1
|
Zhang P, Sun C, Yin T, Guo J, Chong D, Tang Y, Liu Y, Li Y, Gu Y, Lu L. ESF1 positively regulates MDM2 and promotes tumorigenesis. Int J Biol Macromol 2024; 276:133652. [PMID: 38971273 DOI: 10.1016/j.ijbiomac.2024.133652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Eighteen S rRNA factor 1 (ESF1) is a predominantly nucleolar protein essential for embryogenesis. Our previous studies have suggested that Esf1 is a negative regulator of the tumor suppressor protein p53. However, it remains unclear whether ESF1 contributes to tumorigenesis. In this current research, we find that increased ESF1 expression correlates with poor survival in multiple tumors including pancreatic cancer. ESF1 is able to regulate cell proliferation, migration, DNA damage-induced apoptosis, and tumorigenesis. Mechanistically, ESF1 physically interacts with MDM2 and is essential for maintaining the stability of MDM2 protein by inhibiting its ubiquitination. Additionally, ESF1 also prevented stress-induced stabilization of p53 in multiple cancer cells. Hence, our findings suggest that ESF1 is a potent regulator of the MDM2-p53 pathway and promotes tumor progression.
Collapse
Affiliation(s)
- Pei Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Changning Sun
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tiantian Yin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Jiang Guo
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Daochen Chong
- Pathology Department, Navy 971 Hospital of PLA, Qingdao, China
| | - Yanfei Tang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ling Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China.
| |
Collapse
|
2
|
Jasti N, Sebagh D, Riaz M, Wang X, Koripella B, Palanisamy V, Mohammad N, Chen Q, Friedrich M. Towards reconstructing the dipteran demise of an ancient essential gene: E3 ubiquitin ligase Murine double minute. Dev Genes Evol 2020; 230:279-294. [PMID: 32623522 DOI: 10.1007/s00427-020-00663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Genome studies have uncovered many examples of essential gene loss, raising the question of how ancient genes transition from essentiality to dispensability. We explored this process for the deeply conserved E3 ubiquitin ligase Murine double minute (Mdm), which is lacking in Drosophila despite the conservation of its main regulatory target, the cellular stress response gene p53. Conducting gene expression and knockdown experiments in the red flour beetle Tribolium castaneum, we found evidence that Mdm has remained essential in insects where it is present. Using bioinformatics approaches, we confirm the absence of the Mdm gene family in Drosophila, mapping its loss to the stem lineage of schizophoran Diptera and Pipunculidae (big-headed flies), about 95-85 million years ago. Intriguingly, this gene loss event was preceded by the de novo origin of the gene Companion of reaper (Corp), a novel p53 regulatory factor that is characterized by functional similarities to vertebrate Mdm2 despite lacking E3 ubiquitin ligase protein domains. Speaking against a 1:1 compensatory gene gain/loss scenario, however, we found that hoverflies (Syrphidae) and pointed-wing flies (Lonchopteridae) possess both Mdm and Corp. This implies that the two p53 regulators have been coexisting for ~ 150 million years in select dipteran clades and for at least 50 million years in the lineage to Schizophora and Pipunculidae. Given these extensive time spans of Mdm/Corp coexistence, we speculate that the loss of Mdm in the lineage to Drosophila involved further acquisitions of compensatory gene activities besides the emergence of Corp. Combined with the previously noted reduction of an ancestral P53 contact domain in the Mdm homologs of crustaceans and insects, we conclude that the loss of the ancient Mdm gene family in flies was the outcome of incremental functional regression over long macroevolutionary time scales.
Collapse
Affiliation(s)
- Naveen Jasti
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA.,Institute for Protein Design, Washington University, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dylan Sebagh
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Mohammed Riaz
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Xin Wang
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Bharat Koripella
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Vasanth Palanisamy
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Nabeel Mohammad
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA. .,Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Bang S, Kaur S, Kurokawa M. Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. Int J Mol Sci 2019; 21:E261. [PMID: 31905981 PMCID: PMC6981958 DOI: 10.3390/ijms21010261] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 and its homologues, p63 and p73, play a pivotal role in the regulation of the DNA damage response, cellular homeostasis, development, aging, and metabolism. A number of mouse studies have shown that a genetic defect in the p53 family could lead to spontaneous tumor development, embryonic lethality, or severe tissue abnormality, indicating that the activity of the p53 family must be tightly regulated to maintain normal cellular functions. While the p53 family members are regulated at the level of gene expression as well as post-translational modification, they are also controlled at the level of protein stability through the ubiquitin proteasomal pathway. Over the last 20 years, many ubiquitin E3 ligases have been discovered that directly promote protein degradation of p53, p63, and p73 in vitro and in vivo. Here, we provide an overview of such E3 ligases and discuss their roles and functions.
Collapse
Affiliation(s)
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; (S.B.); (S.K.)
| |
Collapse
|
4
|
Naseer F, Saleem M. Epigenetic modification in the expression of p73 p73 - epigenetic target for anticancer therapy. Oncol Rev 2019; 13:421. [PMID: 31410249 PMCID: PMC6661529 DOI: 10.4081/oncol.2019.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022] Open
Abstract
A p73 is a new member of p53 family of transcription factor, having two types. First is TAp73, transcriptionally active and expressed via upstream promoter as a tumor suppressor and vital apoptotic inductor, it also has a key role in cell cycle arrest/differentiation and Second is ΔNp73 that is transcriptionally inactive and expressed via downstream regulator as oncogenes. Both types are expressed in various isoforms, which originate from alternative splicing events at the C-terminus. Upon DNA damage, posttranslational modifications cause conformational changes in various amino acid residues via induction or inhibition of various proteins, which are present in the structural domains of p73. These modifications may cause up- or down-regulation of p73 expression levels, as well as alters the transcriptional activity and/or stability of the protein. In this review, we have made an effort to assemble all existing data regarding the role of p73, its modification and after effects in cancer.
Collapse
Affiliation(s)
- Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Mohammad Saleem
- Faculty of Pharmaceutical Sciences, Punjab University, Lahore, Pakistan
| |
Collapse
|
5
|
Łopuszyński W, Szczubiał M, Millán Y, Guil-Luna S, Sánchez-Céspedes R, Martin de Las Mulas J, Śmiech A, Bulak K. Immunohistochemical expression of p63 protein and calponin in canine mammary tumours. Res Vet Sci 2019; 123:232-238. [PMID: 30685648 DOI: 10.1016/j.rvsc.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/23/2023]
Abstract
The aim of this study was to compare the expression of p63 protein and calponin in terms of their affinity and specificity for myoepithelial cells in canine mammary tumours. The studied material included 10 benign and 32 malignant mammary tumours from female dogs treated with mastectomy. Primary mouse monoclonal antibodies directed against p63 protein clone 4A4 and calponin clone CALP were used in single- and doublestain system of immunohistochemical reaction. The investigations have shown that majority of myoepithelial cells in benign tumours and carcinomas in situ exhibited strong positive labelling for both markers. In other malignant tumours strong immunoreactivity was observed in resting myoepithelial cells (MECs) and hypertrophic myoepithelial cells (HMECs), while the immunoreactivity in spindle-stellate myoepithelial cells (SMECs) and rounded myoepithelial cells (RMECs) was moderate. The granular-diffuse nuclear expression of p63 protein was observed only in myoepithelial cells. In terms of calponin, diffuse cytoplasmic expression was noted not only in myoepithelial cell but also in some stromal fibroblasts and vascular smooth muscle cells. The epithelial cells did not exhibit specific expression of the investigated markers. The obtained results indicate that p63 is a sensitive and more specific marker of myoepithelial cells in canine mammary tumours compared with calponin. These findings suggest that the immunohistochemical analysis peformed with the use of p63 can be a valuable complement of routine histological examinations of canine mammary tumours facilitating identification of tumours with myoepithelial component.
Collapse
Affiliation(s)
- Wojciech Łopuszyński
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, Poland.
| | - Marek Szczubiał
- Department and Clinic of Animal Reproduction, University of Life Sciences in Lublin, Poland
| | - Yolanda Millán
- Department of Anatomy and Comparative Pathology, Córdoba University, Spain
| | - Silvia Guil-Luna
- Department of Anatomy and Comparative Pathology, Córdoba University, Spain
| | | | | | - Anna Śmiech
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, Poland
| | - Kamila Bulak
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, Poland
| |
Collapse
|
6
|
Ribeiro-Silva A, Becker de Moura H, Ribeiro do Vale F, Zucoloto S. The Differential Regulation of Human Telomerase Reverse Transcriptase and Vascular Endothelial Growth Factor May Contribute to the Clinically More Aggressive Behavior of P63-Positive Breast Carcinomas. Int J Biol Markers 2018; 20:227-34. [PMID: 16398404 DOI: 10.1177/172460080502000405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p63, a p53 homologue, is a myoepithelial cell marker in the normal mammary gland but p63-positive neoplastic cells may be found in up to 11% of invasive breast carcinomas. This study aims to verify the relationship between p63 expression and several clinicopathological features and tumor markers of clinical significance in breast pathology including key regulators of the cell cycle, oncogenes, apoptosis-related proteins, metalloproteinases and their inhibitors. Immunohistochemistry with 27 primary antibodies was performed in 100 formalin-fixed paraffin-embedded samples of invasive ductal carcinomas. p63-positive cells were found in 16% of carcinomas. p63-positive carcinomas were poorly differentiated, hormone receptor-negative neoplasms with a high proliferation rate. p63 also correlated with advanced pathological stage, tumor size, and the expression of human telomerase reverse transcriptase (hTERT), tissue inhibitor of matrix metalloproteinase 1 (TIMP1) and vascular endothelial growth factor (VEGF). The expression of TIMP1 suggests that the anti-proteolytic stimuli may be preponderant in p63-positive carcinomas. hTERT activity is associated with nodal metastases and cellular proliferation. VEGF regulates angiogenesis, which is also a fundamental event in the process of tumor growth and metastatic dissemination. Thus, the differential regulation of hTERT and VEGF in p63-positive breast carcinomas may contribute to the clinically more aggressive behavior of these neoplasms.
Collapse
Affiliation(s)
- A Ribeiro-Silva
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
| | | | | | | |
Collapse
|
7
|
DNA damage induces expression of WWP1 to target ΔNp63α to degradation. PLoS One 2017; 12:e0176142. [PMID: 28426804 PMCID: PMC5398614 DOI: 10.1371/journal.pone.0176142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
ΔNp63αplays key roles in cell survival and proliferation. So its expression is always tightly controlled in cells. We previously reported that DNA damage down-regulates transcription of ΔNp63αin FaDu and HaCat cells, which contributes to cell apoptosis. In the present study, we found that DNA damage induces down-regulation of ΔNp63αvia facilitating its proteasomal degradation in cell lines such as MDA-MB-231 and MCF10A. Further investigation revealed that transcription of WWP1 is stimulated by DNA damage in these cells. Knock-down of WWP1 abrogates DNA damage-induced down-regulation of ΔNp63αand partially rescues cell apoptosis. Interestingly, DNA damage may stimulate WWP1 through different mechanisms in different cell types: it up-regulates transcription of WWP1 in a p53-dependent manner in MCF10A and HEK293 cells, while miR-452 may be involved in DNA damage-induced up-regulation of WWP1 in MDA-MB-231 cells. Our study demonstrates a novel pathway which regulates ΔNp63αupon cellular response to chemotherapeutic agents.
Collapse
|
8
|
Laptenko O, Tong DR, Manfredi J, Prives C. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein. Trends Biochem Sci 2016; 41:1022-1034. [PMID: 27669647 DOI: 10.1016/j.tibs.2016.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/22/2023]
Abstract
The p53 tumor suppressor is a transcription factor (TF) that exerts antitumor functions through its ability to regulate the expression of multiple genes. Within the p53 protein resides a relatively short unstructured C-terminal domain (CTD) that remarkably participates in virtually every aspect of p53 performance as a TF. Because these aspects are often interdependent and it is not always possible to dissect them experimentally, there has been a great deal of controversy about the CTD. In this review we evaluate the significance and key features of this interesting region of p53 and its impact on the many aspects of p53 function in light of previous and more recent findings.
Collapse
Affiliation(s)
- Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - James Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
9
|
Ramalho LNZ, Ribeiro-Silva A, Cassali GD, Zucoloto S. The Expression of p63 and Cytokeratin 5 in Mixed Tumors of the Canine Mammary Gland Provides New Insights into the Histogenesis of These Neoplasms. Vet Pathol 2016; 43:424-9. [PMID: 16846983 DOI: 10.1354/vp.43-4-424] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokeratin 5 and p63 have been described as basal and myoepithelial cell markers in human breast. Mixed tumors of the canine mammary gland have been associated with a myoepithelial origin. Cytokeratin 5 expression has not been evaluated in these tumors. We investigated the relation between cytokeratin 5 and p63 double-immunohistochemical expression in 23 mixed tumors of the canine mammary gland (10 benign mixed tumors and 13 carcinomas arising from benign mixed tumors) and their origin. Cytokeratin 5 and p63 co-expression was observed in myoepithelial cells of benign mixed tumors, as well as in squamous differentiation of carcinoma arising from benign mixed tumors. Though a few interstitial spindle cells of the mesenchymal components expressed both p63 and cytokeratin 5, the basal epithelial cells were labeled only by cytokeratin 5. The co-expression of p63 and cytokeratin 5 in myoepithelial cells and squamous differentiation suggest that, like in human breast, cytokeratin 5 can also be considered a myoepithelial- and squamous-cell differentiating marker in canine tumors. The presence of some interstitial spindle cells stained for p63 and cytokeratin 5 might be associated with a myoepithelial origin of the mesenchymal component of mixed tumors of the canine mammary gland. Moreover, contrary to p63, basal epithelial cells were labeled by cytokeratin 5, indicating that cytokeratin 5 may not represent an exclusive myoepithelial cell marker but also a basal epithelial cell marker in canine mixed tumors. According to these data, basal epithelial cells may be related to the origin of the epithelial component of mixed tumors of the canine mammary gland.
Collapse
Affiliation(s)
- L N Z Ramalho
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, Avenida Bandeirantes 3900, Campus Universitário Monte Alegre, São Paulo, Brazil.
| | | | | | | |
Collapse
|
10
|
Sánchez-Céspedes R, Millán Y, Guil-Luna S, Reymundo C, Espinosa de Los Monteros A, Martín de Las Mulas J. Myoepithelial cells in canine mammary tumours. Vet J 2015; 207:45-52. [PMID: 26639832 DOI: 10.1016/j.tvjl.2015.10.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 02/05/2023]
Abstract
Mammary tumours are the most common neoplasms of female dogs. Compared to mammary tumours of humans and cats, myoepithelial (ME) cell involvement is common in canine mammary tumours (CMT) of any subtype. Since ME cell involvement in CMT influences both histogenetic tumour classification and prognosis, correct identification of ME cells is important. This review describes immunohistochemical methods for identification of canine mammary ME cells used in vivo. In addition, phenotypic and genotypic methods to isolate ME cells for in vitro studies to analyse tumour-suppressor protein production and gene expression are discussed. The contribution of ME cells to both histogenetic classifications and the prognosis of CMT is compared with other species and the potential use of ME cells as a method to identify carcinoma in situ is discussed.
Collapse
Affiliation(s)
| | - Yolanda Millán
- Department of Comparative Pathology, University of Córdoba, 14014 Córdoba, Spain
| | - Silvia Guil-Luna
- Department of Comparative Pathology, University of Córdoba, 14014 Córdoba, Spain
| | - Carlos Reymundo
- Department of Pathology, University of Córdoba, 14071 Córdoba, Spain
| | - Antonio Espinosa de Los Monteros
- Unit of Histology and Animal Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, 35413 Las Palmas, Spain
| | | |
Collapse
|
11
|
Song D, Yue L, Wu G, Ma S, Yang H, Liu Q, Zhang D, Xia Z, Jia J, Wang J. Evaluation of promoter hypomethylation and expression of p73 as a diagnostic and prognostic biomarker in Wilms' tumour. J Clin Pathol 2015; 69:12-8. [PMID: 26184366 DOI: 10.1136/jclinpath-2015-203150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Abstract
AIMS A member of the p53 family, the p73 gene is essential for the maintenance of genomic stability, DNA repair and apoptosis regulation. This study was designed to evaluate the utility of expression and DNA methylation patterns of the p73 gene in the early diagnosis and prognosis of Wilms' tumour (WT). METHODS Methylation-specific PCR, semi-quantitative (sq-PCR), real-time quantitative PCR (qRT-PCR), receiver operating characteristic (ROC), and survival and hazard function curve analyses were utilised to measure the expression and DNA methylation patterns of p73 in WT tissue samples with a view to assessing diagnostic and prognostic value. RESULTS The relative expression of p73 mRNA was higher, while the promoter methylation level was lower in the WT than the control group (p<0.05) and closely associated with poor survival prognosis in children with WT (p<0.05). Increased expression and decreased methylation of p73 were correlated with increasing tumour size, clinical stage and unfavourable histological differentiation (p<0.05). ROC curve analysis showed areas under the curve of 0.544 for methylation and 0.939 for expression in WT venous blood, indicating the higher diagnostic yield of preoperative p73 expression. CONCLUSIONS Preoperative venous blood p73 level serves as an underlying biomarker for the early diagnosis of WT. p73 overexpression and concomitantly decreased promoter methylation are significantly associated with poor survival in children with WT.
Collapse
Affiliation(s)
- Dongjian Song
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lifang Yue
- Department of Ultrasonography, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gang Wu
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Ma
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Heying Yang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qiuliang Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Da Zhang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ziqiang Xia
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia Jia
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
12
|
High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy. Cell Death Dis 2014; 5:e1203. [PMID: 24787015 PMCID: PMC4047876 DOI: 10.1038/cddis.2014.113] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/19/2022]
Abstract
Inhibition of distinct ubiquitin E3 ligases might represent a powerful therapeutic tool. ITCH is a HECT domain-containing E3 ligase that promotes the ubiquitylation and degradation of several proteins, including p73, p63, c-Jun, JunB, Notch and c-FLIP, thus affecting cell fate. Accordingly, ITCH depletion potentiates the effect of chemotherapeutic drugs, revealing ITCH as a potential pharmacological target in cancer therapy. Using high throughput screening of ITCH auto-ubiquitylation, we identified several putative ITCH inhibitors, one of which is clomipramine—a clinically useful antidepressant drug. Previously, we have shown that clomipramine inhibits autophagy by blocking autophagolysosomal fluxes and thus could potentiate chemotherapy in vitro. Here, we found that clomipramine specifically blocks ITCH auto-ubiquitylation, as well as p73 ubiquitylation. By screening structural homologs of clomipramine, we identified several ITCH inhibitors and putative molecular moieties that are essential for ITCH inhibition. Treating a panel of breast, prostate and bladder cancer cell lines with clomipramine, or its homologs, we found that they reduce cancer cell growth, and synergize with gemcitabine or mitomycin in killing cancer cells by blocking autophagy. We also discuss a potential mechanism of inhibition. Together, our study (i) demonstrates the feasibility of using high throughput screening to identify E3 ligase inhibitors and (ii) provides insight into how clomipramine and its structural homologs might interfere with ITCH and other HECT E3 ligase catalytic activity in (iii) potentiating chemotherapy by regulating autophagic fluxes. These results may have direct clinical applications.
Collapse
|
13
|
Regulation of p63 protein stability via ubiquitin-proteasome pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:175721. [PMID: 24822180 PMCID: PMC4009111 DOI: 10.1155/2014/175721] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
The p53-related p63 gene encodes multiple protein isoforms, which are involved in a variety of biological activities. p63 protein stability is mainly regulated by the ubiquitin-dependent proteasomal degradation pathway. Several ubiquitin E3 ligases have been identified and some protein kinases as well as other kinds of proteins are involved in regulation of p63 protein stability. These regulators are responsive to diverse extracellular signaling, resulting in changes of the p63 protein levels and impacting different biological processes.
Collapse
|
14
|
Sehdev V, Katsha A, Arras J, Peng D, Soutto M, Ecsedy J, Zaika A, Belkhiri A, El-Rifai W. HDM2 regulation by AURKA promotes cell survival in gastric cancer. Clin Cancer Res 2013; 20:76-86. [PMID: 24240108 DOI: 10.1158/1078-0432.ccr-13-1187] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Suppression of P53 (tumor protein 53) transcriptional function mediates poor therapeutic response in patients with cancer. Aurora kinase A (AURKA) and human double minute 2 (HDM2) are negative regulators of P53. Herein, we examined the role of AURKA in regulating HDM2 and its subsequent effects on P53 apoptotic function in gastric cancer. EXPERIMENTAL DESIGN Primary tumors and in vitro gastric cancer cell models with overexpression or knockdown of AURKA were used. The role of AURKA in regulating HDM2 and cell survival coupled with P53 expression and activity were investigated. RESULTS Overexpression of AURKA enhanced the HDM2 protein level; conversely, knockdown of endogenous AURKA decreased expression of HDM2 in AGS and SNU-1 cells. Dual co-immunoprecipitation assay data indicated that AURKA was associated with HDM2 in a protein complex. The in vitro kinase assay using recombinant AURKA and HDM2 proteins followed by co-immunoprecipitation revealed that AURKA directly interacts and phosphorylates HDM2 protein in vitro. The activation of HDM2 by AURKA led to induction of P53 ubiquitination and attenuation of cisplatin-induced activation of P53 in gastric cancer cells. Inhibition of AURKA using an investigational small-molecule specific inhibitor, alisertib, decreased the HDM2 protein level and induced P53 transcriptional activity. These effects markedly decreased cell survival in vitro and xenograft tumor growth in vivo. Notably, analysis of immunohistochemistry on tissue microarrays revealed significant overexpression of AURKA and HDM2 in human gastric cancer samples (P < 0.05). CONCLUSION Collectively, our novel findings indicate that AURKA promotes tumor growth and cell survival through regulation of HDM2-induced ubiquitination and inhibition of P53. Clin Cancer Res; 20(1); 76-86. ©2013 AACR.
Collapse
Affiliation(s)
- Vikas Sehdev
- Authors' Affiliations: Departments of Surgery and Cancer Biology, Vanderbilt University Medical Center; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee; Translational Medicine, Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts; and Department of Pharmacology, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Overexpression and ratio disruption of ΔNp63 and TAp63 isoform equilibrium in endometrial adenocarcinoma: correlation with obesity, menopause, and grade I/II tumors. J Cancer Res Clin Oncol 2012; 138:1271-8. [PMID: 22441934 DOI: 10.1007/s00432-012-1200-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE p63 plays an important role in several intracellular processes such as transcription activation and apoptosis. p63 has two N-terminal isoforms, TAp63 and ΔNp63. TAp63 isoform has p53-like functions, while ΔNp63 acts as a dominant negative inhibitor of the p53 family and is considered oncogenic. Although p63 and its isoforms are overexpressed in a wide variety of human malignancies such as cervical, head and neck, and lung cancer, their role in endometrial carcinoma has not been investigated. METHODS We measured by quantitative real-time polymerase chain reaction the mRNA expression of TAp63 and ΔNp63 in a series of 20 endometrioid adenocarcinomas paired with adjacent normal tissue. RESULTS TAp63 isoform exhibited 1.8-fold overexpression in malignant samples, while ΔNp63 was 4.3-fold overexpressed in cancer specimens. Further analysis revealed that the ΔN/TA isoform ratio shifted from 0.5 in normal samples to 1.2 in tumor specimens. Statistical analysis also revealed an association of TAp63 expression with high body mass index (p = 0.034), late menopause (p = 0.020), and lower tumor grade (p = 0.034). ΔNp63 was also correlated with grade I/II tumors (p = 0.044). CONCLUSIONS These results indicate that both p63 isoforms and especially ΔNp63 play an important role in the development and progression of grade I/II endometrial adenocarcinoma, especially in obese and late-menopause women.
Collapse
|
16
|
Wang Z, Sturgis EM, Zhang Y, Huang Z, Zhou Q, Wei Q, Li G. Combined p53-related genetic variants together with HPV infection increase oral cancer risk. Int J Cancer 2011; 131:E251-8. [PMID: 22052649 DOI: 10.1002/ijc.27335] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/21/2011] [Indexed: 01/11/2023]
Abstract
To explore the role of polymorphisms of p53-related genes in etiology of oral cancer, we investigated joint effects of seven putatively functional polymorphisms of p53 (codon 72 Arg/Pro), p73 (4/14 GC/AT), murine double minute 2 gene (MDM2; A2164G and T2580G) and MDM4 (rs11801299 G > A, rs10900598 G > T and rs1380576 C > G) on risk of human papillomavirus (HPV)16-associated oral cancer in a case-control study with 325 cases and 335 cancer-free controls. We found that HPV16 seropositivity alone was associated with an increased risk of oral cancer [adjusted odds ratio (OR), 3.1; 95% confidence interval (CI), 2.1-4.6]. After combining genotypes of seven polymorphisms and using the low-risk group (0-3 combined risk genotypes) and HPV16 seronegativity as the reference group, the medium-risk (4 combined risk genotypes) and high-risk groups (5-7 combined risk genotypes) and HPV16 seronegativity were associated with only an OR of 1.6 (95% CI, 1.1-2.5) and 1.2 (95% CI, 0.7-1.9) for oral cancer risk, respectively, whereas the low-risk, medium-risk and high-risk groups and HPV16 seropositivity were significantly associated with a higher OR of 2.1 (95% CI, 1.2-3.6), 4.0 (95% CI, 1.8-9.1) and 19.1 (95% CI, 5.7-64.2), respectively. Notably, such effect modification by these combined risk genotypes was particularly pronounced in young subjects (aged < 50 years), never smokers and patients with oropharyngeal cancer. Taken together, these findings suggest that the combined risk genotypes of p53-related genes may modify risk of HPV16-associated oral cancer, especially in young patients, never-smokers and patients with oropharyngeal cancer. Larger studies are needed to validate our findings.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kantaputra PN, Malaivijitnond S, Vieira AR, Heering J, Dötsch V, Khankasikum T, Sripathomsawat W. Mutation in SAM domain of TP63 is associated with nonsyndromic cleft lip and palate and cleft palate. Am J Med Genet A 2011; 155A:1432-6. [DOI: 10.1002/ajmg.a.34011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/19/2011] [Indexed: 01/10/2023]
|
18
|
TP53 status and response to treatment in breast cancers. J Biomed Biotechnol 2011; 2011:284584. [PMID: 21760703 PMCID: PMC3114547 DOI: 10.1155/2011/284584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/08/2011] [Accepted: 03/24/2011] [Indexed: 11/17/2022] Open
Abstract
The p53 wild-type protein plays an important role in cells as is shown by its fine regulation at different levels. Since its discovery, numerous mutations have been described. In breast cancers, p53 is mutated in almost 30% of cases, with a higher frequency in some tumor subtypes. TP53 mutation is reported to be a factor for good prognosis in some studies, while in others it is a factor for poor prognosis. The explanation for these different results could be linked to the fact that the studies were performed on different tumor types and with different therapy regimens.
Collapse
|
19
|
Lynch CJ, Shah ZH, Allison SJ, Ahmed SU, Ford J, Warnock LJ, Li H, Serrano M, Milner J. SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One 2010; 5:e13502. [PMID: 20975832 PMCID: PMC2958826 DOI: 10.1371/journal.pone.0013502] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/25/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-ΔExon8. We show that SIRT1-ΔExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-ΔExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-ΔExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. CONCLUSIONS/SIGNIFICANCE We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed between SIRT1 isoforms, with important implications for SIRT1 functional studies and the current search for SIRT1-activating therapeutics to combat age-related decline.
Collapse
Affiliation(s)
- Cian J. Lynch
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail: (CJL); (JM)
| | - Zahid H. Shah
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Simon J. Allison
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Shafiq U. Ahmed
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Jack Ford
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Lorna J. Warnock
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Han Li
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jo Milner
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail: (CJL); (JM)
| |
Collapse
|
20
|
Abstract
Evolutionary patterns indicate that primordial p53 genes predated the appearance of cancer. Therefore, wild-type tumour suppressive functions and mutant oncogenic functions that give celebrity status to this gene family were probably co-opted from unrelated primordial activities. Is it possible to deduce what these early functions might have been? And might this knowledge provide a platform for therapeutic opportunities?
Collapse
Affiliation(s)
- Wan-Jin Lu
- Wan-Jin Lu and John M. Abrams are at the Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
21
|
|
22
|
Klanrit P, Flinterman MB, Odell EW, Melino G, Killick R, Norris JS, Tavassoli M. Specific isoforms of p73 control the induction of cell death induced by the viral proteins, E1A or apoptin. Cell Cycle 2007; 7:205-15. [PMID: 18256531 DOI: 10.4161/cc.7.2.5361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A member of the p53 family, p73, has several isoforms and differentially regulates transcription of genes involved in the control of the cell cycle and apoptosis. We have previously shown efficient and p53-independent, tumor-specific cell death induced by the viral proteins E1A and Apoptin. Here, we demonstrate that the induction of apoptosis by these viral proteins involves activation of TAp73. Both E1A and Apoptin induced expression of endogenous TAp73 and the p53/p73 BH3-only pro-apoptotic target, PUMA, independently of the p53 function. Furthermore, exogenous expression of TAp73 isoforms, particularly TAp73beta, sensitized cells to killing by both E1A and Apoptin, while expression of DeltaNp73alpha blocked this activity. Besides, knockout of the p73 regulator, c-Abl, attenuated E1A-induced apoptosis. In accordance with the role of p73 in apoptosis induced by these viral proteins, overexpression of TAp73beta strongly induced apoptosis in p53-deficient cancer cells in vitro and in HNSCC xenografts. Using a doxycycline-inducible system, we provide evidence for target selectivity and significant differences in protein stability for specific p73 isoforms, suggesting a diverse and pivotal role for p73 in response to various genotoxic agents. Collectively, our data show that in the absence of the p53 function, viral proteins E1A and Apoptin utilize the p73 pathway to induce efficient tumor cell death.
Collapse
Affiliation(s)
- Poramaporn Klanrit
- Head and Neck Oncology Group, King's College London Dental Institute, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Terrasson J, Xu B, Li M, Allart S, Davignon JL, Zhang LH, Wang K, Davrinche C. Activities of Z-ajoene against tumour and viral spreading in vitro. Fundam Clin Pharmacol 2007; 21:281-9. [PMID: 17521297 DOI: 10.1111/j.1472-8206.2007.00470.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Z-ajoene is a garlic-derived compound with known anti-tumour properties. This report argues in favour of pro-apoptotic and cell cycle blockage activities of Z-ajoene on various cell lines involving activation of the p53-family gene products, p53, p63 and p73, at indicated doses. According to its known anti-proteasome activity, Z-ajoene induced a downregulation of MHC-class I expression at the surface of treated cells but did not impair their recognition by CD8+ T cells. We further demonstrated a new activity of Z-ajoene against human cytomegalovirus spreading in vitro that was mediated by an increased number of apoptotic cells after infection. Altogether our data point at the ubiquitous efficiency of Z-ajoene as a new compound to fight against cancers of various origins including those that put up viruses.
Collapse
Affiliation(s)
- Jerome Terrasson
- INSERM U563, CHU Purpan, BP 3028, Toulouse Cédex 3, F-31024, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Upadhyay S, Chatterjee A, Trink B, Sommer M, Ratovitski E, Sidransky D. TAp63γ regulates hOGG1 and repair of oxidative damage in cancer cell lines. Biochem Biophys Res Commun 2007; 356:823-8. [PMID: 17399686 DOI: 10.1016/j.bbrc.2007.01.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 01/29/2007] [Indexed: 11/20/2022]
Abstract
We showed that TAp63gamma regulates hOGG1. Using chromatin immunoprecipitation (ChIP), we found that TAp63gamma binds to the hOGG1 promoter. Reintroduction of wild-type TAp63gamma into HEK 293 cells, induced transcription of hOGG1 promoter, leading to increase in RNA and protein. Using RNAi studies, we observed that TAp63gamma-RNAi resulted in reduced hOGG1 RNA and protein in HeLa cells. This decrease in hOGG1 expression was associated with reduced cell viability upon oxidative damage. Taken together, our results indicate that hOGG1 is a direct target of TAp63gamma, suggesting a role for TAp63gamma in oxidative damage and repair.
Collapse
Affiliation(s)
- Sunil Upadhyay
- Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, The Johns Hopkins University School of Medicine, 1550 Orleans Street, 5N.03 Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
25
|
Lin Z, Xin Y, Wu DY. Clinicopathological significances of P73 and P53 protein expression in gastric carcinomas with tissue microarray technique. Shijie Huaren Xiaohua Zazhi 2007; 15:1087-1091. [DOI: 10.11569/wcjd.v15.i10.1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of P73 and mutant P53 (mP53) gene coding proteins and their significances in gastric carcinoma.
METHODS: Two tissue microarray blocks containing 104 cases of gastric cancer and precancerous lesions (1.0 mm each in diameter) was constructed. SABC immunohistochemical stainning was used to detect the expression of P73 and mP53 proteins and the correlation between their roles and the pathological behavior of gastric carcinoma was investigated.
RESULTS: The positive rate of P73 protein was significantly higher in gastric cancer, intestinal metaplasia and atypical hyperplasia than that in the normal tissues (90.1%, 44.0%, 80.0% vs 17.9%, P < 0.01). The expression of P73 protein was also markedly higher in gastric carcinoma of Borrman Ⅲ/Ⅳ types than that of Borrman Ⅱ type (92.9%/100% vs 57.1%, P < 0.05). Moreover, the expression P73 protein was markedly increased in gastric cancer with lymph node metastasis, liver metastasis and ovarian metastasis as compared with that in non-metastatic cancer (94.4%, 100%, 100% vs 76.2%, P < 0.01). There was a positive correlation between P73 and mP53 expression (χ2 = 9.6736, P < 0.01).
CONCLUSION: P73 expression is correlated with the malignant behaviors of gastric cancer. Although P73 protein has a similar construction to P53 protein, its expression shows a positive correlation with that of mP53 protein. This finding indicates that P73 may play a role in the carcinogenesis of gastric cancer as a mimic mutant of P53.
Collapse
|
26
|
Petre-Lazar B, Moreno SG, Livera G, Duquenne C, Habert R, Coffigny H. p63 expression pattern in foetal and neonatal gonocytes after irradiation and role in the resulting apoptosis by using p63 knockout mice. Int J Radiat Biol 2007; 82:771-80. [PMID: 17148261 DOI: 10.1080/09553000600960019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the role of p63, a member of the p53 family, in gonocyte apoptosis after radiation exposure. MATERIALS AND METHODS Wild-type (WT) and p63 knock-out (KO) testes were exposed in vivo or in vitro to a 3 Gy dose of 137Cesium (137Cs) gamma-rays at day 18.5 post-conception (p.c.). p63 whole expression was studied in neonatal testes by immunohistochemistry, whereas TAp63 and DeltaNp63 isoforms were studied by Reverse-transcribed Polymerase Chain Reaction (RT-PCR). Gonocyte apoptosis was analysed by immunohistochemistry (cleaved caspase 3) and In Situ End labelling (ISEL). RESULTS Such foetal irradiation leads to a strong increase of gonocyte apoptosis in newborns. It also induces the up-regulation of the TAp63alpha isoform and the down-regulation of the DeltaNp63alpha isoform. Moreover, in control p63KO testis, a significant increase in the number of gonocytes was associated with a strong reduction of their apoptosis compared with the control wild-type testis. Unexpectedly, after irradiation this increase of the number of apoptotic gonocytes was seen in p63KO testis, which was comparable to that in irradiated p63WT testis. CONCLUSION We demonstrate that p63 is able to trigger gonocyte apoptosis in control testis but is not necessarily required in their radio-induced apoptosis.
Collapse
Affiliation(s)
- B Petre-Lazar
- CEA, Centre de Fontenay-aux-Roses, Laboratory of Differentiation and Radiobiology of Gonads, DSV/DRR/SEGG, Fontenay-aux-Roses, France
| | | | | | | | | | | |
Collapse
|
27
|
Narahashi T, Niki T, Wang T, Goto A, Matsubara D, Funata N, Fukayama M. Cytoplasmic localization of p63 is associated with poor patient survival in lung adenocarcinoma. Histopathology 2006; 49:349-57. [PMID: 16978197 DOI: 10.1111/j.1365-2559.2006.02507.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To determine the significance of p63 protein expression in the development and progression of lung adenocarcinoma. METHODS AND RESULTS The expression of p63 was immunohistochemically investigated in 92 cases of lung adenocarcinoma with a maximum diameter of 30 mm or less. p63 expression was observed not only in the nuclei (46/92 cases, 50%), but also in the cytoplasm of neoplastic cells (47/92, 51%). Nuclear localization of p63 was correlated with nuclear accumulation of p53 (P=0.0120), whereas the presence of nuclear p63 had no apparent effect on patient survival. Cytoplasmic localization of p63 was found to be correlated with shorter survival periods by univariate and multivariate analyses (P=0.0486 and P=0.0488, respectively) and the relation was independent of clinicopathological factors. Cytoplasmic localization of p63 was further confirmed by immunoblots of the cytoplasmic fraction of HLC-1, a lung adenocarcinoma cell line which predominately expressed DeltaNp63alpha transcript relative to TAp63 transcript by quantitative reverse transcriptase-polymerase chain reaction. CONCLUSIONS Cytoplasmic expression of p63 is an adverse prognostic factor in patients with adenocarcinoma of the lung.
Collapse
Affiliation(s)
- T Narahashi
- Department of Human Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo Metropolitan Komagome Hospital, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Viganò MA, Lamartine J, Testoni B, Merico D, Alotto D, Castagnoli C, Robert A, Candi E, Melino G, Gidrol X, Mantovani R. New p63 targets in keratinocytes identified by a genome-wide approach. EMBO J 2006; 25:5105-16. [PMID: 17036050 PMCID: PMC1630419 DOI: 10.1038/sj.emboj.7601375] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/28/2006] [Indexed: 12/27/2022] Open
Abstract
p63 is a developmentally regulated transcription factor related to p53. It is involved in the development of ectodermal tissues, including limb, skin and in general, multilayered epithelia. The DeltaNp63alpha isoform is thought to play a 'master' role in the asymmetric division of epithelial cells. It is also involved in the pathogenesis of several human diseases, phenotypically characterized by ectodermal dysplasia. Our understanding of transcriptional networks controlled by p63 is limited, owing to the low number of bona fide targets. To screen for new targets, we employed chromatin immunoprecipitation from keratinocytes (KCs) coupled to the microarray technology, using both CpG islands and promoter arrays. The former revealed 96 loci, the latter yielded 85 additional genes. We tested 40 of these targets in several functional assays, including: (i) in vivo binding by p63 in primary KCs; (ii) expression analysis in differentiating HaCaT cells and in cells overexpressing DeltaNp63alpha; (iii) promoter transactivation and (iv) immunostaining in normal tissues, confirming their regulation by p63. We discovered several new specific targets whose functional categorization links p63 to cell growth and differentiation.
Collapse
Affiliation(s)
- M Alessandra Viganò
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
- Department of Biomolecular Sciences and Biotechnologies, University of Milan, Via Celoria, 26, Milan 20133, Italy. Tel.: +39 02 50315005; Fax: +39 02 50315044; E-mail:
| | | | - Barbara Testoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
| | - Daniele Merico
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Plastica, Banca della Cute, Ospedale CTO, Torino, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Plastica, Banca della Cute, Ospedale CTO, Torino, Italy
| | - Amèlie Robert
- Service de Génomique Fonctionnelle CEA, Genopole Evry, France
| | - Eleonora Candi
- IDI-IRCCS c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- IDI-IRCCS c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Xavier Gidrol
- Service de Génomique Fonctionnelle CEA, Genopole Evry, France
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' di Milano, Milano, Italy
- Department of Biomolecular Sciences and Biotechnologies, University of Milan, Via Celoria, 26, Milan 20133, Italy. Tel.: +39 02 50315005; Fax: +39 02 50315044; E-mail:
| |
Collapse
|
29
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53 – ein natürlicher Krebskiller: Einsichten in die Struktur und Therapiekonzepte. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53—A Natural Cancer Killer: Structural Insights and Therapeutic Concepts. Angew Chem Int Ed Engl 2006; 45:6440-60. [PMID: 16983711 DOI: 10.1002/anie.200600611] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Every single day, the DNA of each cell in the human body is mutated thousands of times, even in absence of oncogenes or extreme radiation. Many of these mutations could lead to cancer and, finally, death. To fight this, multicellular organisms have evolved an efficient control system with the tumor-suppressor protein p53 as the central element. An intact p53 network ensures that DNA damage is detected early on. The importance of p53 for preventing cancer is highlighted by the fact that p53 is inactivated in more than 50 % of all human tumors. Thus, for good reason, p53 is one of the most intensively studied proteins. Despite the great effort that has been made to characterize this protein, the complex function and the structural properties of p53 are still only partially known. This review highlights basic concepts and recent progress in understanding the structure and regulation of p53, focusing on emerging new mechanistic and therapeutic concepts.
Collapse
Affiliation(s)
- Lin Römer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
31
|
Dehner A, Klein C, Hansen S, Müller L, Buchner J, Schwaiger M, Kessler H. Cooperative binding of p53 to DNA: regulation by protein-protein interactions through a double salt bridge. Angew Chem Int Ed Engl 2006; 44:5247-51. [PMID: 16035029 DOI: 10.1002/anie.200501887] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alexander Dehner
- Department Chemie, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Yu J, Baron V, Mercola D, Mustelin T, Adamson ED. A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ 2006; 14:436-46. [PMID: 16990849 DOI: 10.1038/sj.cdd.4402029] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
p73, a transcription factor rarely mutated in cancer, regulates a subset of p53 target genes that cause cells to respond to genotoxic stress by growth arrest and apoptosis. p73 is produced in two main forms; only TAp73 reiterates the roles of p53, while DeltaNp73 can be oncogenic in character. We show that the TAp73 form produced by TP73 P1 promoter has five distinct Egr1-binding sites, each contributing to the transcriptional upregulation of TAp73 by Egr1 in several cell types. In contrast, TP73 P2 promoter transcribes DeltaNp73, is not induced by Egr1, but is induced by TAp73 and p53. Induction of TAp73 by genotoxic stress requires Egr1 in mouse in vivo. Newly discovered non-consensus p53-binding sites in p73, p53 and Egr1 promoters reveal inter-regulating networks and sustained expression by feedback loops in response to stress, resulting in prolonged expression of the p53 family of genes and efficient apoptosis.
Collapse
Affiliation(s)
- J Yu
- Burnham Institute for Medical Research, Cancer Research Center, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Naumann U, Huang H, Wolburg H, Wischhusen J, Weit S, Ohgaki H, Weller M. PCTAIRE3: a putative mediator of growth arrest and death induced by CTS-1, a dominant-positive p53-derived synthetic tumor suppressor, in human malignant glioma cells. Cancer Gene Ther 2006; 13:469-78. [PMID: 16276348 DOI: 10.1038/sj.cgt.7700917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chimeric tumor suppressor-1 (CTS-1) is based on the sequence of p53 and was designed as a therapeutic tool resisting various mechanisms of p53 inactivation. We previously reported that an adenovirus expressing CTS-1 (Ad-CTS-1) has superior cell death-inducing activity in glioma cells compared with wild-type p53. Here, we used cDNA microarrays to detect changes in gene expression preferentially induced by Ad-CTS-1. The putative serine threonine kinase, PCTAIRE3, and the quinone oxireductase, PIG3, were strongly induced by Ad-CTS-1 compared with wild-type p53. An adenoviral vector encoding PCTAIRE3 (Ad-PCTAIRE3) induced growth arrest and killed a minor proportion of the glioma cells. Ad-PIG3 alone affected neither growth nor viability. However, coinfection with Ad-PCTAIRE3 and Ad-PIG3 resulted in enhanced growth inhibition compared with Ad-PCTAIRE3 infection alone. Ad-CTS1, Ad-PCTAIRE3 or Ad-PIG3 induced the formation of free reactive oxygen species (ROS). However, the prevention of ROS formation induced by Ad-PCTAIRE3 and Ad-CTS-1 did not block growth arrest and cell death, suggesting that ROS formation is not essential for these effects. Altogether, these data identify PCTAIRE3 as one novel growth-inhibitory and death-inducing p53 response gene and suggest that changes in the expression of specific target genes contribute to the superior anti-glioma activity of CTS-1.
Collapse
Affiliation(s)
- U Naumann
- Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ramalho LNZ, Maggiori MS, Ribeiro-Silva A, Peres LC. P63 Expression in Hydropic Abortion and Gestational Trophoblastic Diseases. Placenta 2006; 27:740-3. [PMID: 16026831 DOI: 10.1016/j.placenta.2005.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 11/24/2022]
Abstract
Gestational trophoblastic diseases are a group of interrelated diseases of trophoblastic tissue that include partial hydatidiform mole, complete hydatidiform mole, invasive mole, choriocarcinoma, and placental site trophoblastic tumor. P63 is a p53 homologue that, in normal placentas, is expressed in the cytotrophoblast cells. The role of p63 in gestational trophoblastic diseases, however, merits further investigation. Immunohistochemistry with the p63 antibody (clone 4A4) was performed in formalin-fixed paraffin-embedded samples of hydropic abortion (n=10), partial hydatidiform mole (n=12), complete hydatidiform mole (n=12) and choriocarcinoma (n=5). P63 expression was quantitatively assessed as 0 (no stained cells), + (less than 10% positive cells), ++ (10-50% positive cells), and +++ (more than 50% positive cells). The intensity was scored as 0 (absence), + (weak), ++ (moderate), or +++ (strong). Statistical analysis was carried out by the Fisher test. In contrast to the other diagnoses, none of the choriocarcinomas analyzed exhibited p63-positive cells. There was no difference in distribution of p63 positive cells between hydropic abortion, partial hydatidiform mole, and complete hydatidiform mole. Concerning the intensity of immunostaining, there was difference only between partial hydatidiform mole and complete hydatidiform mole. According to our results, p63 might be useful to differentiate a choriocarcinoma from other gestational trophoblastic diseases. Besides, since the intensity of p63 expression was much stronger in partial hydatidiform mole and complete hydatidiform mole than in hydropic abortion, this feature may be helpful in distinguishing these two diagnoses in challenging cases.
Collapse
Affiliation(s)
- L N Z Ramalho
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Avenida Bandeirantes 3900, Campus Universitário Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
35
|
Ryou SM, Kang KH, Jeong MH, Kim JW, An JH, Lee SY, Jang S, Song PI, Choi KH. Functional cross-talk between p73β and NF-κB mediated by p300. Biochem Biophys Res Commun 2006; 345:623-30. [PMID: 16696941 DOI: 10.1016/j.bbrc.2006.04.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
p73beta is associated with induction of apoptosis or cellular growth arrest, while NF-kappaB is closely related with promotion of resistance to programmed cell death. These biologically opposing activities between p73beta and NF-kappaB propose a regulatory mechanism of critical turning on/off in cellular apoptotic or survival responses. In this study, we demonstrate that NF-kappaB-mediated transactivation is specifically downregulated by p73beta; conversely, p73beta-transactivation is negatively regulated by functional expression of p65, NF-kappaB RelA subunit. The p73beta transactivation domain (TA) and p65 NH2-terminus are crucial for their negative regulation of p65- and p73beta-mediated transactivation, respectively. Furthermore, p65- or p73beta-interaction with p300 is reciprocally inhibited by their competitive binding to p300 in a restrict amount-dependent manner. Likewise, both p73beta-activated apoptosis and p65-dependent increase of cell viability are reciprocally repressed by p65 and p73beta, respectively. These results have important implications for p300-mediated regulatory mechanism between p73beta- and p65-transactivation, by which both p73beta and NF-kappaB could mutually affect on their biological activities. Therefore, we propose that p300 is a transactivational regulator of competitively balanced cross-talk between p73beta and p65.
Collapse
Affiliation(s)
- Sang-Mi Ryou
- Laboratory of Molecular Biology, Department of Biology, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ramalho FS, Maestri C, Ramalho LNZ, Ribeiro-Silva A, Romão E. Expression of p63 and p16 in primary and recurrent pterygia. Graefes Arch Clin Exp Ophthalmol 2006; 244:1310-4. [PMID: 16523297 DOI: 10.1007/s00417-006-0287-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/17/2006] [Accepted: 01/20/2006] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND p63 and p16 have been described as stem-cell markers of squamous epithelium. In an attempt to obtain new insights into the pathogenesis of pterygium, this study aims to evaluate the relationship between p63 and p16 expression in primary and recurrent pterygia. METHODS Samples of primary (n=56) and recurrent (n=14) pterygia and normal bulbar conjunctival tissue (n=11) were submitted to immunohistochemical study to evaluate the expression of p63 and p16 in these tissues. RESULTS Most of the cells stained for p63 were located in the basal layer of the normal conjunctiva, in the lower two-thirds of the epithelium of primary pterygia, and throughout all epithelial layers of recurrent pterygia. In normal conjunctivae, p16 expression was rarely expressed. Primary and recurrent pterygium groups exhibited increased p16 expression, with cytoplasmic staining in the primary group, and cytoplasmic or nuclear staining in the recurrent group. CONCLUSION The overexpression of p63 and p16 observed in the present study reinforces likelihood of involvement of these genes in the pathogenesis of pterygium, perhaps related to the intense cellular turnover with substitution of superficial epithelial cells by less differentiated forms. This loss of normal cellular differentiation of the epithelial layers could explain the high rates of recurrence overall in the recurrent pterygia.
Collapse
Affiliation(s)
- Fernando S Ramalho
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
37
|
Jeong MH, Bae J, Kim WH, Yoo SM, Kim JW, Song PI, Choi KH. p19ras interacts with and activates p73 by involving the MDM2 protein. J Biol Chem 2006; 281:8707-15. [PMID: 16436381 DOI: 10.1074/jbc.m513853200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p73beta is a structural and functional homologue of p53, a tumor suppressor gene. In this study, we identified a novel p73beta-binding protein, p19ras, by the yeast two-hybrid screening method. Alternative splicing of the proto-oncogene H-ras pre-mRNA has led to two distinct transcripts, p19ras and p21ras. In both endogenous and overexpressed systems, we confirmed that p19ras binds to full-length p73beta in vivo and in vitro. Coexpression of p19ras with p73beta stimulated the transcriptional activity of p73beta. Ras proteins are known to be small membrane-localized guanine nucleotide-binding proteins. However, unlike other Ras proteins, p19ras is localized in the nucleus and the cytosol and its interaction with p73beta occurred exclusively in the nucleus. Oncogenic MDM2 (mouse double minutes 2) is a known repressor of p73 transcriptional activity. In this study, when p19ras was bound to MDM2, it further inhibited the association of MDM2 to the p73beta protein. In addition, p19ras abolished MDM2-mediated transcriptional repression of p73beta. Therefore, this study presents a novel pathway of Ras signaling that occurs in the nucleus, involving p19ras and p73beta. Furthermore, a p19ras-mediated novel regulatory mechanism of p73 involving the MDM2 protein is described.
Collapse
Affiliation(s)
- Mi-Hee Jeong
- Laboratory of Molecular Biology, Department of Biological Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Iwata T, Uramoto H, Sugio K, Fujino Y, Oyama T, Nakata S, Ono K, Morita M, Yasumoto K. A lack of prognostic significance regarding DeltaNp63 immunoreactivity in lung cancer. Lung Cancer 2005; 50:67-73. [PMID: 15950316 DOI: 10.1016/j.lungcan.2005.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 03/09/2005] [Accepted: 03/14/2005] [Indexed: 01/13/2023]
Abstract
DeltaNp63 is an isoform of the p53 homologue p63, which lacks an amino-terminal transactivation domain and antagonizes the induction of the gene expression by Deltap63. The aim of this study was to detect the DeltaNp63 expression in lung cancer using immunohistochemical (IHC) staining, and to evaluate the relationship between theDeltaNp63 expression level and the prognosis based on resected lung cancer tissues specimens from the of patients. We used immunohistochemistry to analyze the protein expression of DeltaNp63 in paraffin-embedded tumor samples from 161 well-characterized squamous cell carcinoma patients and compared the expression level of DeltaNp63, clinical variables and the survival outcome. Seventy-seven patients (47.8%) showed positive staining for DeltaNp63 in the nuclei of tumor cells. No significant difference was observed between the DeltaNp63 expression and the gender, age at operation, pathologic stage, pathologic T status, and pathologic N status. Based on the actuarial survival method, Kaplan-Meier method, and the log-rank test, the DeltaNp63 expression was not associated with survival for lung cancer. Differences in survival remained insignificant even after lung cancer patients were stratified according to stage or differentiation. The prognostic effects of DeltaNp63 expression do not appear to act as an important prognostic indicator in lung cancer. Our findings do not support that immunocytochemical markers demonstrate a relevant prognostic role in lung cancer.
Collapse
Affiliation(s)
- Teruo Iwata
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Toth A, Nickson P, Qin LL, Erhardt P. Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem 2005; 281:3679-89. [PMID: 16339144 DOI: 10.1074/jbc.m509630200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MDM2 is an E3 ubiquitin ligase that regulates the proteasomal degradation and activity of proteins involved in cell growth and apoptosis, including the tumor suppressors p53 and retinoblastoma and the transcription factor E2F1. Although the effect of several MDM2 targets on cardiomyocyte survival and hypertrophy has already been investigated, the role of MDM2 in these processes has not yet been established. We have, therefore, analyzed the effect of overexpression as well as inhibition of MDM2 on cardiac ischemia/reperfusion injury and hypertrophy. Here we show that isolated cardiac myocytes overexpressing MDM2 acquired resistance to hypoxia/reoxygenation-induced cell death. Conversely, inactivation of MDM2 by a peptide inhibitor resulted in elevated p53 levels and promoted hypoxia/reoxygenation-induced apoptosis. Consistent with this, decreased expression of MDM2 in a genetic mouse model was accompanied by reduced functional recovery of the left ventricles determined with the Langendorff ex vivo model of ischemia/reperfusion. In contrast to cell survival, cell hypertrophy induced by the alpha-agonists phenylephrine or endothelin-1 was inhibited by MDM2 overexpression. Collectively, our studies indicate that MDM2 promotes survival and attenuates hypertrophy of cardiac myocytes. This differential regulation of cell growth and cell survival is unique, because most other survival factors are prohypertrophic. MDM2, therefore, might be a potential therapeutic target to down-regulate both cell death and pathologic hypertrophy during remodeling upon cardiac infarction. In addition, our data also suggest that cancer treatments with MDM2 inhibitors to reactivate p53 may have adverse cardiac side effects by promoting cardiomyocyte death.
Collapse
Affiliation(s)
- Ambrus Toth
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | | | |
Collapse
|
40
|
Ribeiro-Silva A, Ramalho LNZ, Garcia SB, Brandão DF, Chahud F, Zucoloto S. p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas: further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology 2005; 47:458-66. [PMID: 16241993 DOI: 10.1111/j.1365-2559.2005.02249.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To study the expression of p63, cytokeratin (CK) 5 and CK8/18 in invasive ductal carcinomas and their relationship with BRCA1 and other pathological and immunohistochemical features of clinical significance. METHODS AND RESULTS Immunohistochemistry with the antibodies p63, CK5, CK8/18, BRCA1, oestrogen receptor, progesterone receptor, p53, c-erbB-2 and Ki67 was performed in 102 formalin-fixed paraffin-embedded samples of invasive ductal carcinomas. The CK5+ cases were submitted to a double-immunolabelling study with p63. There was a strong relationship between CK5 and p63 expression and both markers were associated with hormonal receptor-negative high-grade carcinomas with high proliferative rate. Furthermore, there was coexpression of CK5 and p63 in neoplastic cells, indicating that p63, like CK5, is a marker of the basal phenotype of breast cancer. There was a strong relationship between reduced expression of BRCA1 with both p63 and CK5 expression as well as an inverse correlation between p63 and CK8/18 expression, suggesting that loss of p63 expression is required for the transition between a basal to a luminal phenotype of breast carcinoma. CONCLUSIONS Since p63 is thought to be a marker of stem cells and may act as an oncogene, our data support the idea that BRCA1 acts as stem cell regulator.
Collapse
Affiliation(s)
- A Ribeiro-Silva
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
41
|
Ying H, Chang DLF, Zheng H, McKeon F, Xiao ZXJ. DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol Cell Biol 2005; 25:6154-64. [PMID: 15988026 PMCID: PMC1168832 DOI: 10.1128/mcb.25.14.6154-6164.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The p53-related p63 gene encodes six isoforms with differing N and C termini. TAp63 isoforms possess a transactivation domain at the N terminus and are able to transactivate a set of genes, including some targets downstream of p53. Accumulating evidence indicates that TAp63 plays an important role in regulation of cell proliferation, differentiation, and apoptosis, whereas transactivation-inert deltaNp63 functions to inhibit p63 and other p53 family members. Mutations in the p63 gene that abolish p63 DNA-binding and transactivation activities cause human diseases, including ectrodactyly ectodermal dysplasia and facial clefting (EEC) syndrome. In this study, we show that mutant p63 proteins with a single amino acid substitution found in EEC syndrome are DNA binding deficient, transactivation inert, and highly stable. We demonstrate that TAp63 protein expression is tightly controlled by its specific DNA-binding and transactivation activities and that p63 is degraded in a proteasome-dependent, MDM2-independent pathway. In addition, the N-terminal transactivation domain of p63 is indispensable for its protein degradation. Furthermore, the wild-type TAp63gamma can act in trans to promote degradation of mutant TAp63gamma defective in DNA binding, and the TA domain deletion mutant of TAp63gamma inhibits transactivation activity and stabilizes the wild-type TAp63 protein. Taken together, these data suggest a feedback loop for p63 regulation, analogous to the p53-MDM2 feedback loop.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Biochemistry, Boston University School of Medicine, K423, 715 Albany St., Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
42
|
Dehner A, Klein C, Hansen S, Müller L, Buchner J, Schwaiger M, Kessler H. Kooperative Bindung von p53 an DNA: Regulation durch Protein-Protein-Wechselwirkung unter Bildung einer doppelten Salzbrücke. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Saifudeen Z, Diavolitsis V, Stefkova J, Dipp S, Fan H, El-Dahr SS. Spatiotemporal Switch from ΔNp73 to TAp73 Isoforms during Nephrogenesis. J Biol Chem 2005; 280:23094-102. [PMID: 15805112 DOI: 10.1074/jbc.m414575200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
p73 is a member of the p53 gene family, which also includes p53 and p63. These proteins share sequence similarity and target genes but also have divergent roles in cancer and development. Unlike p53, transcription of the p73 gene yields multiple full-length (transactivation (TA) domain) and amino terminus-truncated (DeltaN) isoforms. DeltaNp73 acts in a dominant negative fashion to inhibit the actions of TAp73 and p53 on their target genes, promoting cell survival and proliferation and suppressing apoptosis. The balance between TAp73 and its negative regulator, DeltaNp73, may therefore represent an important determinant of developmental cell fate. There is little if anything known regarding the developmental regulation of the p73 gene. In this study, we showed that TAp73 and DeltaNp73 exhibit reciprocal spatiotemporal expression and functions during nephrogenesis. TAp73 was predominantly expressed in the differentiation domain of the renal cortex in an overlapping manner with the vasopressin-sensitive water channel aquaporin-2 (AQP-2). Chromatin immunoprecipitation assays demonstrated that the endogenous AQP-2 promoter was occupied by TAp73 in a developmentally regulated manner. Furthermore TAp73 stimulated AQP-2 promoter-driven reporter expression. TAp73 also activated the bradykinin B2 receptor (B2R) promoter, a developmentally regulated gene involved in regulation of sodium excretion. The transcriptional effects of TAp73 on AQP-2 and B2R were independent of p53. In marked contrast to TAp73, DeltaNp73 isoforms were induced early in development and were preferentially expressed in proliferating nephron precursors. Moreover DeltaNp73 was a potent repressor of B2R gene transcription. We conclude that the p73 gene is developmentally regulated during kidney organogenesis. The spatiotemporal switch from DeltaNp73 to TAp73 may play an important role in the terminal differentiation program of the developing nephron.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Aquaporin 2
- Aquaporins/chemistry
- Aquaporins/metabolism
- Blotting, Western
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cell Survival
- Chromatin Immunoprecipitation
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Exons
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genes, Tumor Suppressor/physiology
- Immunohistochemistry
- Kidney/growth & development
- Kidney/metabolism
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Models, Genetic
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/chemistry
- Nuclear Proteins/physiology
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- Rats
- Receptor, Bradykinin B2/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic
- Transfection
- Tumor Protein p73
- Tumor Suppressor Proteins
- Water/chemistry
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ling L, Lobie PE. RhoA/ROCK activation by growth hormone abrogates p300/histone deacetylase 6 repression of Stat5-mediated transcription. J Biol Chem 2004; 279:32737-50. [PMID: 15102857 DOI: 10.1074/jbc.m400601200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate here that growth hormone (GH) stimulates the activation of RhoA and its substrate Rho kinase (ROCK) in NIH-3T3 cells. GH-stimulated formation of GTP-bound RhoA requires JAK2-dependent dissociation of RhoA from its negative regulator p190 RhoGAP. Inactivation of RhoA does not affect GH-stimulated JAK2 tyrosine phosphorylation nor p44/42 MAPK activity. However, RhoA and ROCK activities are required for GH-stimulated, Stat5-mediated transcription. RhoA-dependent enhancement of GH-stimulated, Stat5-mediated transcription is due to repression of histone deacetylase 6 activity recruited by transcription cofactor p300 that negatively regulates GH-stimulated, Stat5-mediated transcription. We also demonstrate that RhoA is the pivot for cAMP-dependent protein kinase inhibition of GH-stimulated, Stat5-mediated transcription as a consequence of cAMP-dependent protein kinase inactivation of RhoA through serine residue 188 of RhoA. We have therefore provided a novel mechanism by which a Ras-like small GTPase, RhoA, can regulate Stat5-mediated transcription.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | |
Collapse
|