1
|
Role of Vitamin D Beyond the Skeletal Function: A Review of the Molecular and Clinical Studies. Int J Mol Sci 2018; 19:ijms19061618. [PMID: 29849001 PMCID: PMC6032242 DOI: 10.3390/ijms19061618] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
The classical function of Vitamin D, which involves mineral balance and skeletal maintenance, has been known for many years. With the discovery of vitamin D receptors in various tissues, several other biological functions of vitamin D are increasingly recognized and its role in many human diseases like cancer, diabetes, hypertension, cardiovascular, and autoimmune and dermatological diseases is being extensively explored. The non-classical function of vitamin D involves regulation of cellular proliferation, differentiation, apoptosis, and innate and adaptive immunity. In this review, we discuss and summarize the latest findings on the non-classical functions of vitamin D at the cellular/molecular level and its role in complex human diseases.
Collapse
|
2
|
Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G. Vitamin D in cancer chemoprevention. PHARMACEUTICAL BIOLOGY 2015; 53:1399-1434. [PMID: 25856702 DOI: 10.3109/13880209.2014.988274] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT There is increasing evidence that Vitamin D (Vit D) and its metabolites, besides their well-known calcium-related functions, may also exert antiproliferative, pro-differentiating, and immune modulatory effects on tumor cells in vitro and may also delay tumor growth in vivo. OBJECTIVE The aim of this review is to provide fresh insight into the most recent advances on the role of Vit D and its analogues as chemopreventive drugs in cancer therapy. METHODS A systematic review of experimental and clinical studies on Vit D and cancer was undertaken by using the major electronic health database including ISI Web of Science, Medline, PubMed, Scopus and Google Scholar. RESULTS AND CONCLUSION Experimental and clinical observations suggest that Vit D and its analogues may be effective in preventing the malignant transformation and/or the progression of various types of human tumors including breast cancer, prostate cancer, colorectal cancer, and some hematological malignances. These findings suggest the possibility of the clinical use of these molecules as novel potential chemopreventive and anticancer agents.
Collapse
|
3
|
Polly P, Tan TC. The role of vitamin D in skeletal and cardiac muscle function. Front Physiol 2014; 5:145. [PMID: 24782788 PMCID: PMC3995052 DOI: 10.3389/fphys.2014.00145] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022] Open
Abstract
Myopathy is a feature of many inflammatory syndromes. Chronic inflammation has been linked to pathophysiological mechanisms which implicate 1,25 dihydroxyvitamin D3 (1,25-(OH)2D3)-mediated signaling pathways with emerging evidence supporting a role for the vitamin D receptor (VDR) in contractile and metabolic function of both skeletal and cardiac muscle. Altered VDR expression in skeletal and cardiac muscle has been reported to result in significant effects on metabolism, calcium signaling and fibrosis in these tissues. Elevated levels of serum inflammatory cytokines, such as IL-6, TNF-α and IFNγ, have been shown to impact myogenic and nuclear receptor signaling pathways in cancer-induced cachexia. The dysregulation of nuclear receptors, such as VDR and RXRα in muscle cells, has also been postulated to result in myopathy via their effects on muscle structural integrity and metabolism. Future research directions include generating transcriptome-wide information incorporating VDR and its gene targets and using systems biology approaches to identify altered molecular networks in human tissues such as muscle. These approaches will aid in the development of novel therapeutic targeting strategies for inflammation-induced myopathies.
Collapse
Affiliation(s)
- Patsie Polly
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, UNSW Australia Kensington, NSW, Australia ; Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Australia Kensington, NSW, Australia
| | - Timothy C Tan
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, UNSW Australia Kensington, NSW, Australia ; Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital Boston, MA, USA
| |
Collapse
|
4
|
Li J, Jin D, Fu S, Mei G, Zhou J, Lei L, Yu B, Wang G. Insulin-like growth factor binding protein-3 modulates osteoblast differentiation via interaction with vitamin D receptor. Biochem Biophys Res Commun 2013; 436:632-7. [DOI: 10.1016/j.bbrc.2013.04.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/27/2013] [Indexed: 11/16/2022]
|
5
|
Wei M, Liu B, Gu Q, Su L, Yu Y, Zhu Z. Stat6 cooperates with Sp1 in controlling breast cancer cell proliferation by modulating the expression of p21(Cip1/WAF1) and p27 (Kip1). Cell Oncol (Dordr) 2012. [PMID: 23184467 DOI: 10.1007/s13402-012-0115-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The signal transducer and activator of transcription 6 (Stat6), a member of the family of DNA-binding proteins, has been identified as a critical cell differentiation modulator in breast cancer cells. As of yet, the mechanisms underlying this function have remained largely unknown. To further elucidate the role of Stat6 in breast cancer development, we investigated the consequences of exogenous Stat6 expression. METHODS Proliferation assays and flow cytometry assays were conducted to evaluate the putative role of Stat6 on cell proliferation. To this end, we produced synchronized cells after a double thymidine block, as confirmed by FACS analysis. mRNA levels of Stat6 were measured by RNase protection analysis. To confirm the interaction among proteins, we employed GST pull-down assays and immunoprecipitation assays. Luciferase assays and ChIP assays were used to assess the transcriptional activity. RESULTS Compared to control breast cancer cells, we found that exogenous Stat6 expression plays a critical role in controlling cell proliferation. Also in different breast tumor cell lines, endogenous Stat6 expression was found to be positively related to a lower proliferation rate. Interestingly, in human breast cancer cells Stat6 functions in G1/S cell cycle progression, and the growth-inhibitory effect of Stat6 was shown to be mediated by induction of the G1 cyclin-dependent kinase inhibitors p21(Cip1/WAF1) (p21) and p27(Kip1) (p27). Simultaneously, G1-related cyclin/cyclin-dependent kinase activities and pRB phosphorylation were markedly reduced, and cell cycle progression was blocked in the G1 phase. Stat6 knockdown resulted in enhanced cell proliferation and a decrease in p21 and p27 mRNA levels in the steroid-responsive and non-responsive T-47D and MDA-MB-231 cell lines, respectively. In addition, the stimulatory effect of Stat6 on p21 and p27 gene transcription was found to be associated with interaction of Stat6 with the transcription factor Sp1 at the proximal Sp1-binding sites in their respective promoters. CONCLUSIONS Together, these results identify Stat6 as an important cell differentiation regulatory protein functioning, at least in part, by interacting with Sp1 to activate the p21 and p27 gene promoters in breast cancer cells.
Collapse
Affiliation(s)
- Min Wei
- Breast Department, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
6
|
Thompson L, Wang S, Tawfik O, Templeton K, Tancabelic J, Pinson D, Anderson HC, Keighley J, Garimella R. Effect of 25-hydroxyvitamin D3 and 1 α,25 dihydroxyvitamin D3 on differentiation and apoptosis of human osteosarcoma cell lines. J Orthop Res 2012; 30:831-44. [PMID: 22042758 DOI: 10.1002/jor.21585] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/06/2011] [Indexed: 02/04/2023]
Abstract
Osteosarcoma (OS) is a malignant bone tumor predominantly affecting children and adolescents. OS has a 60% survival rate with current treatments; hence, there is a need to identify novel adjuncts to chemotherapeutic regimens. In this pilot study, we investigated the dose-response to 1α,25-dihdroxyvitamin D(3) (1,α 25(OH)(2) D(3)) and 25-hydroxyvitamin D(3) (25(OH)D(3)) by human OS cell lines, SaOS-2, and 143B. We hypothesized that 1,α 25(OH)(2) D(3) and 25(OH)D(3) would stimulate differentiation and induce apoptosis in OS cells in a dose-dependent manner. Human OS cell lines, SaOS-2, and 143B, were treated with 1,α 25(OH)(2)D(3) or 25(OH)D(3) or an ethanol control, respectively, at concentrations ranging from 1 to 1,000 nM. Ki67 (a marker of cellular proliferation) immunocytochemistry revealed no significant changes in the expression of Ki-67 or MIB-1 in 1α,25(OH)(2)D(3) or 25(OH)D(3) treated SaOS-2 or 143B cells. Both control and 1α,25(OH)(2) D(3) treated SaOS-2 and 143B cells expressed vitamin D receptor (VDR). Markers of osteoblastic differentiation in 143B cells and SaOS-2 cells were induced by both 25(OH)D(3) and 1α,25(OH)(2) D, and evident by increases in alkaline phosphatase (ALP) activity, osteocalcin (OCN) mRNA expression, and mineralization of extra-cellular matrix (ECM) by alizarin red staining. An increasing trend in apoptosis in response to 25(OH)D(3), in both SaOS-2 and 143B cells was detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining. With 1α,25(OH)(2)D(3) treatment, apoptosis was evident at higher concentrations only. These preliminary findings suggest that OS cells express VDR and respond to 25(OH)D(3) and 1α,25(OH)(2)D(3) by undergoing differentiation and apoptosis.
Collapse
Affiliation(s)
- Lindsey Thompson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cui J, Ma C, Qiu J, Ma X, Wang X, Chen H, Huang B. A novel interaction between insulin-like growth factor binding protein-6 and the vitamin D receptor inhibits the role of vitamin D3 in osteoblast differentiation. Mol Cell Endocrinol 2011; 338:84-92. [PMID: 21458526 DOI: 10.1016/j.mce.2011.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 01/25/2011] [Accepted: 03/10/2011] [Indexed: 01/24/2023]
Abstract
Insulin-like growth factor binding protein-6 (IGFBP-6) is a secreted glycoprotein that reduces the bioavailability of IGFs. It has both IGF-dependent and -independent effects on cell growth, however the mechanisms responsible for its IGF-independent actions of IGFBP-6 are not fully understood. In previous studies, we have shown that recombinant IGFBP-6 can be internalized and translocated to the nucleus. The present study shows that IGFBP-6 interacts with the vitamin D receptor (VDR). Physical interactions between IGFBP-6 and the VDR were confirmed by GST pulldown and co-immunoprecipitation assays. We also determined that the interaction binding sites were on the C-terminal region of the VDR. This interaction can influence retinoid X receptor (RXR):VDR heterodimerization. Furthermore, immunofluorescence colocalization studies showed that IGFBP-6 colocalized with the VDR predominantly in the cell's nucleus. Inductions of osteocalcin and growth hormone promoter activities by 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) were significantly decreased when cells were co-transfected with IGFBP-6 and the VDR compared with cells transfected with the VDR only. Moreover, we found that alkaline phosphatase activity (ALP, a general marker of osteoblast differentiation) was significantly decreased in osteoblast-like cells when they were transfected with IGFBP-6 in the presence of 1,25(OH)(2)D(3). No obvious difference in ALP activity was observed when cells were transfected with IGFBP-6 and endogenous VDR was knocked down by siRNA. These results demonstrate that IGFBP-6 inhibits osteoblastic differentiation mediated by 1,25(OH)(2)D(3) and the VDR through interacting with the VDR and inhibiting its function. This is a novel mechanism for IGFBP-6.
Collapse
Affiliation(s)
- Jian Cui
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Luo J, Zhou X, Diao L, Wang Z. Experimental Research on Wild-type p53 Plasmid Transfected into Retinoblastoma Cells and Tissues using an Ultrasound Microbubble Intensifier. J Int Med Res 2010; 38:1005-15. [PMID: 20819437 DOI: 10.1177/147323001003800327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The transfection efficiency of wild-type p53 ( wtp53) was investigated in retinoblastoma (RB) Y79 cells using an ultrasound microbubble technique. A human RB nude mouse xenograft tumour model was also used to investigate whether this technique could deliver wtp53 into solid tumours. Reverse transcription–polymerase chain reaction (RT–PCR) demonstrated that wtp53 was successfully transfected into Y79 cells in the plasmid with microbubbles and ultrasound group and in the plasmid with liposomes group, but not in the plasmid with ultrasound group or in the untreated control group. Flow cytometry showed that apoptosis was highest in the microbubbles and ultrasound group (25.58%) compared with the plasmid with liposomes group (19.50%), and the other two groups (< 10%). RT–PCR also showed that the wtp53 gene was successfully transfected into solid tumours in the plasmid with microbubbles and ultrasound group. This study provides preliminary evidence in support of a potential new approach to RB gene therapy.
Collapse
Affiliation(s)
- J Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing, China
- Department of Ophthalmology, Zhong Shan Hospital, Chongqing, China
| | - X Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing, China
| | - L Diao
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing, China
| | - Z Wang
- Institute of Ultrasonic Imaging, The Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing, China
| |
Collapse
|
9
|
Peng X, Hawthorne M, Vaishnav A, St-Arnaud R, Mehta RG. 25-Hydroxyvitamin D3 is a natural chemopreventive agent against carcinogen induced precancerous lesions in mouse mammary gland organ culture. Breast Cancer Res Treat 2008; 113:31-41. [PMID: 18205042 DOI: 10.1007/s10549-008-9900-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 01/07/2008] [Indexed: 01/08/2023]
Abstract
Despite the role of vitamin D(3) endocrine system in prevention of mammary gland transformation in animal models, use of 1,25(OH)(2)D(3 )in clinical settings is precluded due to its toxicity in vivo. Therefore much effort has been placed in developing relatively non-toxic vitamin D analogs. Recently, with the discovery of the expression of 25-hydroxy vitamin D(3) 1alpha-hydroxylase (CYP27B1) in multiple extrarenal organs, the functional role of prohormone, 25-hydroxyvitamin D(3) [25(OH)D(3)], has been redefined. Since 25(OH)D(3) does not cause hypercalcemia and maintains relative high concentration in serum, it is possible that the prohormone can be converted to active hormone in mammary epithelial cells to provide chemopreventive effects. In the present study, we evaluated its functional significance using mouse mammary organ culture (MMOC) system. We first showed that 25(OH)D(3) 1alpha-hydroxylase is extensively expressed in mammary ductal epithelial cells at both protein and mRNA levels, which is a prerequisite for 25(OH)D(3) to function in an autocrine/paracrine manner. However, we also observed that clotrimazol (1alpha-hydroxylase inhibitor) enhanced 25(OH)D(3) -induced CYP24 expression in breast cancer cells. In mammary glands derived from 1alpha-hydroxylase knockout mice, 25(OH)D(3) treatment in organ culture significantly induced CYP24 expression, indicating a potential direct effect of 25(OH)D(3). In MMOC, 100-250 nM 25(OH)D(3) suppressed both ovarian hormone-dependent and -independent mammary precancerous lesions (induced by DMBA) by more than 50%, while the active hormone 1,25(OH)(2)D(3) (positive control) at 100 nM suppressed alveolar lesions by more than 80%. The inactive vitamin D(3) (negative control) at 100 nM suppressed alveolar lesions by only 20% (P>0.05). We found that 25(OH)D(3) inhibits DMBA-induced mammary alveolar lesions (MAL) in a stage-specific manner: 25(OH)D(3) mainly inhibits the promotion stage of lesion formation. We conclude that 25(OH)D(3) could serve as a non-toxic natural chemopreventive agent for further development for breast cancer prevention.
Collapse
Affiliation(s)
- Xinjian Peng
- IIT Research Institute, 10 West 35th Street, Chicago, IL 60616, USA
| | | | | | | | | |
Collapse
|
10
|
Wu W, Zhang X, Zanello LP. 1alpha,25-Dihydroxyvitamin D(3) antiproliferative actions involve vitamin D receptor-mediated activation of MAPK pathways and AP-1/p21(waf1) upregulation in human osteosarcoma. Cancer Lett 2007; 254:75-86. [PMID: 17412493 PMCID: PMC2760385 DOI: 10.1016/j.canlet.2007.02.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/14/2007] [Indexed: 11/16/2022]
Abstract
The molecular mechanisms underlying antiproliferative actions of the steroid 1alpha,25-dihydroxy vitamin D(3) (1,25D) in human osteosarcoma cells are known only partially. To better understand the signaling involved in 1,25D anti-tumorigenic properties in bone, we stably silenced vitamin D receptor (VDR) expression in the human osteosarcoma SaOS-2 cell line. We found that 1,25D treatment reduced cell proliferation by approximately 25% after 3 days only in SaOS-2 cells expressing native levels of VDR protein, and involved activation of MAPK/AP-1/p21(waf1) pathways. Both sustained (3 days) and transient (15min) 1,25D treatment activated JNK and ERK1/2 MAPK signaling in a nongenomic VDR-dependent manner. However, only sustained exposure to hormone led to upregulation of p21 and subsequent genomic control of the cell cycle. Specific blockade of MEK1/MEK2 cascade upstream from ERK1/2 abrogated 1,25D activation of AP-1 and p21, and subsequent antiproliferative effects, even in the presence of a nuclear VDR. We conclude that 1,25D-induced inhibition of human osteosarcoma cell proliferation occurs via sustained activation of JNK and MEK1/MEK2 pathways downstream of nongenomic VDR signaling that leads to upregulation of a c-Jun/c-Fos (AP-1) complex, which in turn modulates p21(waf1) gene expression. Our results demonstrate a cross-talk between 1,25D/VDR nongenomic and genomic signaling at the level of MAP kinase activation that leads to reduction of cell proliferation in human osteosarcoma cells.
Collapse
Affiliation(s)
- Wei Wu
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Xiaoyu Zhang
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Laura P. Zanello
- Department of Biochemistry, University of California, Riverside, CA 92521
| |
Collapse
|
11
|
Mullin GE, Dobs A. Vitamin d and its role in cancer and immunity: a prescription for sunlight. Nutr Clin Pract 2007; 22:305-22. [PMID: 17507731 DOI: 10.1177/0115426507022003305] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vitamin D has been recognized for more than a century as essential for the normal development and mineralization of a healthy skeleton. More extensive roles for vitamin D were suggested by the discovery of the vitamin D receptor (VDR) in tissues that are not involved in calcium and phosphate metabolism. VDR has been discovered in most tissues and cells in the body and is able to elicit a wide variety of biologic responses. These observations have been the impetus for a reevaluation of the physiologic and pharmacologic actions of vitamin D. Here, we review the role of vitamin D in regulation of the immune system and its possible role in the prevention and treatment of cancer and immune-mediated diseases.
Collapse
Affiliation(s)
- Gerard E Mullin
- Integrative GI Nutrition Services, Capsule Endoscopy, Division of Gastroenterology and Liver Disease, Johns Hopkins Hospital, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
12
|
Schedlich LJ, Muthukaruppan A, O'Han MK, Baxter RC. Insulin-like growth factor binding protein-5 interacts with the vitamin D receptor and modulates the vitamin D response in osteoblasts. Mol Endocrinol 2007; 21:2378-90. [PMID: 17595320 DOI: 10.1210/me.2006-0558] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]-induced differentiation of osteoblasts comprises the sequential induction of cell cycle arrest at G0/G1 and the expression of bone matrix proteins. Reports differ on the effects of IGF binding protein (IGFBP)-5 on bone cell growth and osteoblastic function. IGFBP-5 can be growth stimulatory or inhibitory and can enhance or impair osteoblast function. In previous studies, we have shown that IGFBP-5 localizes to the nucleus and interacts with the retinoid receptors. We now show that IGFBP-5 interacts with nuclear vitamin D receptor (VDR) and blocks retinoid X receptor (RXR):VDR heterodimerization. VDR and IGFBP-5 were shown to colocalize to the nuclei of MG-63 and U2-OS cells and coimmunoprecipitate in nuclear extracts from these cells. Induction of osteocalcin promoter activity and alkaline phosphatase activity by 1,25(OH)2D3 were significantly enhanced when IGFBP-5 was down-regulated in U2-OS cells. Moreover, we found IGFBP-5 increased basal alkaline phosphatase activity and collagen alpha1 type 1 expression, and that 1,25(OH)2D3 was unable to further induce the expression of these bone differentiation markers in MG-63 cells. Expression of IGFBP-5 inhibited MG-63 cell growth and caused cell cycle arrest at G0/G1 and G2/M. Furthermore, IGFBP-5 reduced the effects of 1,25(OH)2D3 in blocking cell cycle progression at G0/G1 and decreased the expression of cyclin D1. These results demonstrate that IGFBP-5 can interact with VDR to prevent RXR:VDR heterodimerization and suggest that IGFBP-5 may attenuate the 1,25(OH)2D3-induced expression of bone differentiation markers while having a modest effect on the 1,25(OH)2D3-mediated inhibition of cell cycle progression in bone cells.
Collapse
Affiliation(s)
- Lynette J Schedlich
- Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | | | | | | |
Collapse
|
13
|
Taghizadeh F, Tang MJ, Tai IT. Synergism between vitamin D and secreted protein acidic and rich in cysteine-induced apoptosis and growth inhibition results in increased susceptibility of therapy-resistant colorectal cancer cells to chemotherapy. Mol Cancer Ther 2007; 6:309-17. [PMID: 17237289 DOI: 10.1158/1535-7163.mct-06-0517] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with advanced colorectal cancer continue to have poor outcomes because of therapy-refractory disease. We previously showed that secreted protein acidic and rich in cysteine (SPARC) gene and protein could function as a chemotherapy sensitizer by enhancing tumor regression in response to radiation and chemotherapy in tumor xenograft models of chemotherapy-resistant tumors. This function of SPARC was gleamed from a microarray analysis that also revealed down-regulation of the vitamin D receptor (VDR) in therapy-refractory colorectal cancer cells. This study examines the potential synergistic effect of SPARC and vitamin D, which up-regulates VDR, in enhancing chemotherapy response in colorectal cancer. Using MIP101 colorectal cancer cell lines and SPARC-overexpressing MIP101 cells, we were able to show that, in the presence of SPARC, exposure to low doses of 1alpha,25-dihydroxyvitamin D(3) significantly reduces cell viability, enhances chemotherapy-induced apoptosis, and inhibits the growth of colorectal cancer cells. Moreover, in tumor xenograft mouse models, up-regulation of VDR was seen in tumors that had the greatest regression following treatment that combined SPARC with chemotherapy. Therefore, our findings reveal a synergistic effect between SPARC and low doses of 1alpha,25-dihydroxyvitamin D(3) that further augments the sensitivity of tumors to chemotherapy. This combination may prove to be a useful adjunct in the treatment of colorectal cancer, especially in those patients with therapy-refractory disease.
Collapse
Affiliation(s)
- Farnaz Taghizadeh
- Division of Gastroenterology, University of British Columbia, 5th Floor, 2775 Laurel Street, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
14
|
Abstract
The impact of dietary intake upon cell and tissue physiology, as well as pathophysiology, has emerged as being highly significant to the etiology of a number of high-profile malignancies. The vitamin D receptor (VDR) is a member of a large transcription factor family of nuclear receptors and responds specifically to a hormonal micronutrient (1α25(OH)2D3). A central endocrine role for this receptor in bone health was established at the beginning of the 20th century. An alternative role has been established over the last 25 years for the VDR to regulate cell growth and division, and promote differentiation through autocrine and paracrine mechanisms. These findings from in vitro and in vivo experiments have generated considerable interest in the potential to target the VDR in either chemoprevention or chemotherapy cancer settings. As with many potential cancer therapeutics, it has become equally clear that cancer cells display de novo and acquired mechanisms of resistance to these actions. Consequently, researchers are developing a range of experimental and clinical options to bring about more targeted actions, overcome resistance and enhance the efficacy of VDR-centered therapeutics.
Collapse
Affiliation(s)
- Moray J Campbell
- a Institute of Biomedical Research, Endocrinology & Metabolism, Wolfson Drive, University of Birmingham Medical School, Edgbaston, Birmingham, B15 2TT, UK.
| | - S Asad Abedin
- b Institute of Biomedical Research, Endocrinology and Metabolism, Wolfson Drive, University of Birmingham Medical School, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
15
|
Kantola AK, Keski-Oja J, Koli K. Induction of human LTBP-3 promoter activity by TGF-beta1 is mediated by Smad3/4 and AP-1 binding elements. Gene 2005; 363:142-50. [PMID: 16223572 DOI: 10.1016/j.gene.2005.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 07/28/2005] [Accepted: 07/30/2005] [Indexed: 11/15/2022]
Abstract
Latent TGF-beta binding proteins (LTBPs) are extracellular matrix glycoproteins, which are essential for the targeting and activation of TGF-betas. LTBP-3 regulates the bioavailability of TGF-beta especially in the bone. To understand the regulation of LTBP-3 expression, we have isolated and characterized the promoter region of human LTBP-3 gene. The GC-rich TATA-less promoter contained several transcription initiation sites and putative binding sites for multiple sequence specific transcription factors including Sp1, AP-1, c-Ets, MZF-1, Runx1 and members of the GATA-family. Reporter gene analyses of the promoter indicated that it was more active in MG-63 than in Saos-2 osteosarcoma cells, suggesting that it is regulated as the endogenous gene. TGF-beta1 stimulated the transcriptional activity of LTBP-3 promoter in MG-63 cells, while certain other bone-derived growth factors and hormones were ineffective. TGF-beta1 increased LTBP-3 mRNA levels accordingly. Analyses of deletion constructs of the promoter and mutational deletion of specific transcription factor binding sites indicated that Smad3/4 and AP-1 binding sites mediated the TGF-beta1 response. The involvement of AP-1 activity was further indicated by decreased TGF-beta responsiveness of the LTBP-3 promoter in the presence of a MEK/Erk signaling pathway inhibitor. Our results suggest an important new role for TGF-beta1 in the regulation of its binding protein, LTBP-3.
Collapse
Affiliation(s)
- Anna K Kantola
- Department of Virology, Haartman Institute and Helsinki University Hospital, University of Helsinki, Biomedicum Rm A506, P.O.Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | | | | |
Collapse
|
16
|
Gizard F, Robillard R, Barbier O, Quatannens B, Faucompré A, Révillion F, Peyrat JP, Staels B, Hum DW. TReP-132 controls cell proliferation by regulating the expression of the cyclin-dependent kinase inhibitors p21WAF1/Cip1 and p27Kip1. Mol Cell Biol 2005; 25:4335-48. [PMID: 15899840 PMCID: PMC1140623 DOI: 10.1128/mcb.25.11.4335-4348.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transcriptional regulating protein of 132 kDa (TReP-132) has been identified in steroidogenic tissues, where it acts as a coactivator of steroidogenic factor 1 (SF-1). We show here that TReP-132 plays a role in the control of cell proliferation. In human HeLa cells, TReP-132 knockdown by using small interfering RNA resulted in increased G(1)-->S cell cycle progression. The growth-inhibitory effects of TReP-132 was further shown to be mediated by induction of G(1) cyclin-dependent kinase inhibitors p21(WAF1) (p21) and p27(KIP1) (p27) expression levels. As a consequence, G(1) cyclin/cyclin-dependent kinase activities and pRB phosphorylation were markedly reduced, and cell cycle progression was blocked in the G(1) phase. The stimulatory effect of TReP-132 on p21 and p27 gene transcription involved interaction of TReP-132 with the transcription factor Sp1 at proximal Sp1-binding sites in their promoters. Moreover, in different breast tumor cell lines, endogenous TReP-132 expression was positively related with a lower proliferation rate. In addition, TReP-132 knockdown resulted in enhanced cell proliferation and lowered p21 and p27 mRNA levels in the steroid-responsive and nonresponsive T-47D and MDA-MB-231 cell lines, respectively. Finally, a statistic profiling of human breast tumor samples highlighted that expression of TReP-132 is correlated with p21 and p27 levels and is associated with lower tumor incidence and aggressiveness. Together, these results identify TReP-132 as a basal cell cycle regulatory protein acting, at least in part, by interacting with Sp1 to activate the p21 and p27 gene promoters.
Collapse
Affiliation(s)
- Florence Gizard
- Centre de Recherche en Endocrinologie Moléculaire et Oncologique, Université Laval, Québec G1V 4G2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cell replication is tightly controlled in normal tissues and aberrant during disease progression, such as in tumorigenesis. The replication of cells can be divided into four distinct phases: Gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M). The progression from one phase to the next is intricately regulated and has many "checkpoints" that take into account cellular status and environmental cues. Among the modulators of cell cycle progression are specific nutrients, which function as energy sources or regulate the production and/or function of proteins needed to advance cells through a replicative cycle. In this review, we focus on the roles of specific nutrients (vitamin A, vitamin D, iron, folic acid, vitamin B12, zinc, and glucose) in the control of cell cycle progression and discuss how insights into the mechanisms by which these nutrients modulate this process can be and have been used to control aberrant cell growth in the treatment of prevalent pathologies.
Collapse
Affiliation(s)
- Brenda L Bohnsack
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | |
Collapse
|