1
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
2
|
Paul S, Lancaster GI, Meikle PJ. WITHDRAWN: Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019:100993. [PMID: 31442528 DOI: 10.1016/j.plipres.2019.100993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Graeme I Lancaster
- Haematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
3
|
Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74:186-195. [DOI: 10.1016/j.plipres.2019.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/23/2023]
|
4
|
Sibomana I, Grobe N, DelRaso NJ, Reo NV. Influence of Myo-inositol Plus Ethanolamine on Plasmalogens and Cell Viability during Oxidative Stress. Chem Res Toxicol 2019; 32:265-284. [PMID: 30604967 DOI: 10.1021/acs.chemrestox.8b00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previously, we demonstrated that treatment of rats with myo-inositol plus ethanolamine (ME) elevated brain ethanolamine plasmalogens (PE-Pls) and protected against phosphine-induced oxidative stress. Here we tested the hypothesis that ME treatment elevates PE-Pls in a neuro-2A (N2A) cell culture system and protects against hydrogen peroxide (H2O2)-induced oxidative stress, and we assessed the effects of treatments using myo-inositol with or without (+/-) ethanolamine on ethanolamine phospholipids (PLs) and cell viability following H2O2 exposure. Cells were treated with equimolar amounts (500 μM) of myo-inositol, ethanolamine (Etn), or their combination (ME) for 24 h, followed by an additional 24 h exposure to 650 μM H2O2. NMR analyses evaluated the treatment effects on Etn PLs, while LC-MS/MS analyses assessed the molecular species of Etn PLs preferentially affected by ME and H2O2 treatments, especially PE-Pls and their degradation byproducts-lysophosphatidylethanolamine (LPE) and glycerophosphoethanolamine (GPE). Only ME influenced the cellular levels of PLs. ME yielded a 3-fold increase in PE-Pls and phosphatidylethanolamine (PE) ( p < 0.001) and a preferential 60% increase in PE-Pls containing saturated and monounsaturated fatty acids (SFA+MUFA), while polyunsaturated fatty acid (PUFA) species increased by only 10%. Exposing cells to 650 μM H2O2 caused a significant cell death (56% viability), a 27% decrease in PE-Pls, a 201% increase in PUFA-rich LPE, and a ca. 3-fold increase in GPE. H2O2 had no impact on PE, suggesting that LPE and GPE were primarily the byproducts of PE-Pls (not PE) degradation. Surprisingly, ME pretreatment ameliorated H2O2 effects and significantly increased cell survival to 80% ( p < 0.05). Cellular PE-Pls levels prior to H2O2 treatment were highly correlated ( R2 = 0.95) with cell survival, suggesting a relationship between PE-Pls and cell protection. Data suggest that a preferential increase in PE-Pls containing SFA+MUFA species may protect cells from oxidative stress. Such studies aid in our understanding of the neuroprotective mechanisms that may be associated with plasmalogens and the relevance of these phospholipids to neurodegenerative diseases/disorders.
Collapse
Affiliation(s)
- Isaie Sibomana
- Department of Biochemistry and Molecular Biology, Magnetic Resonance Laboratory, Boonshoft School of Medicine, 162 Diggs Laboratory , Wright State University , Dayton , Ohio 45435 , United States.,Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nadja Grobe
- Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nicholas J DelRaso
- Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nicholas V Reo
- Department of Biochemistry and Molecular Biology, Magnetic Resonance Laboratory, Boonshoft School of Medicine, 162 Diggs Laboratory , Wright State University , Dayton , Ohio 45435 , United States
| |
Collapse
|
5
|
Maeba R, Araki A, Fujiwara Y. Serum Ethanolamine Plasmalogen and Urine Myo-Inositol as Cognitive Decline Markers. Adv Clin Chem 2018; 87:69-111. [PMID: 30342713 DOI: 10.1016/bs.acc.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that metabolic disorders, particularly type 2 diabetes mellitus (T2DM), and dementia, including Alzheimer's disease (AD), were linked at the clinical and molecular levels. Brain insulin deficiency and resistance may be key events in AD pathology mechanistically linking AD to T2DM. Ethanolamine plasmalogens (PlsEtns) are abundant in the brain and play essential roles in neuronal function and myelin formation. As such, PlsEtn deficiency may be pathologically relevant in some neurodegenerative disorders such as AD. Decreased brain PlsEtn associated with dementia may reflect serum PlsEtn deficiency. We hypothesized that myo-inositol plays a role in myelin formation through its facilitation of PlsEtn biosynthesis. Excessive urinary myo-inositol (UMI) loss would likely result in PlsEtn deficiency potentially leading to demyelinating diseases such as dementia. Accordingly, measurement of both serum PlsEtn and baseline UMI excretion could improve the detection of cognitive impairment (CI) in a more specific and reliable manner. To verify our hypothesis, we conducted a clinical observational study of memory clinic outpatients (MCO) and cognitively normal elderly (NE) for nearly 4.5years. We demonstrated that serum PlsEtn concentration associated with UMI excretion was useful for predicting advancing dementia in patients with mild CI. Because hyperglycemia and associated insulin resistance might be a leading cause of increased baseline UMI excretion, serum PlsEtn quantitation would be useful in detecting CI among the elderly with hyperglycemia. Our findings suggest that myo-inositol is a novel candidate molecule linking T2DM to AD.
Collapse
Affiliation(s)
- Ryouta Maeba
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
6
|
Serum ethanolamine plasmalogens improve detection of cognitive impairment among elderly with high excretion levels of urinary myo-inositol: A cross-sectional study. Clin Chim Acta 2015; 453:134-40. [PMID: 26680299 DOI: 10.1016/j.cca.2015.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/22/2015] [Accepted: 12/04/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Several reports have implicated myo-inositol (MI) in myelin formation. We hypothesized that MI is involved in this process through facilitating the biosynthesis of ethanolamine plasmalogens (PlsEtns), which are the major component of myelin membranes, and essential for myelin formation and function. Excessive MI urinary excretion possibly causes PlsEtn deficiency, leading to demyelinating diseases including dementia. METHODS We examined the association between cognitive impairment, serum levels of PlsEtn, and baseline levels of urinary MI excretion, in the enrollment of 55 memory clinic outpatients and 107 cognitively normal elderly. RESULTS Serum PlsEtns were independently associated with cognitive impairment, and significantly reduced in memory clinic outpatients, especially in those with high urinary MI, as compared to normal elderly. On the other hand, there was no direct association between urinary MI and cognitive impairment, but urinary MI was significantly associated with serum hemoglobin A1c and amyloid β 1-40. The interaction between PlsEtn and urinary MI for cognitive impairment was statistically confirmed, and their combined usage improved diagnosis of cognitive impairment. CONCLUSIONS We proposed the involvement of MI and PlsEtn in cognitive impairment pathology. In conclusion, serum PlsEtn may be useful in detecting cognitive decline among elderly with hyperglycemia.
Collapse
|
7
|
Fuchs B. Analytical methods for (oxidized) plasmalogens: Methodological aspects and applications. Free Radic Res 2015; 49:599-617. [DOI: 10.3109/10715762.2014.999675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Pettegrew JW, McClure RJ. Acetyl-l-carnitine as a possible therapy for Alzheimer’s disease. Expert Rev Neurother 2014; 2:647-54. [DOI: 10.1586/14737175.2.5.647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Stereotypies in Captive Primates and the Use of Inositol: Lessons from Obsessive–Compulsive Disorder in Humans. INT J PRIMATOL 2012. [DOI: 10.1007/s10764-012-9613-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Yang K, Zhao Z, Gross RW, Han X. Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS One 2007; 2:e1368. [PMID: 18159251 PMCID: PMC2147047 DOI: 10.1371/journal.pone.0001368] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 12/04/2007] [Indexed: 11/18/2022] Open
Abstract
Background Ether phospholipids are abundant membrane constituents present in electrically active tissues (e.g., heart and the brain) that play important roles in cellular function. Alterations of ether phospholipid molecular species contents are associated with a number of genetic disorders and human diseases. Methodology/Principal Findings Herein, the power of shotgun lipidomics, in combination with high mass accuracy/high resolution mass spectrometry, was explored to identify a paired rule for the presence of isomeric ether phospholipid molecular species in cellular lipidomes. The rule predicts that if an ether phospholipid A′-B is present in a lipidome, its isomeric counterpart B′-A is also present (where the ′ represents an ether linkage). The biochemical basis of this rule results from the fact that the enzymes which participate in either the sequential oxidation of aliphatic alcohols to fatty acids, or the reduction of long chain fatty acids to aliphatic alcohols (metabolic precursors of ether lipid synthesis), are not entirely selective with respect to acyl chain length or degree of unsaturation. Moreover, the enzymatic selectivity for the incorporation of different aliphatic chains into the obligatory precursor of ether lipids (i.e., 1-O-alkyl-glycero-3-phosphate) is also limited. Conclusions/Significance This intrinsic amplification of the number of lipid molecular species present in biological membranes predicted by this rule and demonstrated in this study greatly expands the number of ether lipid molecular species present in cellular lipidomes. Application of this rule to mass spectrometric analyses provides predictive clues to the presence of specific molecular species and greatly expands the number of identifiable and quantifiable ether lipid species present in biological samples. Through appropriate alterations in the database, use of the paired rule increases the number of identifiable metabolites in metabolic networks, thereby facilitating identification of biomarkers presaging disease states.
Collapse
Affiliation(s)
- Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhongdan Zhao
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Richard W. Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Chemistry, Washington University, St. Louis, Missouri, United States of America
| | - Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Kuczynski B, Reo NV. Evidence that Plasmalogen is Protective Against Oxidative Stress in the Rat Brain. Neurochem Res 2006; 31:639-56. [PMID: 16770735 DOI: 10.1007/s11064-006-9061-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2006] [Indexed: 11/30/2022]
Abstract
The antioxidant capabilities of phosphatidylethanolamine plasmalogen (PlsEtn), in vivo, against lipid peroxidation were investigated via acute phosphine (PH(3)) administration in rats. Oxidative stress was assessed from measures of malondialdehyde and various enzyme activities, while NMR analyses of lipid and aqueous tissue extracts provided metabolic information in cerebellum, brainstem, and cortex. Brainstem had the highest basal [PlsEtn], and showed only moderate PH(3)-induced oxidative damage with no loss of ATP. The lowest basal [PlsEtn] was observed in cortex, where PH(3) caused a 51% decrease in [ATP]. The largest oxidative effect occurred in cerebellum, but [ATP] was unaffected. Myo-inositol+ethanolamine pretreatment attenuated all PH(3) effects. Specifically, the pretreatment attenuated the ATP decrease in cortex, and elevated brain [PlsEtn] in the cerebellum, nearly abolishing the cerebellar oxidative effects. Our data suggest a high basal [PlsEtn], or the capacity to synthesize new ethanolamine lipids (particularly PlsEtn) may protect against PH(3) toxicity.
Collapse
Affiliation(s)
- Beth Kuczynski
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, WSU Magnetic Resonance Laboratory, Cox Institute, Dayton, OH 45429, USA
| | | |
Collapse
|
12
|
Kim H, McGrath BM, Silverstone PH. A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders--focus on magnetic resonance spectroscopy (MRS) studies. Hum Psychopharmacol 2005; 20:309-26. [PMID: 15880397 DOI: 10.1002/hup.693] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myo-inositol is an important part of the phosphatidylinositol second messenger system (PI-cycle). Abnormalities in nerve cell myo-inositol levels and/or PI-cycle regulation has been suggested as being involved in the pathophysiology and/or treatment of many psychiatric disorders including bipolar disorder, major depressive disorder, panic disorder, obsessive-compulsive disorder, eating disorders and schizophrenia. This review examines the metabolism and biochemical importance of myo-inositol and the PI-cycle. It relates this to the current in vivo evidence for myo-inositol and PI-cycle involvement in these psychiatric disorders, particularly focusing upon the magnetic resonance spectroscopy (MRS) findings in patient studies to date. From this review it is concluded that while the evidence suggests probable relevance to the pathophysiology and/or treatment of bipolar disorder, there is much less support for a significant role for the PI-cycle or myo-inositol in any other psychiatric disorder. More definitive investigation is required before PI-cycle dysfunction can be considered specific to bipolar disorder.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
13
|
Hoffman-Kuczynski B, Reo NV. Administration of Myo-inositol Plus Ethanolamine Elevates Phosphatidylethanolamine Plasmalogen in the Rat Cerebellum. Neurochem Res 2005; 30:47-60. [PMID: 15756932 DOI: 10.1007/s11064-004-9685-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Plasmalogens are ether-linked phospholipids highly abundant in nervous tissue. Previously we demonstrated that acute administration of myo-inositol (myo-Ins) + [2-(13)C] ethanolamine ([2-(13)C]Etn) significantly elevated phosphatidylethanolamine plasmalogen (PlsEtn) in rat whole brain. Current experiments investigated the effects of acute myo-Ins+[2-(13)C]Etn administration on [PlsEtn] and the biosynthesis of new Etn lipids using NMR spectroscopy in rat cerebral cortex, hippocampus, brainstem, midbrain and cerebellum. Treated rats received a single dose of myo-Ins + [2-(13)C]Etn and controls received saline rather than myoIns. Data reveal that the cerebellum is the brain region most affected by treatment, which resulted in a 22% increase in [PlsEtn] and 89% increase in newly synthesized Etn lipids relative to controls (P < 0.05). Furthermore, the cerebellar PlsEtn/phosphatidylethanolamine ratio and molar percentage of PlsEtn were significantly elevated by 12% and 8%, respectively (P < 0.05). These data suggest that myo-Ins influences Etn lipid metabolism in brain, particularly in the cerebellum where there is a stimulation in the biosynthesis of new Etn lipids with a preference towards PlsEtn.
Collapse
Affiliation(s)
- Beth Hoffman-Kuczynski
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, WSU Magnetic Resonance Laboratory, Cox Institute, Dayton, Ohio 45429, USA
| | | |
Collapse
|
14
|
Abstract
Plasmalogens are ether-linked phospholipids that are abundant in nervous tissues. Their biological role is unclear, but may involve membrane structure/function and antioxidant activities. This study further investigates a recent report that chronic administration of myo-inositol in rats increased brain phosphatidylethanolamine plasmalogen (PlsEtn). We examined the effects of myo-inositol administration on the incorporation of [2-(13)C]ethanolamine ([2-(13)C]Etn) into rat brain phospholipids using NMR spectroscopy. Rats received either acute myo-inositol (single dose) +/- [2-(13)C]Etn, or chronic myo-inositol (10-day treatment) + [2-(13)C]Etn. Controls received saline rather than myo-inositol. Acute myo-inositol produced a 68% increase in brain [myo-inositol] and an increase in the incorporation of [2-(13)C]Etn into phospholipids (P < .05). The PlsEtn/phosphatidylethanolamine ratio and the [PlsEtn] were increased by 27% and 30%, respectively. The PlsEtn content as a mole percentage of total phospholipids was elevated (P < or = .05). Acute administration of myo-inositol + ethanolamine illustrates a positive correlation between the brain [myo-inositol] and the biosynthesis of ethanolamine phospholipids, with preferential synthesis of PlsEtn.
Collapse
Affiliation(s)
- Beth Hoffman-Kuczynski
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, WSU Magnetic Resonance Laboratory, Cox Institute, Dayton, Ohio 45429, USA
| | | |
Collapse
|
15
|
Groenen PM, Peer PG, Wevers RA, Swinkels DW, Franke B, Mariman EC, Steegers-Theunissen RP. Maternal myo-inositol, glucose, and zinc status is associated with the risk of offspring with spina bifida. Am J Obstet Gynecol 2003; 189:1713-9. [PMID: 14710103 DOI: 10.1016/s0002-9378(03)00807-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the maternal and children's myo-inositol, glucose, and zinc status in association with spina bifida risk. STUDY DESIGN Sixty-three mothers and 70 children with spina bifida and 102 control mothers and 85 control children were investigated. The maternal and child serum myo-inositol, serum glucose, and red blood cell zinc concentrations were measured when the child was between 1 and 3 years old. These data were compared between cases and control subjects. The association with spina bifida was expressed by the ratio of geometric means and by odds ratios and 95% CI for a cutoff value at the extreme 10th percentile of the control group. RESULTS The geometric mean of the maternal myo-inositol concentration tended to be 5% (95% CI, -1% to 11%) lower in cases. Interestingly, the odds ratio for the extreme low maternal myo-inositol concentration was 2.6 (95% CI, 1.1-6.0). The glucose and zinc concentrations were significantly higher at 7% (95% CI, 4%-10%) and significantly lower at 5% (95% CI, 0%-9%), in case mothers compared with control mothers. The odds ratios (95% CI) for maternal high glucose and low zinc concentrations were 4.6 (2.0-10.5) and 2.9 (1.2-7.0), respectively. The geometric mean of the myo-inositol concentration tended to be 7% (95% CI, 0%-14%) lower in children with spina bifida; the glucose and zinc concentrations were comparable. CONCLUSION Maternal myo-inositol, glucose, and zinc status are associated with the risk of spina bifida in offspring. Furthermore, the myo-inositol status of the child seems to contribute to this risk as well.
Collapse
Affiliation(s)
- Pascal M Groenen
- Department of Epidemiology and Biostatistics, University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Farooqui AA, Ong WY, Horrocks LA. Plasmalogens, Docosahexaenoic Acid and Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:335-54. [PMID: 14713251 DOI: 10.1007/978-1-4419-9072-3_45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
17
|
Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ. Brain membrane phospholipid alterations in Alzheimer's disease. Neurochem Res 2001; 26:771-82. [PMID: 11565608 DOI: 10.1023/a:1011603916962] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Studies have demonstrated alterations in brain membrane phospholipid metabolite levels in Alzheimer's disease (AD). The changes in phospholipid metabolite levels correlate with neuropathological hallmarks of the disease and measures of cognitive decline. This 31P nuclear magnetic resonance (NMR) study of Folch extracts of autopsy material reveals significant reductions in AD brain levels of phosphatidylethanolamine (PtdEtn) and phosphatidylinositol (PtdIns), and elevations in sphingomyelin (SPH) and the plasmalogen derivative of PtdEtn. In the superior temporal gyrus, there were additional reductions in the levels of diphosphatidylglycerol (DPG) and phosphatidic acid (PtdA). The findings are present in 3/3 as well as 3/4 and 4/4 apolipoprotein E (apoE) genotypes. The AD findings do not appear to reflect non-specific neurodegeneration or the presence of gliosis. The present findings could possibly contribute to an abnormal membrane repair in AD brains which ultimately results in synaptic loss and the aggregation of A beta peptide.
Collapse
Affiliation(s)
- J W Pettegrew
- Department of Psychiatry. School of Medicine, University of Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
18
|
Pettegrew JW, Levine J, McClure RJ. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer's disease and geriatric depression. Mol Psychiatry 2000; 5:616-32. [PMID: 11126392 DOI: 10.1038/sj.mp.4000805] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetyl-L-carnitine (ALCAR) contains carnitine and acetyl moieties, both of which have neurobiological properties. Carnitine is important in the beta-oxidation of fatty acids and the acetyl moiety can be used to maintain acetyl-CoA levels. Other reported neurobiological effects of ALCAR include modulation of: (1) brain energy and phospholipid metabolism; (2) cellular macromolecules, including neurotrophic factors and neurohormones; (3) synaptic morphology; and (4) synaptic transmission of multiple neurotransmitters. Potential molecular mechanisms of ALCAR activity include: (1) acetylation of -NH2 and -OH functional groups in amino acids and N terminal amino acids in peptides and proteins resulting in modification of their structure, dynamics, function and turnover; and (2) acting as a molecular chaperone to larger molecules resulting in a change in the structure, molecular dynamics, and function of the larger molecule. ALCAR is reported in double-blind controlled studies to have beneficial effects in major depressive disorders and Alzheimer's disease (AD), both of which are highly prevalent in the geriatric population.
Collapse
Affiliation(s)
- J W Pettegrew
- Department of Psychiatry, School of Medicine, University of Pittsburgh, PA 15213, USA. pettegre+@pitt.edu
| | | | | |
Collapse
|