1
|
Cao Y, Sun J, Wang X, Zhang X, Tian H, Huang L, Huang Z, Zhang Y, Zhang J, Li L, Zhou S. The double-edged nature of nicotine: toxicities and therapeutic potentials. Front Pharmacol 2024; 15:1427314. [PMID: 39206262 PMCID: PMC11350241 DOI: 10.3389/fphar.2024.1427314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotine is the primary addictive component of cigarette smoke and is associated with various smoking-related diseases. However, recent research has revealed its broader cognitive-enhancing and anti-inflammatory properties, suggesting its potential therapeutic applications in several conditions. This review aims to examine the double-edged nature of nicotine, encompassing its positive and negative effects. We provide a concise overview of the physiochemical properties and pharmacology of nicotine, including insights into nicotine receptors. Therefore, the article is divided into two main sections: toxicity and therapeutic potential. We comprehensively explored nicotine-related diseases, focusing on specific signaling pathways and the underlying mechanisms that contribute to its effects. Furthermore, we addressed the current research challenges and future development perspectives. This review aims to inspire future researchers to explore the full medical potential of nicotine, which holds significant promise for the clinical management of specific diseases.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jiali Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Xiaofeng Wang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Xiaoyu Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Huijuan Tian
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lingling Huang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yaping Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Jin Zhang
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Shun Zhou
- Key Laboratory of Combustion & Pyrolysis Study of CNTC, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
- Key Laboratory of Aerosol Analysis Regulation and Biological Effects of Anhui Province, China Tobacco Anhui Industrial Co., Ltd., Hefei, China
| |
Collapse
|
2
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Thasweer AM, Renuka Devi P, Thirunavukkarasu V. Molecular docking and dynamic simulation studies of α4β2 and α7 nicotinic acetylcholine receptors with tobacco smoke constituents nicotine, NNK and NNN. J Biomol Struct Dyn 2023; 41:8462-8471. [PMID: 36270967 DOI: 10.1080/07391102.2022.2135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2022]
Abstract
Smoking constitutes a major global health problem. As it triggers various health hazards including cancers, cardiac and pulmonary illness, it is imperative to understand the mechanism of action of various smoke constituents on our cellular processes. Various in vitro studies have compiled the affinity of cigarette smoke constituents on various nicotinic acetylcholine receptors (nAChRs). But the nature of the intermolecular interactions contributing to this affinity and the key amino acids in the receptor active sites involved in this are not investigated so far. Here, we are examining the interaction of α7nAChR and α4β2nAChR on nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosornicotine (NNN), the physiologically significant constituents in smoke, through molecular docking and dynamics simulations study. The docking of α4β2nAChR structure with the ligands nicotine, NNK and NNN yielded docking scores of -41.45 kcal/mol, -59.28 kcal/mol and -54.60 kcal/mol, respectively, and that of α7nAChR receptor molecule with the ligands yielded docking scores of -59.54 kcal/mol, -71.06 kcal/mol and -70.86 kcal/mol, respectively. The study showed that NNK exhibited the highest affinity with the ligands which was confirmed by dynamics simulation. But higher stability of interactions as surmised from Molecular dynamics simulations was found for nicotine with α4β2nAChR and NNN with α7nAChR. The findings validate the in vitro studies comparing the affinities of these compounds. The study will be useful in formulating effective nAChR agonists to treat neurological disorders and antagonists for smoke deaddiction and improve health standards.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A M Thasweer
- Department of Biotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, India
| | - P Renuka Devi
- Department of Biotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, India
| | - Velusamy Thirunavukkarasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Chellappan S. Smoking Cessation after Cancer Diagnosis and Enhanced Therapy Response: Mechanisms and Significance. Curr Oncol 2022; 29:9956-9969. [PMID: 36547196 PMCID: PMC9776692 DOI: 10.3390/curroncol29120782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The adverse effects of smoking on human health have been recognized for several decades, especially in the context of cancer. The ability of tobacco smoke components, including tobacco-specific carcinogens and additive compounds such as nicotine, to initiate or promote tumor growth have been described in hundreds of studies. These investigations have revealed the tumor-promoting activities of nicotine and other tobacco smoke components and have also recognized the ability of these agents to suppress the efficacy of cancer therapy; it is now clear that smoking can reduce the efficacy of most of the widely used therapeutic modalities, including immunotherapy, radiation therapy, and chemotherapy. Several studies examined if continued smoking after cancer diagnosis affected therapy response; it was found that while never smokers or non-smokers had the best response to therapy, those who quit smoking at the time of diagnosis had higher overall survival and reduced side-effects than those who continued to smoke. These studies also revealed the multiple mechanisms via which smoking enhances the growth and survival of tumors while suppressing therapy-induced cell death. In conclusion, smoking cessation during the course of cancer therapy markedly increases the chances of survival and the quality of life.
Collapse
Affiliation(s)
- Srikumar Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022; 11:2277. [PMID: 35892574 PMCID: PMC9330437 DOI: 10.3390/cells11152277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cigarette smoke is a rich source of carcinogens and reactive oxygen species (ROS) that can damage macromolecules including DNA. Repair systems can restore DNA integrity. Depending on the duration or intensity of stress signals, cells may utilize various survival and adaptive mechanisms. ROS levels are kept in check through redundant detoxification processes controlled largely by antioxidant systems. This review covers and expands on the mechanisms available to cigarette smoke-exposed cancer cells for restoring the redox balance. These include multiple layers of transcriptional control, each of which is posited to be activated upon reaching a particular stress threshold, among them the NRF2 pathway, the AP-1 and NF-kB pathways, and, finally, TP53, which triggers apoptosis if extreme toxicity is reached. The review also discusses long noncoding RNAs, which have been implicated recently in regulating oxidative stress-with roles in ROS detoxification, the inflammatory response, oxidative stress-induced apoptosis, and mitochondrial oxidative phosphorylation. Lastly, the emerging roles of tunneling nanotubes in providing additional mechanisms for metabolic rescue and the regulation of redox imbalance are considered, further highlighting the expanded redox reset arsenal available to cells.
Collapse
Affiliation(s)
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
6
|
Khodabandeh Z, Valilo M, Velaei K, Pirpour Tazehkand A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer 2022; 29:778-789. [PMID: 35583594 DOI: 10.1007/s12282-022-01369-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
A large body of research studying the relationship between tobacco and cancer has led to the knowledge that smoking cigarettes adversely affects cancer treatment while contributing to the development of various tobacco-related cancers. Nicotine is the main addictive component of tobacco smoke and promotes angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT) while promoting growth and metastasis of tumors. Nicotine generally acts through the induction of the nicotinic acetylcholine receptors (nAChRs), although the contribution of other receptor subunits has also been reported. Nicotine contributes to the pathogenesis of a wide range of cancers including breast cancer through its carcinogens such as (4-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN). Current study aims to review the mechanistic function of nicotine in the initiation, development, angiogenesis, invasion, metastasis, and apoptosis of breast cancer with the main focus on nicotine acetylcholine receptors (nAChRs) and nAChR-mediated signaling pathways as well as on its potential for the development of an effective treatment against breast cancer. Moreover, we will try to demonstrate how nicotine leads to poor treatment response in breast cancer by enhancing the population, proliferation, and self-renewal of cancer stem cells (CSCs) through the activation of α7-nAChR receptors.
Collapse
Affiliation(s)
- Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abbas Pirpour Tazehkand
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Shikata M, Toyooka T, Komaki Y, Ibuki Y. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone-Induced Histone Acetylation via α7nAChR-Mediated PI3K/Akt Activation and Its Impact on γ-H2AX Generation. Chem Res Toxicol 2021; 34:2512-2521. [PMID: 34784199 DOI: 10.1021/acs.chemrestox.1c00287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A typical tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is known as a strong carcinogen. We previously reported that metabolized NNK induced histone H2AX phosphorylation (γ-H2AX), a DNA damage-induced histone modification. In this study, we found that NNK globally acetylated histone H3, which affected γ-H2AX generation. Human lung adenocarcinoma A549 was treated with several doses of NNK. NNK induced dose-dependent global histone H3 acetylation (Ac-H3), at 2 to 12 h after the treatment, independent of the cell cycle. The Ac-H3 pattern was not affected by CYP2A13 overexpression unlike γ-H2AX, indicating no requirement of NNK metabolism to induce Ac-H3. Immunofluorescence staining of Ac-H3 was uniform throughout the nucleus, whereas γ-H2AX was formed as foci and did not coincide with Ac-H3. Nicotinic receptor antagonist methyllycaconitine inhibited Ac-H3 and also γ-H2AX. Phosphoinositide-3-kinase (PI3K)/Akt inhibitors, LY294002, wortmannin, and GSK690693, also suppressed both Ac-H3 and γ-H2AX, whereas KU-55933, an inhibitor of ataxia telangiectasia mutated (ATM) upstream of γ-H2AX, inhibited γ-H2AX but not Ac-H3. These results suggested that binding of NNK to the nicotinic acetylcholine receptor (α7nAChR) activated the PI3K/Akt pathway, resulting in Ac-H3. The activated pathway leading to Ac-H3 enhanced γ-H2AX, suggesting that NNK-induced DNA damage is impacted by the α7nAChR-mediated signal transduction pathway.
Collapse
Affiliation(s)
- Mariko Shikata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsushi Toyooka
- National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-ku, Kawasaki 214-8585, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
8
|
Sharma M, Shetty SS, Radhakrishnan R. Novel Pathways and Mechanism of Nicotine-Induced Oral Carcinogenesis. Recent Pat Anticancer Drug Discov 2021; 17:66-79. [PMID: 34365933 DOI: 10.2174/1574892816666210806161312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Smokeless Tobacco (SLT) contains 9 times more nicotine than Smoked Tobacco (SMT). The carcinogenic effect of nicotine is intensified by converting nicotine-to-nicotine-derived Nitrosamines (NDNs). METHODS A review of the literature was conducted with a tailored search strategy to unravel the novel pathways and mechanisms of nicotine-induced oral carcinogenesis. RESULTS Nicotine and NDNs act on nicotinic Acetylcholine Receptors (nAChRs) as agonists. Nicotine facilitates cravings through α4β2nAChR and α7nAChR, via enhanced brain dopamine release. Nicotine binding to nAChR promotes proliferation, migration, invasion, chemoresistance, radioresistance, and metastasis of oral cancer cells. Nicotine binding to α7nAChR on keratinocytes triggers Ras/Raf-1/MEK1/ERK cascade promoting anti-apoptosis and pro-proliferative effects. Furthermore, the nicotine-enhanced metastasis is subdued on nAChR blockade through reduced nuclear localization of p-EGFR. CONCLUSION Protracted exposure to nicotine/NDN augments cancer-stimulatory α7nAChR and desensitizes cancer inhibitory α4β2nAChR. Since nAChRs dictate both addictive and carcinogenic effects of nicotine, it seems counterintuitive to designate nicotine just as an addictive agent devoid of any carcinogenicity.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad - 121004. India
| | - Smitha S Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal, (Karnataka). India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal - 576104. India
| |
Collapse
|
9
|
Yi X, Li W, Wang Y, Chen X, Ye F, Sun G, Chen J. The relationship between CHRNA5/A3/B4 gene cluster polymorphisms and lung cancer risk: An updated meta-analysis and systematic review. Medicine (Baltimore) 2021; 100:e24355. [PMID: 33578531 PMCID: PMC7886493 DOI: 10.1097/md.0000000000024355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Genetic polymorphisms in the 15q25 region have been associated with the risk of lung cancer (LC). However, studies have yielded conflicting results. METHODS Searches were conducted in databases, including PubMed, EMbase, Web of Science, CNKI, and Wanfang, for case-control studies up to August 1, 2019. After retrieving eligible studies and data extraction, we calculated pooled odds ratios with 95% confidence intervals. In the meta-analysis, we included 32 publications with a total of 52,795 patients with LC and 97,493 control cases to evaluate the polymorphisms in the CHRNA5/A3/B4 gene cluster in the 15q25 region. RESULTS Data of the meta-analysis showed a significantly increased risk of LC in the presence of genetic polymorphisms (rs1051730, rs16969968, rs8034191). In the smoking subgroup, the CHRNA3 rs1051730 polymorphism was found to contribute to LC risk using following 5 models: the allelic model, the homozygous model, the heterozygous model, the dominant model, and the recessive model. Thus, the rs1051730 polymorphism may modify LC susceptibility under the condition of smoking. Stratification studies for CHRNA5-rs8034191 showed that Caucasian groups with the wild-type genotype (C/C) may be susceptible to LC in all 5 models. No significant relationship between CHRNA3 rs6495309 or rs3743073 and LC susceptibility was found. However, Asians with the rs3743037 B-allele showed an obviously higher risk of LC susceptibility than the Caucasian population, observed via allelic, heterozygous, and dominant models. CONCLUSIONS The 3 polymorphisms of rs1051730, rs16969968 and rs8034191 in the CHRNA5/A3/B4 gene cluster in the 15q25 region were associated with LC risk, which might be influenced by ethnicity and smoking status.
Collapse
Affiliation(s)
- Xingxu Yi
- Department of Pathology and Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences
| | - Wanzhen Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University
| | - Yiyuan Wang
- Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui
| | - Xueran Chen
- Department of Pathology and Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences
| | - Fang Ye
- Department of Pathology and Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University
| | - Jingxian Chen
- National Clinical Research Center for Respiratory Diseases, Guangzhou Medical University & KingMed Diagnostics Inc., Guangzhou, China
| |
Collapse
|
10
|
Sarlak S, Lalou C, Amoedo ND, Rossignol R. Metabolic reprogramming by tobacco-specific nitrosamines (TSNAs) in cancer. Semin Cell Dev Biol 2020; 98:154-166. [PMID: 31699542 DOI: 10.1016/j.semcdb.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer and the link between oncogenes activation, tumor supressors inactivation and bioenergetics modulation is well established. However, numerous carcinogenic environmental factors are responsible for early cancer initiation and their impact on metabolic reprogramming just starts to be deciphered. For instance, it was recently shown that UVB irradiation triggers metabolic reprogramming at the pre-cancer stage with implication for skin cancer detection and therapy. These observations foster the need to study the early changes in tissue metabolism following exposure to other carcinogenic events. According to the International Agency for Research on Cancer (IARC), tobacco smoke is a major class I-carcinogenic environmental factor that contains different carcinogens, but little is known on the impact of tobacco smoke on tissue metabolism and its participation to cancer initiation. In particular, tobacco-specific nitrosamines (TSNAs) play a central role in tobacco-smoke mediated cancer initiation. Here we describe the recent advances that have led to a new hypothesis regarding the link between nitrosamines signaling and metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Claude Lalou
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Nivea Dias Amoedo
- CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Rodrigue Rossignol
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France; CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
11
|
Cheng WL, Chen KY, Lee KY, Feng PH, Wu SM. Nicotinic-nAChR signaling mediates drug resistance in lung cancer. J Cancer 2020; 11:1125-1140. [PMID: 31956359 PMCID: PMC6959074 DOI: 10.7150/jca.36359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Cigarette smoking is the most common risk factor for lung carcinoma; other risks include genetic factors and exposure to radon gas, asbestos, secondhand smoke, and air pollution. Nicotine, the primary addictive constituent of cigarettes, contributes to cancer progression through activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated ion channels. Activation of nicotine/nAChR signaling is associated with lung cancer risk and drug resistance. We focused on nAChR pathways activated by nicotine and its downstream signaling involved in regulating apoptotic factors of mitochondria and drug resistance in lung cancer. Increasing evidence suggests that several sirtuins play a critical role in multiple aspects of cancer drug resistance. Thus, understanding the consequences of crosstalk between nicotine/nAChRs and sirtuin signaling pathways in the regulation of drug resistance could be a critical implication for cancer therapy.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, Mokhtarzadeh A, Shanehbandi D, Doustvandi MA, Asadzadeh Z, Baradaran B. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? J Cell Physiol 2019; 234:14666-14679. [PMID: 30701535 DOI: 10.1002/jcp.28220] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
The lung tissue expresses the cholinergic system including nicotinic acetylcholine receptors (nAChRs) which included in many physiologic and pathologic processes. Mounting evidence revealed that these receptors have important roles in lung carcinogenesis via modulating either stimulatory or inhibitory signaling pathways. Among different members of nicotinic receptors family, alpha7-subtype of nAChR (α7nAChR) is a critical mediator involved in both inflammatory responses and cancers. Several studies have shown that this receptor is the most powerful regulator of responses that stimulate lung cancer processes such as proliferation, angiogenesis, metastasis, and inhibition of apoptosis. Moreover, aside from its roles in the regulation of cancer pathways, there is growing evidence indicating that α7nAChR has profound impacts on lung inflammation through the cholinergic anti-inflammatory pathway. Regarding such diverse effects as well as the critical roles of nicotine as an activator of α7nAChR on lung cancer pathogenesis, its modulation has emerged as a promising target for drug developments. In this review, we aim to highlight the detrimental as well as the possible beneficial influences of α7nAChR downstream signaling cascades in the control of lung inflammation and cancer-associated properties. Consequently, by considering the significant global burden of lung cancer, delineating the complex influences of α7 receptors would be of great interest in designing novel anticancer and anti-inflammatory strategies for the patients suffering from lung cancer.
Collapse
Affiliation(s)
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Abstract
Introduction: Smoking is the main preventable cause of lung cancer. This review summarizes preclinical and clinical data on the mechanisms of smoking-associated cancer development of the major histological lung cancer types small cell lung carcinoma squamous cell carcinoma and pulmonary adenocarcinoma (PAC) and the impact of several factors other than smoking on this process. Areas covered: The role of intracellular signaling induced by nicotinic receptors and beta-adrenergic receptors, the resulting increase in intracellular cyclic adenosine monophosphate (cAMP) as a key driver of PAC and the promoting effects of respiratory tract diseases and their therapeutics, psychological stress and global warming. Expert opinion: Smoking has deleterious effects on the regulation of lung epithelia by neurotransmitter receptors that are further enhanced by gene mutations. Sensitization of the alpha-7 nicotinic receptor (α7nAChR) by COPD enhances the carcinogenic effects of smoking and turns nicotine into a carcinogen. Nicotine vaping may, therefore, cause cancer in individuals with chronic obstructive pulmonary disease. The opposing effects of cAMP on the major lung cancer types indicate that patients with PAC of Clara cell phenotype (PAC-Cl) will benefit from treatment with cAMP reducers and suggest that global warming-induced respiratory tract diseases and their therapeutics cause the global increase in the incidence of PAC.
Collapse
Affiliation(s)
- Hildegard M Schuller
- a Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville , TN , USA
| |
Collapse
|
14
|
Schuller HM. Inhibitory role of G i-coupled receptors on cAMP-driven cancers with focus on opioid receptors in lung adenocarcinoma and its stem cells. VITAMINS AND HORMONES 2019; 111:299-311. [PMID: 31421705 DOI: 10.1016/bs.vh.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development, progression, metastasis and drug resistance of the most common human cancers are driven by cyclic adenosine monophosphate (cAMP)-signaling downstream of beta-adrenergic receptors (β-Ars) coupled to the stimulatory G-protein Gs. Receptors coupled to the inhibitory G-protein Gi inhibit this signaling cascade by blocking the activation of the enzyme adenylyl cyclase that catalyzes the formation of cAMP and function as the physiological inhibitors of this signaling cascade. Members of the Gi-coupled receptor family widely expressed in the mammalian organism are GABA B receptors (GABAB-Rs) for the inhibitory neurotransmitter γ-aminobutyric acid (GABA), opioid receptors for endogenous opioid peptides and cannabinoid receptors for endogenous cannabinoids. This review summarizes current evidence for the concept that the activation of Gi-receptor signaling by pharmacological and psychological means is a promising tool for the long-term management of cAMP-driven cancers with special emphasis on the inhibitory effects of opioids on lung adenocarcinoma and its stem cells.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Department of Biomedical & Diagnostic Science, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
15
|
Effects of β-Adrenergic Antagonists on Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer. J Clin Med 2019; 8:jcm8050575. [PMID: 31035526 PMCID: PMC6572477 DOI: 10.3390/jcm8050575] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023] Open
Abstract
Introduction: Locally advanced non-small cell lung cancer (NSCLC) is highly resistant to chemoradiotherapy, and many cancer patients experience chronic stress. Studies that suggest stimulation of β-adrenergic receptors (β-AR) promotes tumor invasion and therapy resistance. We investigated whether β-AR inhibition with beta-blockers acts as a chemotherapy and radiation sensitizer in vitro and in patients treated with chemoradiation for locally advanced NSCLC. Methods: We investigated the effects of the non-selective beta-blocker propranolol on two human lung adenocarcinoma cell lines (PC9, A549) treated with radiation or cisplatin. We retrospectively evaluated 77 patients with Stage IIIA NSCLC who received induction chemoradiation followed by surgery. Pathological and imaging response, metastatic rate, and survival were analyzed using SPSS v22.0 and PrismGraphpad6. Results: Propranolol combined with radiation or cisplatin decreased clonogenic survival of PC9 and A549 cells in vitro (p < 0.05). Furthermore, propranolol decreased expression of phospho-protein kinase A (p-PKA), a β-adrenergic pathway downstream activation target, in both cell lines compared to irradiation or cisplatin alone (p < 0.05). In patients treated for Stage IIIA NSCLC, 16 took beta-blockers, and 61 did not. Beta-blockade is associated with a trend to improved overall survival (OS) at 1 year (81.3% vs 57.4%, p = 0.08) and distant metastasis-free survival (DMFS) (2.6 years vs. 1.3 years, p = 0.16). Although beta-blocker use was associated with decreased distant metastases (risk ratio (RR) 0.19; p = 0.03), it did not affect primary tumor pathological response (p = 0.40) or imaging response (p = 0.36). Conclusions: β-AR blockade enhanced radiation and cisplatin sensitivity of human lung cancer cells in vitro. Use of beta-blockers is associated with decreased distant metastases and potentially improved OS and DMFS. Additional studies are warranted to evaluate the role of beta-blockers as a chemoradiation sensitizer in locally advanced NSCLC.
Collapse
|
16
|
Abstract
This mini-review summarizes current knowledge on similarities and synergism between smoking and psychological stress-induced modulations of growth stimulating and inhibiting regulatory networks in epithelial cells and epithelial cancers with emphasis on cancer stimulating neurotransmitters and their receptors as well as cancer inhibiting γ-aminobutyric acid (GABA) and opioids. Hyperactive cAMP signaling downstream of beta-adrenergic receptors (β-ARs) has been identified as the driving force of most smoking-associated cancers by numerous preclinical studies and psychological stress intensifies these effects while experimental stress reduction inhibits. The integration of cAMP reduction via stress reduction by pharmacological and psychological means such as psychotherapy, relaxation meditation and yoga into any cancer treatment strategy is recommended.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| |
Collapse
|
17
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
18
|
Cedillo JL, Bordas A, Arnalich F, Esteban-Rodríguez I, Martín-Sánchez C, Extremera M, Atienza G, Rios JJ, Arribas RL, Montiel C. Anti-tumoral activity of the human-specific duplicated form of α7-nicotinic receptor subunit in tobacco-induced lung cancer progression. Lung Cancer 2018; 128:134-144. [PMID: 30642446 DOI: 10.1016/j.lungcan.2018.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Tobacco smoking is strongly correlated with the onset and progression of non-small cell lung cancer (NSCLC). By activating α7 nicotinic acetylcholine receptors (α7-nAChRs) in these tumors nicotine and its tobacco-derived nitrosamine, NNK, contribute to these oncogenic processes. Here, we investigated whether the human-specific duplicated form of the α7-nAChR subunit (dupα7) behaves as an endogenous negative regulator of α7-nAChR-mediated tumorigenic activity induced by tobacco in NSCLC cells, similarly to its influence on other α7-nAChR-controlled functions in non-tumor cells. METHODS Two human NSCLC cell lines, lung adenocarcinoma (A549) and squamous cell carcinoma of the lung (SK-MES-1), both wild-type or with stable overexpression of dupα7 (A549dupα7 or SK-MES-1dupα7), were used to investigate in vitro anti-tumor activity of dupα7 on nicotine- or NNK-induced tumor progression. For this purpose, migration, proliferation or epithelial-mesenchymal transition (EMT) were examined. The anti-tumor effect of dupα7 on nicotine-promoted tumor growth, proliferation or angiogenesis was also assessed in vivo in an athymic mouse model implanted with A549dupα7 or A549 xenografts. RESULTS Overexpression of dupα7 in both cell lines almost completely suppresses the in vitro tumor-promoting effects induced by nicotine (1 μM) or NNK (100 nM) in wild-type cells. Furthermore, in mice receiving nicotine, A549dupα7 xenografts show: (i) a significant reduction of tumor growth, and (ii) decreased expression of cell markers for proliferation (Ki67) or angiogenesis (VEGF) compared to A549 xenografts. CONCLUSION Our study demonstrates, for the first time, the in vitro and in vivo anti-tumor capacity of dupα7 to block the α7-nAChR-mediated tumorigenic effects of tobacco in NSCLC, suggesting that up-regulation of dupα7 expression in these tumors could offer a potential new therapeutic target in smoking-related cancers.
Collapse
Affiliation(s)
- José Luis Cedillo
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Anna Bordas
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Francisco Arnalich
- Internal Medicine Service, University Hospital La Paz of Madrid-IdiPAZ, Madrid, Spain.
| | | | - Carolina Martín-Sánchez
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - María Extremera
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Gema Atienza
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Juan J Rios
- Internal Medicine Service, University Hospital La Paz of Madrid-IdiPAZ, Madrid, Spain
| | - Raquel L Arribas
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Carmen Montiel
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain.
| |
Collapse
|
19
|
Designing selective modulators for the nicotinic receptor subtypes: challenges and opportunities. Future Med Chem 2018; 10:433-459. [PMID: 29451400 DOI: 10.4155/fmc-2017-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nicotinic receptors are membrane proteins involved in several physiological processes. They are considered suitable drug targets for various CNS disorders or conditions, as shown by the large number of compounds which have entered clinical trials. In recent years, nonconventional agonists have been discovered: positive allosteric modulators, allosteric agonists, site-specific agonists and silent desensitizers are compounds able to modulate the receptor interacting at sites different from the orthodox one, or to desensitize the receptor without prior opening. While these new findings can further complicate the pharmacology of these proteins and the design and optimization of ligands, they undoubtedly offer new opportunities to find drugs for the many therapeutic indications involving nicotinic receptors.
Collapse
|
20
|
Huang LC, Lin CL, Qiu JZ, Lin CY, Hsu KW, Tam KW, Lee JY, Yang JM, Lee CH. Nicotinic Acetylcholine Receptor Subtype Alpha-9 Mediates Triple-Negative Breast Cancers Based on a Spontaneous Pulmonary Metastasis Mouse Model. Front Cell Neurosci 2017; 11:336. [PMID: 29163048 PMCID: PMC5675882 DOI: 10.3389/fncel.2017.00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) subtype is associated with poor prognosis and a high risk of recurrence-related death in women. Despite the aggressiveness of TNBCs, targeted TNBC therapy is not yet available in the clinic. To overcome this challenge, we generated highly metastatic TNBC cells (LM) derived from metastasized lung cells via a serial spontaneous pulmonary metastasis animal model to identify targetable molecules for attenuating the progression of TNBC metastasis. Gene analysis of primary tumor (P), first-round (1LM) and second-round (2LM) metastasized lung cells revealed that mesenchymal-related genes were significantly expressed in LM cells, especially in 2LM cells. Interestingly, α9-nAChR gene expression was also dramatically induced in LM cells, confirming our previous finding that α9-nAChR plays important roles in receptor-mediated carcinogenic signals in human breast cancer development. Using α9-nAChR as a biomarker, we transfected 2LM cells with CRISPR/Cas9 lentivirus targeting the α9-nAChR genomic region (2LM-α9-nAChR-null), showing that mesenchymal markers and the migration and invasion abilities of 2LM cells were significantly attenuated in 2LM-α9-nAChR-null cells both in vitro and in vivo. In addition, the high efficiency of editing the α9-nAChR gene using a CRISPR/Cas9 lentivirus was demonstrated by gene sequencing, genomic indel frequency and protein expression analyses. Collectively, these results confirmed those of our previous study that advanced-stage breast tumors are associated with substantially higher levels of α9-nAChR gene expression, indicating that α9-nAChR expression is essential for mediating TNBC metastasis during cancer development and may potentially act as a biomarker for targeted therapy in clinical investigations.
Collapse
Affiliation(s)
- Li-Chi Huang
- Department of Endocrinology, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Ling Lin
- Department of Endocrinology, Cathay General Hospital, Taipei, Taiwan
| | - Jia-Zheng Qiu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Ka-Wai Tam
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jung-Yu Lee
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
21
|
Gankhuyag N, Lee KH, Cho JY. The Role of Nitrosamine (NNK) in Breast Cancer Carcinogenesis. J Mammary Gland Biol Neoplasia 2017; 22:159-170. [PMID: 28664511 PMCID: PMC5579148 DOI: 10.1007/s10911-017-9381-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Smoking cigarettes is one of the most concerning issues that leads to tobacco-related cancers and can even result in death. Therefore, these issues should be addressed with a great sense of urgency with low-cost and simple approaches. Over the past several years, the scientific community has attempted to find solutions to overcome this issue. Thus, a large number of excellent studies have been reported in this field, and summarizing these results and providing important roadmaps for future studies is currently of great importance. Finding an outstanding solution to address aforementioned issue would be of great value to the community and to the social. Tobacco contains thousands of chemicals, and sixty-nine compounds have been established as human carcinogens; specifically, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the strongest carcinogen among the tobacco-specific nitrosamines. Tobacco carcinogens are also linked to mammary gland pathogenesis and increased risk of developing many cancers, including breast cancer, the most common cancer in women worldwide. This mini-review summarizes the role of NNK and the mechanisms of its receptor, nicotine acetylcholine receptor (nAChR), signaling in breast cancer based on publications identified using the keywords "secondhand smoke (SHS)", "Nitrosamines" and "breast cancer". Furthermore, this review considers the risk of NNK to the public in an effort to reduce exposure to SHS in women and their chances of developing breast cancer.
Collapse
Affiliation(s)
- Nomundelger Gankhuyag
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
22
|
Expression patterns for nicotinic acetylcholine receptor subunit genes in smoking-related lung cancers. Oncotarget 2017; 8:67878-67890. [PMID: 28978081 PMCID: PMC5620221 DOI: 10.18632/oncotarget.18948] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/17/2017] [Indexed: 01/03/2023] Open
Abstract
Cigarette smoking is associated with increased risk for all histologic types of lung cancer, but why the strength of this association is stronger for squamous cell carcinoma than adenocarcinoma of the lung (SQC-L, ADC-L) is not fully understood. Because nicotine and tobacco-specific nitrosamines contribute to carcinogenesis by activating nicotinic acetylcholine receptors (nAChRs) on lung tumors and epithelial cells, we investigated whether differential expression of nAChR subtypes in these tumors could explain their different association with smoking. Expression of nAChR subunit genes in paired tumor and non-tumor lung specimens from 40 SQC-L and 38 ADC-L patients was analyzed by quantitative PCR. Compared to normal lung, both tumors share: i) transcriptional dysregulation of CHRNA3/CHRNA5/CHRNB4 (α3, α5, β4 subunits) at the chromosomal locus that predisposes to lung cancer; and ii) decreased expression of CHRFAM7A (dupα7 subunit); this last subunit negatively modulates α7-nAChR activity in oocytes. In contrast, CHRNA7 (α7 subunit) expression was increased in SQC-L, particularly in smokers and non-survivors, while CHRNA4 (α4 subunit) expression was decreased in ADC-L. Thus, over-representation of cancer-stimulating α7-nAChR in SQC-L, also potentiated by smoking, and under-representation of cancer-inhibiting α4β2-nAChR in ADC-L could explain the different tobacco influences on the tumorigenic process in each cancer type.
Collapse
|
23
|
Borowska S, Brzóska MM. Chokeberries (Aronia melanocarpa
) and Their Products as a Possible Means for the Prevention and Treatment of Noncommunicable Diseases and Unfavorable Health Effects Due to Exposure to Xenobiotics. Compr Rev Food Sci Food Saf 2016; 15:982-1017. [DOI: 10.1111/1541-4337.12221] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Sylwia Borowska
- Borowska and Brzóska are with Dept. of Toxicology; Medical Univ. of Bialystok; Bialystok Poland
| | - Malgorzata M. Brzóska
- Borowska and Brzóska are with Dept. of Toxicology; Medical Univ. of Bialystok; Bialystok Poland
| |
Collapse
|
24
|
Schaal C, Chellappan S. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors. PLoS One 2016; 11:e0156451. [PMID: 27228072 PMCID: PMC4882068 DOI: 10.1371/journal.pone.0156451] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/14/2016] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC), which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine–mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.
Collapse
Affiliation(s)
- Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Cancer Biology PhD Program, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Srikumar Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhao Y. The Oncogenic Functions of Nicotinic Acetylcholine Receptors. JOURNAL OF ONCOLOGY 2016; 2016:9650481. [PMID: 26981122 PMCID: PMC4769750 DOI: 10.1155/2016/9650481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhao
- Center of Cell biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
26
|
Abstract
Lung cancers express an autocrine cholinergic loop in which secreted acetylcholine can stimulate tumor growth through both nicotinic and muscarinic receptors. Because activation of mAChR and nAChR stimulates growth; tumor growth can be stimulated by both locally synthesized acetylcholine as well as acetylcholine from distal sources and from nicotine in the high percentage of lung cancer patients who are smokers. The stimulation of lung cancer growth by cholinergic agonists offers many potential new targets for lung cancer therapy. Cholinergic signaling can be targeted at the level of choline transport; acetylcholine synthesis, secretion and degradation; and nicotinic and muscarinic receptors. In addition, the newly describe family of ly-6 allosteric modulators of nicotinic signaling such as lynx1 and lynx2 offers yet another new approach to novel lung cancer therapeutics. Each of these targets has their potential advantages and disadvantages for the development of new lung cancer therapies which are discussed in this review.
Collapse
Affiliation(s)
- Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
27
|
Dhouib H, Jallouli M, Draief M, Bouraoui S, El-Fazâa S. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol. ACTA ACUST UNITED AC 2015; 63:258-67. [PMID: 26586280 DOI: 10.1016/j.patbio.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/07/2015] [Indexed: 10/24/2022]
Abstract
Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol may moderate the effect of nicotine administered independently by counteractive interactions between these two drugs.
Collapse
Affiliation(s)
- H Dhouib
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University, 2092 Tunis, Tunisia.
| | - M Jallouli
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University, 2092 Tunis, Tunisia
| | - M Draief
- Department of anatomopathology, El Mongi Slim hospital, La Marsa, Tunis, Tunisia
| | - S Bouraoui
- Department of anatomopathology, El Mongi Slim hospital, La Marsa, Tunis, Tunisia
| | - S El-Fazâa
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University, 2092 Tunis, Tunisia
| |
Collapse
|
28
|
Lee ATK, Xu Z, Pothula SP, Patel MB, Pirola RC, Wilson JS, Apte MV. Alcohol and cigarette smoke components activate human pancreatic stellate cells: implications for the progression of chronic pancreatitis. Alcohol Clin Exp Res 2015; 39:2123-33. [PMID: 26463405 DOI: 10.1111/acer.12882] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/16/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic pancreatitis, a known complication of alcohol abuse, is characterized histopathologically by prominent fibrosis. Pancreatic stellate cells (PSCs) are responsible for producing this fibrous tissue in chronic pancreatitis and are activated by alcohol. Progression of alcoholic chronic pancreatitis (as assessed by calcification and fibrosis) is thought to be facilitated by concurrent smoking, but the mechanisms are unknown. This study aimed to (a) determine whether human PSCs (hPSCs) and rat PSCs express nicotinic acetylcholine receptors (nAChRs), which are known to bind 2 important components of cigarette smoke, namely nicotine and nicotine-derived nitrosamine ketone (NNK), and (b) examine the effects of cigarette smoke components in the presence and absence of alcohol on PSC activation in vitro. METHODS Western blotting was used to detect the presence of nAChRs in primary cultures of PSCs. Clinically relevant concentrations of cigarette smoke components (either cigarette smoke extract [CSE], NNK, or nicotine) ± ethanol (EtOH) were used to treat primary cultures of PSCs, and stellate cell activation was assessed by cell migration, proliferation, collagen production, and apoptosis. RESULTS We demonstrate, for the first time, that PSCs express nAChRs (isoforms α3, α7, β, ε) and that the expression of the α7 isoform in hPSCs is induced by CSE + EtOH. We also provide novel findings that PSCs are activated by CSE and NNK (both alone and in combination with EtOH) as evidenced by an increase in cell migration and/or proliferation. Further, we demonstrate that activation of PSCs by CSE + EtOH and NNK + EtOH may be mediated via nAChRs on the cells. CONCLUSIONS PSCs are activated by clinically relevant concentrations of cigarette smoke components (CSE and NNK), alone and in combination with EtOH. Thus, in alcoholics who smoke, progression of pancreatic fibrosis may be facilitated by the combined effects of alcohol and cigarette smoke components on hPSC behavior.
Collapse
Affiliation(s)
- Alexandra T K Lee
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Mishaal B Patel
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| |
Collapse
|
29
|
Brusco S, Ambrosi P, Meneghini S, Becchetti A. Agonist and antagonist effects of tobacco-related nitrosamines on human α4β2 nicotinic acetylcholine receptors. Front Pharmacol 2015; 6:201. [PMID: 26441658 PMCID: PMC4585029 DOI: 10.3389/fphar.2015.00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
Regulation of the “neuronal” nicotinic acetylcholine receptors (nAChRs) is implicated in both tobacco addiction and smoking-dependent tumor promotion. Some of these effects are caused by the tobacco-derived N-nitrosamines, which are carcinogenic compounds that avidly bind to nAChRs. However, the functional effects of these drugs on specific nAChR subtypes are largely unknown. By using patch-clamp methods, we tested 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) on human α4β2 nAChRs. These latter are widely distributed in the mammalian brain and are also frequently expressed outside the nervous system. NNK behaved as a partial agonist, with an apparent EC50 of 16.7 μM. At 100 μM, it activated 16% of the maximal current activated by nicotine. When NNK was co-applied with nicotine, it potentiated the currents elicited by nicotine concentrations ≤ 100 nM. At higher concentrations of nicotine, NNK always inhibited the α4β2 nAChR. In contrast, NNN was a pure inhibitor of this nAChR subtype, with IC50 of approximately 1 nM in the presence of 10 μM nicotine. The effects of both NNK and NNN were mainly competitive and largely independent of Vm. The different actions of NNN and NNK must be taken into account when interpreting their biological effects in vitro and in vivo.
Collapse
Affiliation(s)
- Simone Brusco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Paola Ambrosi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
30
|
Ge GZ, Xu TR, Chen C. Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms. Acta Biochim Biophys Sin (Shanghai) 2015; 47:477-87. [PMID: 26040315 DOI: 10.1093/abbs/gmv041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022] Open
Abstract
Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.
Collapse
Affiliation(s)
- Guang-Zhe Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
31
|
Kesh K, Subramanian L, Ghosh N, Gupta V, Gupta A, Bhattacharya S, Mahapatra NR, Swarnakar S. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB). J Biol Chem 2015; 290:14391-406. [PMID: 25847246 DOI: 10.1074/jbc.m114.630129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 01/27/2023] Open
Abstract
Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.
Collapse
Affiliation(s)
- Kousik Kesh
- From the Drug Development Diagnostic and Biotechnology Division, Indian Institute of Chemical Biology, Kolkata 700032
| | - Lakshmi Subramanian
- the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, and
| | - Nillu Ghosh
- From the Drug Development Diagnostic and Biotechnology Division, Indian Institute of Chemical Biology, Kolkata 700032
| | - Vinayak Gupta
- the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, and
| | - Arnab Gupta
- the Saroj Gupta Cancer Center and Research Institute, Kolkata 700104, India
| | - Samir Bhattacharya
- the Saroj Gupta Cancer Center and Research Institute, Kolkata 700104, India
| | - Nitish R Mahapatra
- the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, and
| | - Snehasikta Swarnakar
- From the Drug Development Diagnostic and Biotechnology Division, Indian Institute of Chemical Biology, Kolkata 700032,
| |
Collapse
|
32
|
Song Y, Wang Y, Xu L, Ma J, Chen E, Zang R, Jia W, Tao X, Hu L. A genetic variant in CHRNB3-CHRNA6 increases risk of esophageal squamous cell carcinoma in Chinese populations. Carcinogenesis 2015; 36:538-42. [PMID: 25823894 DOI: 10.1093/carcin/bgv019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nicotinic acetylcholine receptors are important regulators of smoking behavior and tobacco carcinogenesis. We studied the association of the CHRNB3-A6 variant rs13280604 in relation to esophageal squamous cell carcinoma (ESCC) in Chinese populations. Two independent case-control studies were conducted. The first case-control study, consisted of 866 ESCC patients and 1621 healthy controls from Northern China, and the second case-control study consisted of 853 ESCC patients and 860 unrelated controls from Southern China. A logistic regression model was used to evaluate the associations of rs13280604 with cancer risk. We found that Rs13280604 GG/AG genotypes were significantly associated with increased risk for ESCC in both case-control studies from Northern [odds ratio (OR), 1.42, 95% confidence interval (CI), 1.19-1.70, P = 1.1×10(-4)], Southern China (OR, 1.56, 95% CI, 1.26-1.93, P = 5.2×10(-5)), and the combined population of both studies (OR, 1.44, 95% CI, 1.26-1.65, P = 8.7×10(-8)), respectively. Our results suggest that this CHRNB3-A6 variant confers susceptibility to ESCC risk. However, future larger studies are needed to validate our finding.
Collapse
Affiliation(s)
- Yipeng Song
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
| | - Yang Wang
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
| | - Li Xu
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinbo Ma
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
| | - Ercheng Chen
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
| | - Rukun Zang
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
| | - Weihua Jia
- Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Xiaofeng Tao
- Radiology Department, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China,
| | - Likuan Hu
- Radiation Oncology Department, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
33
|
Saracino L, Zorzetto M, Inghilleri S, Pozzi E, Stella GM. Non-neuronal cholinergic system in airways and lung cancer susceptibility. Transl Lung Cancer Res 2015; 2:284-94. [PMID: 25806244 DOI: 10.3978/j.issn.2218-6751.2013.06.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/11/2023]
Abstract
In the airway tract acetylcholine (ACh) is known to be the mediator of the parasympathetic nervous system. However ACh is also synthesized by a large variety of non-neuronal cells. Strongest expression is documented in neuroendocrine and in epithelial cells (ciliated, basal and secretory elements). Growing evidence suggests that a cell-type specific Ach expression and release do exist and act with local autoparacrine loop in the non-neuronal airway compartment. Here we review the molecular mechanism by which Ach is involved in regulating various aspects of innate mucosal defense, including mucociliary clearance, regulation of macrophage activation as well as in promoting epithelial cells proliferation and conferring susceptibility to lung carcinoma onset. Importantly this non-neuronal cholinergic machinery is differently regulated than the neuronal one and could be specifically therapeutically targeted.
Collapse
Affiliation(s)
- Laura Saracino
- Laboratory of Biochemistry & Genetics, Division of Pneumology, University and Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Michele Zorzetto
- Laboratory of Biochemistry & Genetics, Division of Pneumology, University and Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Simona Inghilleri
- Laboratory of Biochemistry & Genetics, Division of Pneumology, University and Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Ernesto Pozzi
- Policlinico di Monza, University of Pavia, Monza 20025, Italy
| | - Giulia Maria Stella
- Laboratory of Biochemistry & Genetics, Division of Pneumology, University and Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| |
Collapse
|
34
|
NNK, a tobacco-specific carcinogen, inhibits the expression of lysyl oxidase, a tumor suppressor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 12:64-82. [PMID: 25546273 PMCID: PMC4306850 DOI: 10.3390/ijerph120100064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022]
Abstract
A tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is believed to contribute to the cancer burden in cigarette smokers. To evaluate NNK effects on the expression of lysyl oxidase (LOX), a tumor suppressor, we examined this enzyme at various levels in NNK-treated rat fetal lung fibroblasts (RFL6). Exposure of cells to NNK reduced levels of steady-states LOX mRNA and new transcript synthesis. NNK inhibited all LOX protein species in a dose-dependent manner. Although 300 µM NNK markedly decreased the level in the 46 kDa preproenzyme, under same conditions, there was no detectable amounts of the 50 kDa proenzyme and the 32 kDa mature enzyme suggesting NNK perturbing the LOX protein processing to its mature form. Moreover, NNK also suppressed LOX activities in conditioned media of treated cells. At the promoter level, NNK enhanced methylation of CpG, but decreased acetylation of histone H3 at the core promoter region of the LOX gene. These results indicated that transcriptional and translational processes of LOX are major targets for NNK. Thus, inactivation of tumor suppressor gene LOX may play a critical role in NNK carcinogenesis.
Collapse
|
35
|
Akbar S, Alsharidah MS. Are Beta Blockers New Potential Anticancer Agents? Asian Pac J Cancer Prev 2014; 15:9567-74. [DOI: 10.7314/apjcp.2014.15.22.9567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Development of ferret as a human lung cancer model by injecting 4-(Nmethyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Lung Cancer 2014; 82:390-6. [PMID: 24396883 DOI: 10.1016/j.lungcan.2013.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Development of new animal lung cancer models that are relevant to human lung carcino-genesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone, NNK). In the present study, we investigated whether NNK treatment alone induces both preneoplastic and neoplastic lesions in the lungs of ferrets. METHODS We exposed ferrets to NNK by i.p. injection of NNK (50 mg/kg BW) once a month for four consecutive months and then followed up for 24, 26 and 32 weeks. The incidences of pulmonary pre-neoplastic and neoplastic lesions were assessed by histopathological examination. The expressions of 7 nicotinic acetylcholine receptor ( 7 nAChR, which has been shown to promote lung carcinogenesis)and its related molecular biomarkers in lungs were examined by immunohistochemistry and/or Western blotting analysis. RESULTS Ferrets exposed to NNK alone developed both preneoplastic lesions (squamous metaplasia, dysplasia and atypical adenomatous hyperplasia) and tumors (squamous cell carcinoma, adenocarcinoma and adenosquamous carcinoma), which are commonly seen in humans. The incidence of tumor induced by NNK was time-dependent in the ferrets (16.7%, 40.0% and 66.7% for 24, 26 and 32 weeks, respectively). 7 nAChR is highly expressed in the ferret bronchial/bronchiolar epithelial cells, and alveolar macrophages in ferrets exposed to NNK, and in both squamous cell carcinoma and adenocarcinoma of the ferrets. In addition, we observed the tendency for an increase in phospho-ERK and cyclin D1 protein levels (p = 0.081 and 0.080, respectively) in the lungs of ferrets exposed to NNK. CONCLUSION The development of both preneoplastic and neoplastic lesions in ferret lungs by injecting NNK alone provides a simple and highly relevant non-rodent model for studying biomarkers/molecular targets for the prevention, detection and treatment of lung carcinogenesis in humans.
Collapse
|
37
|
Xue J, Yang S, Seng S. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN. Cancers (Basel) 2014; 6:1138-56. [PMID: 24830349 PMCID: PMC4074821 DOI: 10.3390/cancers6021138] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 11/17/2022] Open
Abstract
Tobacco use is a major public health problem worldwide. Tobacco-related cancers cause millions of deaths annually. Although several tobacco agents play a role in the development of tumors, the potent effects of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are unique. Metabolically activated NNK and NNN induce deleterious mutations in oncogenes and tumor suppression genes by forming DNA adducts, which could be considered as tumor initiation. Meanwhile, the binding of NNK and NNN to the nicotinic acetylcholine receptor promotes tumor growth by enhancing and deregulating cell proliferation, survival, migration, and invasion, thereby creating a microenvironment for tumor growth. These two unique aspects of NNK and NNN synergistically induce cancers in tobacco-exposed individuals. This review will discuss various types of tobacco products and tobacco-related cancers, as well as the molecular mechanisms by which nitrosamines, such as NNK and NNN, induce cancer.
Collapse
Affiliation(s)
- Jiaping Xue
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Suping Yang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Seyha Seng
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
38
|
Schuller HM. Effects of tobacco constituents and psychological stress on the beta-adrenergic regulation of non-small cell lung cancer and pancreatic cancer: implications for intervention. Cancer Biomark 2014; 13:133-44. [PMID: 23912485 DOI: 10.3233/cbm-130323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes current preclinical and clinical evidence in support of the hypothesis that smoking and psychological stress have significant cancer promoting effects on non small cell lung cancer and pancreatic cancer via direct and indirect effects on nicotinic receptor-regulated beta-adrenergic signaling. Evidence is provided that targeted pharmacological interference with the resulting hyperactive cAMP-dependent signaling by beta-blockers or by γ-aminobutyric acid as well as positive psychological influences may be highly effective in preventing and improving clinical outcomes of these cancers, provided that appropriate diagnostic protocols are followed to monitor systemic levels of stress neurotransmitters and cAMP.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Experimental Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive Knoxville, TN 37996, USA.
| |
Collapse
|
39
|
Ta VT, Park J, Park EJ, Hong S. Reusable floating-electrode sensor for the quantitative electrophysiological monitoring of a nonadherent cell. ACS NANO 2014; 8:2206-2213. [PMID: 24490836 DOI: 10.1021/nn4053155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a reusable floating-electrode sensor based on aligned semiconducting single-walled carbon nanotubes for the quantitative monitoring of the electrophysiological responses from a nonadherent cell. This method allowed us to monitor and distinguish the real-time responses from normal and small-cell lung cancer (SCLC) cells to the addition of nicotine. The difference was attributed to the overexpressed nicotinic acetylcholine receptors (nAChRs) in the SCLC cells. The sensor was also utilized to monitor the effect of various drugs on the cells. The treatment with inhibitors such as genistin or daidzein was found to reduce Ca(2+) influx in SCLC cells. Moreover, tamoxifen, though known as the antiestrogen compound, was found to only partly block the binding of daidzein to nAChRs. Significantly, the activities of multiple individual cells could be measured repeatedly using a single sensor device, enabling statistically meaningful measurements without errors from the device-to-device variations of the sensor characteristics. This capability of the quantitative monitoring of nonadherent cells should be a major breakthrough for electrophysiology research and various biomedical applications such as drug screening and therapeutic monitoring.
Collapse
Affiliation(s)
- Van-Thao Ta
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University , Seoul 151-747, Korea
| | | | | | | |
Collapse
|
40
|
Schuller HM. Impact of neuro-psychological factors on smoking-associated lung cancer. Cancers (Basel) 2014; 6:580-94. [PMID: 24633083 PMCID: PMC3980616 DOI: 10.3390/cancers6010580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
Smoking has been extensively documented as a risk factor for all histological types of lung cancer and tobacco-specific nitrosamines and polycyclic aromatic hydrocarbons reproducibly cause lung cancer in laboratory rodents. However, the most common lung cancer, non-small cell lung cancer (NSCLC), frequently develops in never smokers and is particularly common in women and African Americans, suggesting that factors unrelated to smoking significantly impact this cancer. Recent experimental investigations in vitro and in animal models have shown that chronic psychological stress and the associated hyperactive signaling of stress neurotransmitters via β-adrenergic receptors significantly promote the growth and metastatic potential of NSCLC. These responses were caused by modulation in the expression and sensitization state of nicotinic acetylcholine receptors (nAChRs) that regulate the production of stress neurotransmitters and the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Similar changes in nAChR-mediated neurotransmitter production were identified as the cause of NSCLC stimulation in vitro and in xenograft models by chronic nicotine. Collectively, these data suggest that hyperactivity of the sympathetic branch of the autonomic nervous system caused by chronic psychological stress or chronic exposure to nicotinic agonists in cigarette smoke significantly contribute to the development and progression of NSCLC. A recent clinical study that reported improved survival outcomes with the incidental use of β-blockers among patients with NSCLC supports this interpretation.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Experimental Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
41
|
Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res 2014; 12:14-23. [PMID: 24398389 PMCID: PMC3915512 DOI: 10.1158/1541-7786.mcr-13-0541] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tobacco smoke contains multiple classes of established carcinogens including benzo(a)pyrenes, polycyclic aromatic hydrocarbons, and tobacco-specific nitrosamines. Most of these compounds exert their genotoxic effects by forming DNA adducts and generation of reactive oxygen species, causing mutations in vital genes such as K-Ras and p53. In addition, tobacco-specific nitrosamines can activate nicotinic acetylcholine receptors (nAChR) and to a certain extent β-adrenergic receptors (β-AR), promoting cell proliferation. Furthermore, it has been demonstrated that nicotine, the major addictive component of tobacco smoke, can induce cell-cycle progression, angiogenesis, and metastasis of lung and pancreatic cancers. These effects occur mainly through the α7-nAChRs, with possible contribution from the β-ARs and/or epidermal growth factor receptors. This review article will discuss the molecular mechanisms by which nicotine and its oncogenic derivatives such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine induce cell-cycle progression and promote tumor growth. A variety of signaling cascades are induced by nicotine through nAChRs, including the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, phosphoinositide 3-kinase/AKT pathway, and janus-activated kinase/STAT signaling. In addition, studies have shown that nAChR activation induces Src kinase in a β-arrestin-1-dependent manner, leading to the inactivation of Rb protein and resulting in the expression of E2F1-regulated proliferative genes. Such nAChR-mediated signaling events enhance the proliferation of cells and render them resistant to apoptosis induced by various agents. These observations highlight the role of nAChRs in promoting the growth and metastasis of tumors and raise the possibility of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612.
| | | |
Collapse
|
42
|
Maritz GS, Mutemwa M. The effect of grand maternal nicotine exposure during gestation and lactation on lung integrity of the F2 generation. Pediatr Pulmonol 2014; 49:67-75. [PMID: 23401386 DOI: 10.1002/ppul.22783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maternal nicotine exposure during gestation and lactation adversely affects lung development in the offspring. It has been suggested that the "program" that control long-term maintenance of the structural integrity of the lung may be compromised. The aim of the study was to establish whether the effect of grand-maternal nicotine exposure during gestation and lactation can be transferred to the F2 generation. METHODS After mating, rats were randomly divided into two groups (F0). One group received nicotine (1 mg/kg body weight/day). The controls receive saline. Body weight (BW), lung volume (Lv), linear intercept (Lm), alveolar wall thickness (Tsept), senescent and proliferating cell numbers were used to evaluate changes in the lung structure of the offspring (F1). The F1 generation was divided into four groups, namely, (1) control (F1 males mated with F1 females, (2) NmCf (F1 nicotine exposed male mated with F1 control female), (3) NfCm (F1 nicotine exposed female mated with F1 control male), and (4) NmNf (F1 male exposed to nicotine mated with F1 female also exposed to nicotine). The F1 nicotine exposed males and females were exposed to nicotine via the placenta and mother's milk (F0 generation) only. The F2 progeny was never exposed to nicotine. DISCUSSION Grand-maternal nicotine (F0) resulted in parenchymal deterioration and emphysema in the F2 progeny due to increased numbers of premature senescent cells together with a slower cell proliferation. The transfer of premature aging characteristics from the F1 progeny to the F2 progeny is via the male and female germ cell line. CONCLUSION Grand-maternal nicotine exposure induces structural changes in the lungs of the F2 generation that resembled premature aging.
Collapse
Affiliation(s)
- Gert S Maritz
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | | |
Collapse
|
43
|
Gabrielsen ME, Romundstad P, Langhammer A, Krokan HE, Skorpen F. Association between a 15q25 gene variant, nicotine-related habits, lung cancer and COPD among 56,307 individuals from the HUNT study in Norway. Eur J Hum Genet 2013; 21:1293-9. [PMID: 23443019 PMCID: PMC3798835 DOI: 10.1038/ejhg.2013.26] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 11/09/2022] Open
Abstract
Genetic studies have shown an association between single-nucleotide polymorphisms on chromosome 15q25 and smoking-related traits and diseases, such as quantity of smoking, lung cancer and chronic obstructive pulmonary disease (COPD). A discussion has centred on the variants and their effects being directly disease related or indirect via nicotine addiction. To address these discrepancies, we genotyped the single-nucleotide polymorphism rs16969968 in the CHRNA5/A3/B4 gene cluster at chromosome 15q25, in 56 307 individuals from a large homogenous population-based cohort, the North Trøndelag Health Study (HUNT) in Norway. The variant was examined in relation to four different outcomes: lung cancer, loss of lung function equivalent to that of COPD, smoking behaviour and the use of smokeless tobacco (snus). Novel associations were found between rs16969968 and the motivational factor for starting to use snus, and the quantity of snus used. Our results also confirm and extend previous findings for associations between rs16969968 and lung cancer, loss of lung function equivalent to that of COPD, and smoking quantity. Our data suggest a role for rs16969968 in nicotine addiction, and the novel association with snus strengthens this observation.
Collapse
Affiliation(s)
- Maiken E Gabrielsen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Romundstad
- Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnulf Langhammer
- Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Frank Skorpen
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
44
|
Aydiner A, Ciftci R, Karabulut S, Kilic L. Does Beta-blocker Therapy Improve the Survival of Patients with Metastatic Non-small Cell Lung Cancer? Asian Pac J Cancer Prev 2013; 14:6109-14. [DOI: 10.7314/apjcp.2013.14.10.6109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Improgo MR, Soll LG, Tapper AR, Gardner PD. Nicotinic acetylcholine receptors mediate lung cancer growth. Front Physiol 2013; 4:251. [PMID: 24062692 PMCID: PMC3774984 DOI: 10.3389/fphys.2013.00251] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/26/2013] [Indexed: 01/08/2023] Open
Abstract
Ion channels modulate ion flux across cell membranes, activate signal transduction pathways, and influence cellular transport—vital biological functions that are inexorably linked to cellular processes that go awry during carcinogenesis. Indeed, deregulation of ion channel function has been implicated in cancer-related phenomena such as unrestrained cell proliferation and apoptotic evasion. As the prototype for ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs) have been extensively studied in the context of neuronal cells but accumulating evidence also indicate a role for nAChRs in carcinogenesis. Recently, variants in the nAChR genes CHRNA3, CHRNA5, and CHRNB4 have been implicated in nicotine dependence and lung cancer susceptibility. Here, we silenced the expression of these three genes to investigate their function in lung cancer. We show that these genes are necessary for the viability of small cell lung carcinomas (SCLC), the most aggressive type of lung cancer. Furthermore, we show that nicotine promotes SCLC cell viability whereas an α3β4-selective antagonist, α-conotoxin AuIB, inhibits it. Our findings posit a mechanism whereby signaling via α3/α5/β4-containing nAChRs promotes lung carcinogenesis.
Collapse
Affiliation(s)
- Ma Reina Improgo
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | | | | | | |
Collapse
|
46
|
Galitovskiy V, Kuruvilla SA, Sevriokov E, Corches A, Pan ML, Kalantari-Dehaghi M, Chernyavsky AI, Mukherjee J, Grando SA. Development of novel approach to diagnostic imaging of lung cancer with 18F-Nifene PET/CT using A/J mice treated with NNK. JOURNAL OF CANCER RESEARCH & THERAPY 2013; 1:128-137. [PMID: 28553544 PMCID: PMC5443253 DOI: 10.14312/2052-4994.2013-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Development of novel methods of early diagnosis of lung cancer is one of the major tasks of contemporary clinical and experimental oncology. In this study, we utilized the tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer in A/J mice as an animal model for development of a new imaging technique for early diagnosis of lung cancer. Lung cancer cells in A/J mice overexpress nicotinic acetylcholine receptors. Longitudinal CT scans were carried out over a period of 8 months after NNK treatment, followed by PET/CT scans with 18F-Nifene that binds to α4-made nicotinic receptors with high affinity. PET/CT scans of lungs were also obtained ex vivo. CT revealed the presence of lung nodules in 8-month NNK-treated mice, while control mice had no tumors. Imaging of live animals prior to necropsy allowed correlation of results of tumor load via PET/CT and histopathological findings. Significant amount of 18F-Nifene was seen in the lungs of NNK-treated mice, whereas lungs of control mice showed only minor uptake of 18F-Nifene. Quantitative analysis of the extent and amount of 18F-Nifene binding in lung in vivo and ex vivo demonstrated a higher tumor/nontumor ratio due to selective labeling of tumor nodules expressing abundant α4 nicotinic receptor subunits. For comparison, we performed PET/CT studies with 18F-FDG, which is used for the imaging diagnosis of lung cancer. The tumor/nontumor ratios for 18F-FDG were lower than for 18F-Nifene. Thus, we have developed a novel diagnostic imaging approach to early diagnosis of lung cancer using 18F-Nifene PET/CT. This technique allows quantitative assessment of lung tumors in live mice, which is critical for establishing tumor size and location, and also has salient clinical implications.
Collapse
Affiliation(s)
- V Galitovskiy
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, USA
| | - S A Kuruvilla
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - E Sevriokov
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - A Corches
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - M L Pan
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - M Kalantari-Dehaghi
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, USA
| | - A I Chernyavsky
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, USA
| | - J Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
- Cancer Center and Research Institute, University of California-Irvine, Irvine, CA 92697, USA
| | - S A Grando
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, USA
- Cancer Center and Research Institute, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
47
|
Al-Wadei MH, Al-Wadei HAN, Schuller HM. Gamma-amino butyric acid (GABA) prevents the induction of nicotinic receptor-regulated signaling by chronic ethanol in pancreatic cancer cells and normal duct epithelia. Cancer Prev Res (Phila) 2012; 6:139-48. [PMID: 23213073 DOI: 10.1158/1940-6207.capr-12-0388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has a high mortality rate and alcoholism is a risk factor independent of smoking. We have shown that nicotinic acetylcholine receptors (nAChR) regulate pancreatic ductal epithelia and pancreatic ductal adenocarcinoma (PDAC) cells in an autocrine fashion by stimulating their production of the stress neurotransmitters noradrenaline and adrenaline that signal through β-adrenergic receptors (β-AR). Our current study has investigated the modulation of this autocrine regulatory loop by chronic ethanol and explored the potential prevention of these effects by γ-amino butyric acid (GABA). Using MTT assays, cell migration assays, Western blotting, immunoassays, and gene knockdown of individual nAChRs in two PDAC cell lines and in immortalized human pancreatic duct epithelial cells, our data show that treatment for seven days with ethanol induced the protein expression and sensitivity of nAChRs α3, α5, and α7 resulting in increased production of noradrenaline and adrenaline, which drive proliferation and migration via cyclic AMP (cAMP)-dependent signaling downstream of β-ARs. Treatment with GABA prevented all of these responses to chronic ethanol, reducing cell proliferation and migration below base levels in untreated cells. Our findings suggest that alcoholism induces multiple cAMP-dependent PDAC stimulating signaling pathways by upregulating the protein expression and sensitivity of nAChRs that regulate stress neurotransmitter production. Moreover, our data identify GABA as a promising agent for the prevention of PDAC in individuals at risk due to chronic alcohol consumption.
Collapse
Affiliation(s)
- Mohammed H Al-Wadei
- Experimental Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, 37996, USA
| | | | | |
Collapse
|
48
|
Abstract
β-adrenergic signaling modulates key signaling pathways that are important for tumor-promoting processes, and numerous mechanisms of action have been elucidated. Preclinical studies have demonstrated that β-adrenergic antagonists, or β-blockers, can block multiple fundamental biologic processes underlying the progression and metastasis of tumors, including the inhibition of cell proliferation, migration, invasion, resistance to programmed cell death, and tumor angiogenesis and metastasis. Human pharmacoepidemiologic studies suggest that β-blockers have a role in inhibiting cancer progression and metastasis in combination with standard therapies. Furthermore, a number of prospective studies have demonstrated that β-blockers are effective at halting infantile hemangioma growth. These findings shed light on the novel perspective of using β-blockers as a class of potential antitumor agents in clinical oncology.
Collapse
Affiliation(s)
- Yi Ji
- Division of Oncology, Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
49
|
Wen J, Fu JH, Zhang W, Guo M. Lung carcinoma signaling pathways activated by smoking. CHINESE JOURNAL OF CANCER 2012; 30:551-8. [PMID: 21801603 PMCID: PMC4013405 DOI: 10.5732/cjc.011.10059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | |
Collapse
|
50
|
Tekpli X, Landvik NE, Skaug V, Gulsvik A, Haugen A, Zienolddiny S. Functional effect of polymorphisms in 15q25 locus on CHRNA5 mRNA, bulky DNA adducts andTP53mutations. Int J Cancer 2012; 132:1811-20. [DOI: 10.1002/ijc.27870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/03/2012] [Indexed: 11/08/2022]
|