1
|
Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antiviral Res 2010; 86:101-20. [PMID: 20417378 DOI: 10.1016/j.antiviral.2010.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/11/2022]
Abstract
Antiviral nucleoside and nucleotide analogs, essential for the treatment of viral infections in the absence of efficient vaccines, are prodrug forms of the active compounds that target the viral DNA polymerase or reverse transcriptase. The activation process requires several successive phosphorylation steps catalyzed by different kinases, which are present in the host cell or encoded by some of the viruses. These activation reactions often are rate-limiting steps and are thus open to improvement. We review here the structural and enzymatic properties of the enzymes that carry out the activation of analogs used in therapy against human immunodeficiency virus and against DNA viruses such as hepatitis B, herpes and poxviruses. Four major classes of drugs are considered: thymidine analogs, non-natural L-nucleosides, acyclic nucleoside analogs and acyclic nucleoside phosphonate analogs. Their efficiency as drugs depends both on the low specificity of the viral polymerase that allows their incorporation into DNA, but also on the ability of human/viral kinases to provide the activated triphosphate active forms at a high concentration at the right place. Two distinct modes of action are considered, depending on the origin of the kinase (human or viral). If the human kinases are house-keeping enzymes that belong to the metabolic salvage pathway, herpes and poxviruses encode for related enzymes. The structures, substrate specificities and catalytic properties of each of these kinases are discussed in relation to drug activation.
Collapse
Affiliation(s)
- Dominique Deville-Bonne
- Enzymologie Moléculaire et Fonctionnelle, UR4 Université Pierre et Marie Curie, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
2
|
Cellular pharmacology of the anti-hepatitis B virus agent beta-L-2',3'-didehydro-2',3'-dideoxy-N4-hydroxycytidine: relevance for activation in HepG2 cells. Antimicrob Agents Chemother 2009; 54:341-5. [PMID: 19917760 DOI: 10.1128/aac.01176-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Beta-l-2',3'-didehydro-2',3'-dideoxy-N(4)-hydroxycytidine (l-Hyd4C) was demonstrated to be an effective and highly selective inhibitor of hepatitis B virus (HBV) replication in HepG2.2.15 cells (50% effective dose [ED(50)] = 0.03 microM; 50% cytotoxic dose [CD(50)] = 2,500 microM). In the present study, we investigated the intracellular pharmacology of tritiated l-Hyd4C in HepG2 cells. l-[(3)H]Hyd4C was shown to be phosphorylated extensively and rapidly to the 5'-mono-, 5'-di-, and 5'-triphosphate derivatives. Other metabolites deriving from a reduction or removal of the NHOH group of l-Hyd4C could not be detected, although both reactions were described as the primary catabolic pathways of the stereoisomer ss-d-N(4)-hydroxycytidine in HepG2 cells. Also, the formation of liponucleotide metabolites, such as the 5'-diphosphocholine derivative of l-Hyd4C, as described for some l-deoxycytidine analogues, seems to be unlikely. After incubation of HepG2 cells with 10 microM l-[(3)H]Hyd4C for 24 h, the 5'-triphosphate accumulated to 19.4 +/- 2.7 pmol/10(6) cells. The predominant peak belonged to 5-diphosphate, with 43.5 +/- 4.3 pmol/10(6) cells. The intracellular half-life of the 5'-triphosphate was estimated to be 29.7 h. This extended half-life probably reflects a generally low affinity of 5'-phosphorylated l-deoxycytidine derivatives for phosphate-degrading enzymes but may additionally be caused by an efficient rephosphorylation of the 5'-diphosphate during a drug-free incubation. The high 5'-triphosphate level and its extended half-life in HepG2 cells are consistent with the potent antiviral activity of l-Hyd4C.
Collapse
|
3
|
Evaluation of the role of three candidate human kinases in the conversion of the hepatitis C virus inhibitor 2'-C-methyl-cytidine to its 5'-monophosphate metabolite. Antiviral Res 2009; 85:470-81. [PMID: 19883694 DOI: 10.1016/j.antiviral.2009.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/29/2022]
Abstract
Nucleoside analogs are effective inhibitors of the hepatitis C virus (HCV) in the clinical setting. One such molecule, 2'-C-methyl-cytidine (2'-MeC), entered clinical development as NM283, a valine ester prodrug form of 2'-MeC possessing improved oral bioavailability. To be active against HCV, 2'-MeC must be converted to 2'-MeC triphosphate which inhibits NS5B, the HCV RNA-dependent RNA polymerase. Conversion of 2'-MeC to 2'-MeC monophosphate is the first step in 2'-MeC triphosphate production and is thought to be the rate-limiting step. Here we investigate which of three possible enzymes, deoxycytidine kinase (dCK), uridine-cytidine kinase 1 (UCK1), or uridine-cytidine kinase 2 (UCK2), mediate this first phosphorylation step. Purified recombinant enzymes UCK2 and dCK, but not UCK1, could phosphorylate 2'-MeC in vitro. However, siRNA knockdown experiments in three human cell lines (HeLa, Huh7 and HepG2) defined UCK2 and not dCK as the key kinase for the formation of 2'-MeC monophosphate in cultured human cells. These results underscore the importance of confirming enzymatic kinase data with appropriate cell-based assays. Finally, we present data suggesting that inefficient phosphorylation by UCK2 likely limits the antiviral activity of 2'-MeC against HCV. This paves the way for the use of a nucleotide prodrug approach to overcome this limitation.
Collapse
|
4
|
Highly Efficient Regioselective Synthesis of 5′-O-lauroyl-5-azacytidine Catalyzed by Candida antarctica Lipase B. Appl Biochem Biotechnol 2008; 151:21-8. [DOI: 10.1007/s12010-008-8152-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/10/2008] [Indexed: 11/25/2022]
|
5
|
Alexandre JA, Roy B, Topalis D, Pochet S, Périgaud C, Deville-Bonne D. Enantioselectivity of human AMP, dTMP and UMP-CMP kinases. Nucleic Acids Res 2007; 35:4895-904. [PMID: 17626051 PMCID: PMC1950558 DOI: 10.1093/nar/gkm479] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
l-Nucleoside analogues such as lamivudine are active for treating viral infections. Like d-nucleosides, the biological activity of the l-enantiomers requires their stepwise phosphorylation by cellular or viral kinases to give the triphosphate. The enantioselectivity of NMP kinases has not been thoroughly studied, unlike that of deoxyribonucleoside kinases. We have therefore investigated the capacity of l-enantiomers of some natural (d)NMP to act as substrates for the recombinant forms of human uridylate-cytidylate kinase, thymidylate kinase and adenylate kinases 1 and 2. Both cytosolic and mitochondrial adenylate kinases were strictly enantioselective, as they phosphorylated only d-(d)AMP. l-dTMP was a substrate for thymidylate kinase, but with an efficiency 150-fold less than d-dTMP. Both l-dUMP and l-(d)CMP were phosphorylated by UMP-CMP kinase although much less efficiently than their natural counterparts. The stereopreference was conserved with the 2′-azido derivatives of dUMP and dUMP while, unexpectedly, the 2′-azido-d-dCMP was a 4-fold better substrate for UMP-CMP kinase than was CMP. Docking simulations showed that the small differences in the binding of d-(d)NMP to their respective kinases could account for the differences in interactions of the l-isomers with the enzymes. This in vitro information was then used to develop the in vivo activation pathway for l-dT.
Collapse
Affiliation(s)
- Julie A.C. Alexandre
- Laboratoire d’Enzymologie Moléculaire, FRE 2852-CNRS-Université Paris 6, 4, place Jussieu, 75005 Paris Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Universités Montpellier 1 et 2, case courrier 1705, Bâtiment Chimie 17, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5 and Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex15, France
| | - Béatrice Roy
- Laboratoire d’Enzymologie Moléculaire, FRE 2852-CNRS-Université Paris 6, 4, place Jussieu, 75005 Paris Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Universités Montpellier 1 et 2, case courrier 1705, Bâtiment Chimie 17, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5 and Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex15, France
| | - Dimitri Topalis
- Laboratoire d’Enzymologie Moléculaire, FRE 2852-CNRS-Université Paris 6, 4, place Jussieu, 75005 Paris Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Universités Montpellier 1 et 2, case courrier 1705, Bâtiment Chimie 17, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5 and Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex15, France
| | - Sylvie Pochet
- Laboratoire d’Enzymologie Moléculaire, FRE 2852-CNRS-Université Paris 6, 4, place Jussieu, 75005 Paris Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Universités Montpellier 1 et 2, case courrier 1705, Bâtiment Chimie 17, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5 and Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex15, France
| | - Christian Périgaud
- Laboratoire d’Enzymologie Moléculaire, FRE 2852-CNRS-Université Paris 6, 4, place Jussieu, 75005 Paris Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Universités Montpellier 1 et 2, case courrier 1705, Bâtiment Chimie 17, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5 and Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex15, France
| | - Dominique Deville-Bonne
- Laboratoire d’Enzymologie Moléculaire, FRE 2852-CNRS-Université Paris 6, 4, place Jussieu, 75005 Paris Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Universités Montpellier 1 et 2, case courrier 1705, Bâtiment Chimie 17, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5 and Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex15, France
- *To whom correspondence should be addressed.+33 1 44 27 59 93, Fax: +33 1 44 27 59 94
| |
Collapse
|
6
|
Sabini E, Hazra S, Konrad M, Lavie A. Nonenantioselectivity property of human deoxycytidine kinase explained by structures of the enzyme in complex with L- and D-nucleosides. J Med Chem 2007; 50:3004-14. [PMID: 17530837 PMCID: PMC2586175 DOI: 10.1021/jm0700215] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological molecules are predominantly enantioselective. Yet currently two nucleoside analogue prodrugs (3TC and FTC) with opposite chirality compared to physiological nucleosides are clinically approved for the treatment of HIV infections. These prodrugs require conversion to their triphosphorylated forms to achieve pharmacological activity. The first step in the activation of these agents is catalyzed by human deoxycytidine kinase (dCK). This enzyme possesses the ability to phosphorylate nucleosides of the unnatural L-chirality. To understand the molecular basis for the nonenantioselectivity of dCK, we solved the crystal structures of the enzyme in complex with the L-enantiomer and of its physiological substrate deoxycytidine and with the L-nucleoside analogue FTC. These were compared to a structure solved with D-dC. Our results highlight structural adjustments imposed on the L-nucleosides and properties of the enzyme endowing it with the ability to phosphorylate substrates with nonphysiological chirality. This work reveals the molecular basis for the activation of L-nucleosides by dCK.
Collapse
Affiliation(s)
- Elisabetta Sabini
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland (M/C 669), Chicago, IL 60607, USA
| | - Saugata Hazra
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland (M/C 669), Chicago, IL 60607, USA
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland (M/C 669), Chicago, IL 60607, USA
| |
Collapse
|
7
|
Kroutil J, Karban J, Budesínský M. Utilization of nosylepimines of 1,6-anhydro-β-d-hexopyranoses for the preparation of halogenated aminosaccharides. Carbohydr Res 2003; 338:2825-33. [PMID: 14667703 DOI: 10.1016/j.carres.2003.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aziridine ring cleavage of N-nosylepimines 3 and 7 having D-allo and D-manno configurations with halides led regioselectively to N-o-nitrobenzenesulfonylated 2-halo-3-amino- and 3-halo-2-amino-2,3-dideoxy derivatives of 1,6-anhydro-beta-D-glucopyranose 8-14 in 59-81% yields. Removal of o-nitrobenzenesulfonyl protecting group with benzenethiol afforded aminosaccharides, which were converted into more stable hydrochlorides 15-18.
Collapse
Affiliation(s)
- Jirí Kroutil
- Department of Organic Chemistry, Charles University, 128 43 Prague 2, Czech Republic.
| | | | | |
Collapse
|
8
|
Chong Y, Gumina G, Mathew JS, Schinazi RF, Chu CK. l-2',3'-Didehydro-2',3'-dideoxy-3'-fluoronucleosides: synthesis, anti-HIV activity, chemical and enzymatic stability, and mechanism of resistance. J Med Chem 2003; 46:3245-56. [PMID: 12852755 DOI: 10.1021/jm0300274] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As antiviral nucleosides containing a 2',3'-unsaturated sugar moiety with 2'-fluoro substitution are endowed with increased stabilization of the glycosyl bond, it was of interest to investigate the influence of the fluorine atom at the 3'-position. Various pyrimidine and purine L-3'-fluoro-2',3'-unsaturated nucleosides were synthesized from their precursors, L-3',3'-difluoro-2',3'-dideoxy nucleosides, by elimination of hydrogen fluoride. In the L-3',3'-difluoro-2',3'-dideoxy nucleoside series, cytidine 16 and 5-fluorocytidine 18 analogues showed modest antiviral activity (EC(50) 11.5 and 8.8 microM, respectively) when evaluated against HIV-1 in human peripheral blood mononuclear (PBM) cells. In the 2',3'-unsaturated series, L-3'-fluoro-2',3'-didehydro-2',3'-dideoxycytidine 24 and 5-fluorocytidine 26 showed highly potent antiviral activity (EC(50) 0.089 and 0.018 microM, respectively) without significant cytotoxicity. The guanosine analogue 48 showed only marginal anti-HIV activity with some cytotoxicity (EC(50) 38.5 microM, and IC(50) 17.4, 58.4, 36.5 microM in PBM, CEM, and Vero cells, respectively). The cytidine 24 and 5-fluorocytidine 26 analogues, however, showed significantly decreased antiviral activity against the clinically important lamivudine-resistant variants (HIV-1(M184V)). Molecular modeling studies demonstrated that the 3'-fluoro atom of the L-3'-fluoro-2',3'-unsaturated nucleoside is within the hydrogen bonding distance with the amide backbone of Asp185, which favors the binding of the nucleoside triphosphate to the wild-type RT. This favorable binding mode, however, cannot be maintained when the triphosphate of 3'-fluoro 2',3'-unsaturated nucleoside binds to the active site of M184V RT because the bulky side chain of Val184 occupies the space needed for the nucleotide. The biological results suggest that, in addition to the sugar conformation, the base moiety may also play a role in their interaction with the M184V RT.
Collapse
Affiliation(s)
- Youhoon Chong
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
9
|
Salvatori D, Vincenzetti S, Maury G, Gosselin G, Gaubert G, Vita A. Maedi-visna virus, a model for in vitro testing of potential anti-HIV drugs. Comp Immunol Microbiol Infect Dis 2001; 24:113-22. [PMID: 11247044 DOI: 10.1016/s0147-9571(00)00021-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A series of beta-D- and beta-L-cytidine analogues were evaluated for their inhibitory effect on the replication of maedi-visna virus (MVV) strains KV1772 and MV1514 cultured on sheep choroid plexus cells and the sheep chondrocyte cell line G81092, respectively. Eleven cytidine analogues were selected for the anti-viral test. Five of them belong to the family of the 2',3'-dideoxycytidine analogues, well known for their activity against human immunodeficiency virus (HIV). The others, all newly synthesized, were potential anti-viral and/or anti-leukemic agents. None of the compounds under study had a toxic effect in both anti-viral assay systems up to a 300 microM concentration. Based on the cytopathic effects (CPE), the virus replication was completely inhibited by the five 2',3'-dideoxycytidine analogues at a concentration of 50 microM, whereas the others six newly synthesized compounds induced titre reductions of 4-5 log units. The effective concentration causing 50% reduction of CPE (EC50) was of 5 microM for the five 2',3'-dideooxycytidine analogues and for beta-L-XyloFc, whereas the value of 50 microM was found for the b-L-XyloC and the four 5-azacytidine compounds tested. All these data reveal a good correlation between inhibition of MVV replication by several nucleoside cytidine analogues and their reported anti-HIV activity.
Collapse
Affiliation(s)
- D Salvatori
- Dipartimento di Scienze Veterinarie, Universitià di Camerino, Matelica, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Gaubert G, Gosselin G, Eriksson S, Vita A, Maury G. Unnatural enantiomers of 5-azacytidine analogues: syntheses and enzymatic properties. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:837-40. [PMID: 11563127 DOI: 10.1081/ncn-100002441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
2'-Deoxy-beta-L-5-azacytidine(L-Decitabine), beta-L-5-azacytidine, and derivatives were stereospecifically prepared starting from L-ribose or L-xylose. D- and L-enantiomers of 2'-deoxy-beta-5-azacytidine were weak substrates of human recombinant deoxycytidine kinase (dCK), whereas both enantiomers of beta-5-azacytidine or the L-xylo-analogues were not substrates of the enzyme. None of the reported derivatives of beta-L-5-azacytidine was a substrate of human recombinant cytidine deaminase (CDA).
Collapse
Affiliation(s)
- G Gaubert
- UMR 5625 du CNRS, Département de Chimie, Université Montpellier II, Place Bataillon, 34095 Montpellier, France
| | | | | | | | | |
Collapse
|
11
|
Gaubert G, Mathé C, Imbach J, Eriksson S, Vincenzetti S, Salvatori D, Vita A, Maury G. Unnatural enantiomers of 5-azacytidine analogues: syntheses and enzymatic properties. Eur J Med Chem 2000; 35:1011-9. [PMID: 11137229 DOI: 10.1016/s0223-5234(00)01184-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although 2'-deoxy-beta-D-5-azacytidine (Decitabine) and beta-D-5-azacytidine display potent antileukemic properties, their therapeutic use is hampered by their sensitivity to nucleophiles and to deamination catalysed by cytidine deaminase. As shown earlier [Shafiee M., Griffon J.-F., Gosselin G., Cambi A., Vincenzetti S., Vita A., Erikson S., Imbach J.-L., Maury G., Biochem. Pharmacol. 56 (1998) 1237-1242], beta-L-enantiomers of cytidine derivatives are resistant to cytidine deaminase. We thus synthesized several 5-azacytosine beta-L-nucleoside analogues to evaluate their enzymatic and biological properties. 2'-Deoxy-beta-L-5-azacytidine (L-Decitabine), beta-L-5-azacytidine, 1-(beta-L-xylo-furanosyl)5-azacytosine, and 1-(2-deoxy-beta-L-threo-pentofuranosyl)5-azacytosine were stereospecifically prepared starting from L-ribose and L-xylose. D- and L-enantiomers of 2'-deoxy-beta-5-azacytidine were weak substrates of human recombinant deoxycytidine kinase (dCK) compared to beta-D-deoxycytidine, whereas both enantiomers of beta-5-azacytidine or the L-xylo-analogues were not substrates of the enzyme. As expected, none of the presently reported derivatives of beta-L-5-azacytidine was a substrate of human recombinant cytidine deaminase (CDA). The prepared compounds were tested for their activity against HIV and HBV and they did not show any significant activity or cytotoxicity. In the case of L-Decitabine, this suggests that the enantioselectivities of concerned enzymes other than dCK and CDA might not be favourable.
Collapse
Affiliation(s)
- G Gaubert
- UMR 5625 du CNRS, Département de Chimie, Université Montpellier II, Place Bataillon, 34095 5, Montpellier Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Maury G. The enantioselectivity of enzymes involved in current antiviral therapy using nucleoside analogues: a new strategy? Antivir Chem Chemother 2000; 11:165-89. [PMID: 10901289 DOI: 10.1177/095632020001100301] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review is primarily intended for synthetic bio-organic chemists and enzymologists who are interested in new strategies in the design of virus inhibitors. It is an attempt to assess the importance of the enzymatic properties of L-nucleosides and their analogues, particularly those that are active against viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), herpes simplex virus (HSV), etc. Only data obtained with purified enzymes have been considered and discussed. The examined enzymes include nucleoside- or nucleotide-phosphorylating enzymes, catabolic enzymes, viral target enzymes and cellular polymerases. The enantioselectivities of these enzymes were determined from existing data and are significant only when a sufficient number of enantiomeric pairs of substrates could be examined. The reported data emphasize the weak enantioselectivities of cellular or viral nucleoside kinases and some viral DNA polymerases. Thus, cellular deoxycytidine kinase has a considerably relaxed enantioselectivity with respect to a large number of nucleosides or their analogues, and it occupies a strategic position in the intracellular activation of the compounds. Similarly, HIV-1 reverse transcriptase often has a relatively weak enantioselectivity and can be inhibited by the 5-triphosphates of a large series of L-nucleosides and analogues. In contrast, degradation enzymes, such as adenosine or cytidine deaminases, generally demonstrate strict enantioselectivities favouring D-enantiomers and are used by chemists in asymmetric syntheses. The weak enantioselectivities of some enzymes involved in nucleoside metabolism are more or less pronounced, and one enantiomer or the other is favoured depending on the substrate. This suggests that the low enantioselectivity is fortuitous and does not result from evolutionary pressure, since these enzymes do not create or modify asymmetric centres in substrates. The combined enantioselectivities of the enzymes examined in this review strongly suggest that the field of L-nucleosides and their analogues should be systematically explored in the search for new virus inhibitors.
Collapse
Affiliation(s)
- G Maury
- UMR 5625 du CNRS, Université Montpellier II, France.
| |
Collapse
|
13
|
Boudou V, Imbach JL, Gosselin G. Synthesis and biological evaluation of 9-(beta-L-arabinofuranosyl)adenine. NUCLEOSIDES & NUCLEOTIDES 1999; 18:2463-73. [PMID: 10639749 DOI: 10.1080/07328319908044620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
For the first time, the stereospecific synthesis of 9-(beta-L-arabinofuranosyl) adenine was carried out. Unfortunately, and unlike its "natural" D-counterpart Vidarabine, this L-enantiomer did not show significant activity when evaluated against a broad range of viruses.
Collapse
Affiliation(s)
- V Boudou
- Laboratoire de Chimie Bioorganique, UMR C.N.R.S. 5625, Université de Montpellier II, Sciences et Techniques du Languedoc, France
| | | | | |
Collapse
|
14
|
Shafiee M, Gosselin G, Imbach JL, Divita G, Eriksson S, Maury G. Study of human deoxycytidine kinase binding properties using intrinsic fluorescence or new fluorescent ligands. Eur J Med Chem 1999. [DOI: 10.1016/s0223-5234(99)80092-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|