1
|
Soares S, de Sousa JT, Boaretto FBM, da Silva JB, Dos Santos DM, Garcia ALH, da Silva J, Grivicich I, Picada JN. Amantadine mitigates the cytotoxic and genotoxic effects of doxorubicin in SH-SY5Y cells and reduces its mutagenicity. Toxicol In Vitro 2024; 99:105874. [PMID: 38851604 DOI: 10.1016/j.tiv.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Amantadine (AMA) is a useful drug in neuronal disorders, but few studies have been performed to access its toxicological profile. Conversely, doxorubicin (Dox) is a well-known antineoplastic drug that has shown neurotoxic effects leading to cognitive impairment. The aims of this study are to evaluate the cytotoxic, genotoxic, and mutagenic effects of AMA, as well as its possible protective actions against deleterious effects of Dox. The Salmonella/microsome assay was performed to assess mutagenicity while cytotoxicity and genotoxicity were evaluated in SH-SY5Y cells using MTT and comet assays. Possible modulating effects of AMA on the cytotoxicity, genotoxicity, and mutagenicity induced by Dox were evaluated through cotreatment procedures. Amantadine did not induce mutations in the Salmonella/microsome assay and decreased Dox-induced mutagenicity in the TA98 strain. AMA reduced cell viability and induced DNA damage in SH-SY5Y cells. In cotreatment with Dox, AMA attenuated the cytotoxicity of Dox and showed an antigenotoxic effect. In conclusion, AMA does not induce gene mutations, although it has shown a genotoxic effect. Furthermore, AMA decreases frameshift mutations induced by Dox as well as the cytotoxic and genotoxic effects of Dox in SH-SY5Y cells, suggesting that AMA can interfere with Dox mutagenic activity and attenuate its neurotoxic effects.
Collapse
Affiliation(s)
- Solange Soares
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Jayne Torres de Sousa
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Fernanda Brião Menezes Boaretto
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Juliana Bondan da Silva
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Duani Maria Dos Santos
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Ana Letícia Hilario Garcia
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil; Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, 92010-000 Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil; Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, 92010-000 Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil.
| |
Collapse
|
2
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
3
|
Flores ÉM, Cappelari SE, Pereira P, Picada JN. Effects of memantine, a non-competitive N-methyl-D-aspartate receptor antagonist, on genomic stability. Basic Clin Pharmacol Toxicol 2011; 109:413-7. [PMID: 21699656 DOI: 10.1111/j.1742-7843.2011.00744.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Memantine is an aminoadamantane drug useful in neurodegenerative diseases, with beneficial effects on cognitive functions. Some studies have shown that memantine protects brain cells, thereby decreasing glutamate excitotoxicity. This study evaluated the genotoxic/antigenotoxic and mutagenic effects of memantine in CF-1 mice, following standardized protocols. Memantine was administered i.p. at 7.5, 15 or 30 mg/kg for three consecutive days. Blood and brain samples were collected to assess DNA damage using the alkaline comet assay. The mutagenic effect was assessed using the bone marrow micronucleus test. In addition, possible antioxidant effects were evaluated measuring the survival of Saccharomyces cerevisiae yeast strains [wild-type (WT) and isogenic mutants lacking superoxide dismutase] to cotreatment of memantine plus hydrogen peroxide. Memantine decreased DNA oxidative damage mainly in brain tissue. This antigenotoxic effect corroborated an increase observed in the survival of S. cerevisiae WT strain against hydrogen peroxide-induced damage. Furthermore, memantine did not increase the micronucleus frequency. The overall results indicate that memantine showed no mutagenic activity, did not cause DNA damage in the blood and brain tissues and showed antigenotoxic effects in brain tissue.
Collapse
Affiliation(s)
- Édina Madeira Flores
- Laboratório de Genética Toxicológica, Programa de Pós-Graduação em Genética e Toxicologia Aplicada, ULBRA, Canoas, RS, Brazil
| | | | | | | |
Collapse
|
4
|
Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)(SL) mice. PLoS One 2011; 6:e20153. [PMID: 21655287 PMCID: PMC3105011 DOI: 10.1371/journal.pone.0020153] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/19/2011] [Indexed: 01/23/2023] Open
Abstract
Background NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD). Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM), to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751)SL). Methods Four month old hAPP(751)SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months. Results Only hAPP(751)SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin) demonstrated low levels of TNFα, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751)SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Aβ-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751)SL mice. To discern how apocynin was affecting plaque levels (plaque load) and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Aβ) phagocytosis, microglial proliferation, or microglial survival. Conclusions Together, this study suggests that while hAPP(751)SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number, suggesting that apocynin may have additional therapeutic effects independent of anti-inflammatory characteristics.
Collapse
|
5
|
Concomitant administration of fluoxetine and amantadine modulates the activity of peritoneal macrophages of rats subjected to a forced swimming test. Pharmacol Rep 2010; 61:1069-77. [PMID: 20081242 DOI: 10.1016/s1734-1140(09)70169-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/09/2009] [Indexed: 11/23/2022]
Abstract
Recent studies show that administration of a non-competitive NMDA receptor antagonist, amantadine (AMA), potentiates the action of antidepressant drugs. Since antidepressants may modulate functioning of the immune system and activation of a pro-inflammatory response in depressive disorders is frequently reported, the aim of the present study was to examine whether a combined administration of AMA and the antidepressant, fluoxetine (FLU), to rats subsequently subjected to a forced swimming test (FST) modifies the parameters of macrophage activity, directly related to their immunomodulatory functions, i.e., arginase (ARG) activity and synthesis of nitric oxide (NO). We found that 10 mg/kg AMA and 10 mg/kg FLU, ineffective in FST for antidepressant-like activity when administered alone, increased the ARG/NO ratio in macrophages when administered concomitantly. This effect was accompanied by a decrease of cellular adherence. Concurrently, the basal metabolic activity of the cells measured with reduction of resazurin, and intracellular host defense as assessed by a synthesis of superoxide anion, were not affected by such antidepressive treatment. Our data indicate that co-administration of AMA and FLU decreases the pro-inflammatory properties of macrophages and causes a redirection of immune response toward anti-inflammatory activity, as one can anticipate in the case of an effective antidepressive treatment.
Collapse
|
6
|
Cámara-Lemarroy CR, Guzmán-de la Garza FJ, Alarcón-Galván G, Cordero-Pérez P, Fernández-Garza NE. The effects of NMDA receptor antagonists over intestinal ischemia/reperfusion injury in rats. Eur J Pharmacol 2009; 621:78-85. [PMID: 19751722 DOI: 10.1016/j.ejphar.2009.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 08/14/2009] [Accepted: 08/20/2009] [Indexed: 11/26/2022]
Abstract
Intestinal ischemia/reperfusion causes severe injury and alters motility. N-methyl-D-aspartate (NMDA) receptor antagonists have been shown to reduce ischemia/reperfusion injury in the nervous system, and in other organs. In this study, we set out to investigate the effects of NMDA receptor antagonists over intestinal ischemia/reperfusion injury. Male Wistar rats were randomly divided into four groups: (1) a control, sham-operated group; (2) an intestinal ischemia/reperfusion group subjected to 45 min ischemia and 1h reperfusion; (3) a group treated with 10 mg/kg ketamine before ischemia/reperfusion; and (4) a group treated with 10 mg/kg memantine before ischemia/reperfusion. Intestinal samples were taken for histological evaluation. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), malondialdehyde (MDA), total antioxidant capacity, tumor necrosis factor alpha (TNF-alpha), P-selectin and antithrombin III (ATIII) were measured. Intestinal transit time was determined to evaluate intestinal motility. Fecal pellet output and animal weight were also registered daily for 7 days post-ischemia. After reperfusion, AST, LDH, TNF-alpha and P-selectin levels were elevated, ATIII levels were depleted, and ALT levels were unchanged in serum. Additionally, levels of MDA were increased and total antioxidant capacity was reduced in serum, indicating oxidative stress. Intestinal mucosa showed severe injury. Ketamine, but not memantine, diminished these alterations. Intestinal motility and fecal pellet output were also altered after ischemia/reperfusion. Both drugs abolished the alterations in motility. In conclusion, ketamine's protective effects over ischemia/reperfusion do not appear to be NMDA mediated, but they could be playing a role in protecting the intestine against ischemia-induced functional changes.
Collapse
|
7
|
Grassmann J, Hippeli S, Vollmann R, Elstner EF. Antioxidative properties of the essential oil from Pinus mugo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:7576-82. [PMID: 14664510 DOI: 10.1021/jf030496e] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The essential oil from Pinus mugo (PMEO) was tested on its antioxidative capacity. For this purpose, several biochemical test systems were chosen (e.g., the Fenton System, the xanthine oxidase assay, or the copper-induced oxidation of low-density lipoprotein (LDL)). The results show that there is moderate or weak antioxidative activity when tested in aqueous environments, like in the Fenton system, xanthine oxidase induced superoxide radical formation, or in the HOCl driven fragmentation of 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, when tested in more lipophilic environments (e.g., the ACC-cleavage by activated neutrophils in whole blood) the PMEO exhibits good antioxidative activity. PMEO does also show good antioxidative capacity in another lipophilic test system (i.e., the copper induced oxidation of LDL). Some components of PMEO (i.e., Delta(3)-carene, camphene, alpha-pinene, (+)-limonene and terpinolene) were also tested. As the PMEO, they showed weak or no antioxidant activity in aqueous environments, but some of them were effective antioxidants regarding ACC-cleavage by activated neutrophils in whole blood or copper-induced LDL-oxidation. Terpinolene, a minor component of PMEO, exhibited remarkable protection against LDL-oxidation.
Collapse
Affiliation(s)
- Johanna Grassmann
- Institute of Vegetable Science, Life Science Center Weihenstephan, TUM, Dürnast 2, 85350 Freising, Germany.
| | | | | | | |
Collapse
|
8
|
Lavelli V. Comparison of the antioxidant activities of extra virgin olive oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:7704-7708. [PMID: 12475292 DOI: 10.1021/jf020749o] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The phenol content and antioxidant activity of extra virgin olive oils (EVOOs) differing in their origins and degradation degrees were studied. The o-diphenolic compounds typical of olive oil, namely, the oleuropein derivatives hydroxytyrosol (3',4'-dihydroxyphenylethanol, 3',4'-DHPEA), the dialdehydic form of elenolic acid linked to 3',4'-DHPEA (3',4'-DHPEA-EDA), and an isomer of oleuropein aglycon (3',4'-DHPEA-EA), were analyzed by HPLC. The antioxidant activity was studied by (a) the xanthine oxidase (XOD)/xanthine system, which generates superoxide radical and hydrogen peroxide; (b) the diaphorase (DIA)/NADH/juglone system, which generates superoxide radical and semiquinonic radical; and (c) the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) test. Results showed that EVOOs with a low degradation level (as evaluated by acidity, peroxide number, and spectroscopic indices K(232), K(270), and deltaK according to the EU Regulation) had a higher content of 3',4'-DHPEA-EDA and a lower content of 3',4'-DHPEA than oils having intermediate and advanced degradation levels. EVOOs with a low degradation degree were 3-5 times more efficient as DPPH scavengers and 2 times more efficient as inhibitors of the XOD-catalyzed reaction than oils with intermediate and advanced degradation levels. The DIA-catalyzed reaction was inhibited by EVOOs having low or intermediate degradation levels but not by the most degraded oils.
Collapse
Affiliation(s)
- Vera Lavelli
- DISTAM, Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Universitá degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy.
| |
Collapse
|