Susa S, Wakabayashi I. Extracellular alkalosis activates ERK mitogen-activated protein kinase of vascular smooth muscle cells through NADPH-mediated formation of reactive oxygen species.
FEBS Lett 2003;
554:399-402. [PMID:
14623101 DOI:
10.1016/s0014-5793(03)01198-0]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracellular alkalosis induced phosphorylation of extracellular signal-regulated kinase (ERK) and enhanced serum-induced ERK phosphorylation in cultured rat aortic smooth muscle cells. While extracellular alkalinization increased verapamil-sensitive (45)Ca(2+) uptake into the cells, ERK phosphorylation induced by extracellular alkalosis was not affected by verapamil. On the other hand, probes for oxidant signaling, such as superoxide dismutase, 4,5-dihydroxy-1,3-benzene-disulfonic acid, a cell-permeable antioxidant, and diphenyliodonium, a NADPH oxidase inhibitor, inhibited extracellular alkalosis-induced phosphorylation of ERK. These results suggest that activation of ERK induced by extracellular alkalosis is not dependent on transplasmalemmal Ca(2+) entry but is caused by reactive oxygen species derived from an activation of NADPH oxidase.
Collapse