoreductive surgery or DIMATE used alone at day 20 had no significant influence. The intraperitoneal DIMATE administration at day 20, when not combined with surgery, had no significant influence on carcinomatosis extent or on ascites volume. Intraperitoneal DIMATE appeared to be an efficient drug in the prevention or treatment of peritoneal carcinomatosis when combined with cytoreductive surgery or when it was given by intraperitoneal route, before the development of macroscopic peritoneal carcinomatosis. It appears to be a promising therapeutic agent to be investigated in a human phase I trial in peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Olivier Monneuse
- Service de Chirurgie Digestive d'Urgence, Hôpital Edouard Herriot, Lyon, France
| | | | | | | | | |
Collapse
|
16
|
Sakamoto-Hojo ET, Mello SS, Pereira E, Fachin AL, Cardoso RS, Junta CM, Sandrin-Garcia P, Donadi EA, Passos GAS. Gene expression profiles in human cells submitted to genotoxic stress. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:403-13. [PMID: 14644343 DOI: 10.1016/j.mrrev.2003.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). In this report, we present three approaches to document gene expression profiles, dealing with the evaluation of cellular responses to genotoxic agents (gamma-rays from 60Cobalt and cyclophosphamide). We used the method of cDNA arrays to analyze the differential gene expression profiles that were displayed by lymphocytes from radiation-exposed individuals, a human fibroblast cell line, and T lymphocytes from systemic lupus erythematosus (SLE) patients who were treated with cyclophosphamide. A preliminary analysis performed in lymphocytes from three radiation-workers showed that several induced genes can be associated with cell response to ionizing radiation: TRRAP (cell cycle regulation), Ligase IV (DNA repair), MAPK8IP1 and MAPK10 (signal transduction), RASSF2 (apoptosis induction/tumorigenesis), p53 (damage response/maintenance of genetic stability). The in vitro irradiated normal VH16 cell line (primary) showed a complex response to the genotoxic stress at the molecular level. Many apoptotic pathways were concomitantly induced. In addition, several genes involved in signaling and cell cycle arrest/control were significantly modulated after irradiation. Many genes involved in oxidative damage were also induced, indicating that this mechanism seems to be an important component of cell response. After treatment of the SLE patients with cyclophosphamide, 154 genes were differentially and significantly induced. Among them, we identified those associated with drug detoxification, cell cycle control, apoptosis, and tumor-suppressor. These findings indicate that at least two apoptotic pathways were induced after cyclophosphamide treatment. The induction of APAF1 and two genes coding for two subunits of cytochrome c supports a previous report showing increased apoptosis in lymphocytes from SLE patients. The present study provides new information on the molecular mechanism underlying the cell response to genotoxic stress, with relevance to basic and clinical research.
Collapse
Affiliation(s)
- Elza T Sakamoto-Hojo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Ribeirao Preto, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|