1
|
Khosravanizadeh A, Sens P, Mohammad-Rafiee F. Role of particle local curvature in cellular wrapping. J R Soc Interface 2022; 19:20220462. [PMID: 36321371 PMCID: PMC9627444 DOI: 10.1098/rsif.2022.0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular uptake through membranes plays an important role in adsorbing nutrients and fighting infection and can be used for nanomedicine developments. Endocytosis is one of the pathways of cellular uptake which associate with elastic deformation of the membrane wrapping around the foreign particle. The deformability of the membrane is strongly regulated by the presence of a cortical cytoskeleton placed underneath the membrane. It is shown that shape and orientation of the particles influence on their internalization. Here, we study the role of particle local curvature in cellular uptake by investigating the wrapping of an elastic membrane around a long cylindrical object with an elliptical cross-section. The membrane itself is adhered to a substrate mimicking the cytoskeleton. Membrane wrapping proceeds differently whether the initial contact occurs at the target's highly curved part (vertical) or along its long side (horizontal). We obtain a wrapping phase diagram as a function of the membrane-cytoskeleton and the membrane-target adhesion energy, which includes three distinct regimes (unwrapped, partially wrapped and fully wrapped), separated by two phase transitions. We also provide analytical expressions for the boundaries between the different regimes which confirm that the transitions strongly depend on the orientation and aspect ratio of the nanowire.
Collapse
Affiliation(s)
- Amir Khosravanizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris 75013, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS UMR 168, Paris, 75005 France
| | - Farshid Mohammad-Rafiee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
2
|
Cells responding to chemoattractant on a structured substrate. Biophys J 2022; 121:2557-2567. [DOI: 10.1016/j.bpj.2022.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
|
3
|
Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 2021; 10:e61037. [PMID: 33448265 PMCID: PMC7895527 DOI: 10.7554/elife.61037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Amoeboid cell types are fundamental to animal biology and broadly distributed across animal diversity, but their evolutionary origin is unclear. The closest living relatives of animals, the choanoflagellates, display a polarized cell architecture (with an apical flagellum encircled by microvilli) that resembles that of epithelial cells and suggests homology, but this architecture differs strikingly from the deformable phenotype of animal amoeboid cells, which instead evoke more distantly related eukaryotes, such as diverse amoebae. Here, we show that choanoflagellates subjected to confinement become amoeboid by retracting their flagella and activating myosin-based motility. This switch allows escape from confinement and is conserved across choanoflagellate diversity. The conservation of the amoeboid cell phenotype across animals and choanoflagellates, together with the conserved role of myosin, is consistent with homology of amoeboid motility in both lineages. We hypothesize that the differentiation between animal epithelial and crawling cells might have evolved from a stress-induced switch between flagellate and amoeboid forms in their single-celled ancestors.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marvin Albert
- Department of Molecular Life Sciences, University of ZürichZurichSwitzerland
| | - William Roman
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNEDBarcelonaSpain
| | - Maxwell C Coyle
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Danielle C Spitzer
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Nicole King
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
4
|
Mutlu BR, Dubash T, Dietsche C, Mishra A, Ozbey A, Keim K, Edd JF, Haber DA, Maheswaran S, Toner M. In-flow measurement of cell-cell adhesion using oscillatory inertial microfluidics. LAB ON A CHIP 2020; 20:1612-1620. [PMID: 32301448 PMCID: PMC7495683 DOI: 10.1039/d0lc00089b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multicellular clusters in circulation can exhibit a substantially different function and biomarker significance compared to individual cells. Notably, clusters of circulating tumor cells (CTCs) are much more effective initiators of metastasis than single CTCs, and correlate with worse patient prognoses. Measuring the cell-cell adhesion strength of CTC clusters is a critical step towards understanding their subsistence in the circulation and mechanism of elevated tumorigenicity. However, measuring cell-cell adhesion forces in flow is elusive using existing methods. Here, we report an oscillatory inertial microfluidics system which exerts a repeating fluidic force profile on suspended cell doublets to determine their cell-cell adhesion strength (Fs), without any biophysical modifications to the cell surface and physiological morphology. Using our system, we analyzed a large number (N > 500) of doublets from a patient-derived breast cancer CTC line. We discovered that the cell-cell adhesion strength of CTC doublets varied almost 20-fold between the weakly adhered (Fs < 28 nN) and strongly bound subpopulations (Fs > 542 nN). Our system can be used with other cancer or noncancer cells without restrictions, and may be used for rapid screening of drugs aiming to disrupt the highly-metastatic CTC clusters in circulation.
Collapse
Affiliation(s)
- Baris R Mutlu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chemical manipulations to facilitate membrane blebbing and vesicle shedding on the cellular cortex. Biotechnol Lett 2020; 42:1137-1145. [PMID: 32112174 DOI: 10.1007/s10529-020-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Most attention has been focused on physiologically generated membrane blebs on the cellular cortex, whereas artificial membrane blebs induced by chemicals are studied to a lesser extent. RESULTS We found that exposure of HeLa human cervical cancer cells to paraformaldehyde (PFA), followed by incubation in phosphate-buffered saline (PBS) efficiently induced large membrane blebs on the cellular cortex. Intriguingly, sequential exposure of the PFA-treated cells to PBS containing dimethyl sulfoxide (DMSO) facilitated shedding of the blebs from the cellular cortex, yielding a high quantity of large extracellular vesicles in the supernatant, which was applicable to assess the potentials of compounds and proteins as membrane influencers. Similar effects of PFA and DMSO were detected on the cellular cortex of other human, mouse, and fish cells. CONCLUSIONS Our procedure to facilitate membrane blebbing and vesicle shedding by chemicals may be practical for the manipulation of membrane dynamics and the development of vesicle-inspired technologies using a wide variety of cell types.
Collapse
|
6
|
Tsujioka M, Uyeda TQP, Iwadate Y, Patel H, Shibata K, Yumoto T, Yonemura S. Actin-binding domains mediate the distinct distribution of two Dictyostelium Talins through different affinities to specific subsets of actin filaments during directed cell migration. PLoS One 2019; 14:e0214736. [PMID: 30946777 PMCID: PMC6449030 DOI: 10.1371/journal.pone.0214736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although the distinct distribution of certain molecules along the anterior or posterior edge is essential for directed cell migration, the mechanisms to maintain asymmetric protein localization have not yet been fully elucidated. Here, we studied a mechanism for the distinct localizations of two Dictyostelium talin homologues, talin A and talin B, both of which play important roles in cell migration and adhesion. Using GFP fusion, we found that talin B, as well as its C-terminal actin-binding region, which consists of an I/LWEQ domain and a villin headpiece domain, was restricted to the leading edge of migrating cells. This is in sharp contrast to talin A and its C-terminal actin-binding domain, which co-localized with myosin II along the cell posterior cortex, as reported previously. Intriguingly, even in myosin II-null cells, talin A and its actin-binding domain displayed a specific distribution, co-localizing with stretched actin filaments. In contrast, talin B was excluded from regions rich in stretched actin filaments, although a certain amount of its actin-binding region alone was present in those areas. When cells were sucked by a micro-pipette, talin B was not detected in the retracting aspirated lobe where acto-myosin, talin A, and the actin-binding regions of talin A and talin B accumulated. Based on these results, we suggest that talin A predominantly interacts with actin filaments stretched by myosin II through its C-terminal actin-binding region, while the actin-binding region of talin B does not make such distinctions. Furthermore, talin B appears to have an additional, unidentified mechanism that excludes it from the region rich in stretched actin filaments. We propose that these actin-binding properties play important roles in the anterior and posterior enrichment of talin B and talin A, respectively, during directed cell migration.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Electron Microscope Laboratory, RIKEN, Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
- * E-mail:
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Technology, Waseda University, Tokyo, Japan
| | | | - Hitesh Patel
- Edinburgh Cancer Research Centre, The University of Edinburgh, Crewe Road South, Edinburgh, Scotland
| | - Keitaro Shibata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hyogo, Japan
| | - Tenji Yumoto
- Department of Physics, Faculty of Science and Technology, Waseda University, Tokyo, Japan
| | - Shigenobu Yonemura
- Electron Microscope Laboratory, RIKEN, Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| |
Collapse
|
7
|
Barazani B, Piercey M, Paulson A, Warnat S, Hubbard T, MacIntosh AJ. Rehydration of active dried yeast: impact on strength and stiffness of yeast cells measured using microelectromechanical systems. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bruno Barazani
- Mechanical Engineering Department; Dalhousie University; B3H 4R2 Halifax NS Canada
| | - Marta Piercey
- Process Engineering and Applied Science Department; Dalhousie University; B3H 4R2 Halifax NS Canada
| | - Allan Paulson
- Process Engineering and Applied Science Department; Dalhousie University; B3H 4R2 Halifax NS Canada
| | - Stephan Warnat
- Mechanical & Industrial Engineering Department; Montana State University; 59717 Bozeman MT USA
| | - Ted Hubbard
- Mechanical Engineering Department; Dalhousie University; B3H 4R2 Halifax NS Canada
| | - Andrew J. MacIntosh
- Food Science and Human Nutrition Department; University of Florida; 32611 Gainesville FL USA
| |
Collapse
|
8
|
Schön M, Mey I, Steinem C. Influence of cross-linkers on ezrin-bound minimal actin cortices. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:91-101. [PMID: 30093083 DOI: 10.1016/j.pbiomolbio.2018.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
The actin cortex is a thin network coupled to the plasma membrane of cells, responsible for e.g., cell shape, motility, growth and division. Several model systems for minimal actin cortices (MACs) have been discussed in literature trying to mimic the complex interplay of membrane and actin. We recapitulate on different types of MACs using either three dimensional droplet interfaces or lipid bilayers to which F-actin networks are attached to or planar lipid bilayers with bound actin networks. Binding of the network to the membrane interface significantly influences its properties as well as its dynamics. This in turn also influences, how cross-linkers as well as myosin motors act on the network. Here, we describe the coupling of a filamentous actin network to a model membrane via the protein ezrin, a member of the ezrin-radixin-moesin family, which forms a direct linkage between the plasma membrane and the cortical web. Ezrin binding to the membrane is achieved by the lipid PtdIns(4,5)P2, while attachment to F-actin is mediated via the C-terminal domain of the protein leading to a two dimensional arrangement of actin filaments on the membrane. Addition of cross-linkers such as fascin and α-actinin influences the architecture of the actin network, which we have investigated by means of fluorescence microscopy. The results are discussed in terms of the dynamics of the filaments on the membrane surface.
Collapse
Affiliation(s)
- Markus Schön
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ingo Mey
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
| | - Claudia Steinem
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
| |
Collapse
|
9
|
Othmer HG. Eukaryotic Cell Dynamics from Crawlers to Swimmers. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 30854030 DOI: 10.1002/wcms.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.
Collapse
Affiliation(s)
- H G Othmer
- School of Mathematics, University of Minnesota
| |
Collapse
|
10
|
Barazani B, Warnat S, MacIntosh AJ, Hubbard T. MEMS measurements of single cell stiffness decay due to cyclic mechanical loading. Biomed Microdevices 2017; 19:77. [PMID: 28842775 DOI: 10.1007/s10544-017-0219-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The goal of this study was to measure the mechanical stiffness of individual cells and to observe changes due to the application of repeated cell mechanical loads. 28 single baker's yeast cells (Saccharomyces cerevisiae) were fatigue tested and had their stiffness measured during repetitive loading cycles performed by a MEMS squeezer in aqueous media. Electrothermal micro-actuators compressed individual cells against a reference back spring; cell and spring motions were measured using a FFT image analysis technique with ~10 nm resolution. Cell stiffness was calculated based on measurements of cell elongation vs. applied force which resulted in stiffness values in the 2-10 N/m range. The effect of increased force was studied for cells mechanically cycled 37 times. Cell stiffness decreased as the force and the cycle number increased. After 37 loading cycles (~4 min), forces of 0.24, 0.29, 0.31, and 0.33 μN caused stiffness drops of 5%, 13%, 31% and 41% respectively. Cells force was then set to 0.29 μN and cells were tested over longer runs of 118 and 268 cycles. After 118 cycles (~12 min) cells experienced an average stiffness drop of 68%. After 268 cycles (~25 min) cells had a stiffness drop of 77%, and appeared to reach a stiffness plateau of 20-25% of the initial stiffness after approximately 200 cycles.
Collapse
Affiliation(s)
- Bruno Barazani
- Mechanical Engineering Department, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Stephan Warnat
- Mechanical & Industrial Engineering Department, Montana State University, Bozeman, MT, 59717-3800, USA
| | - Andrew J MacIntosh
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611-0370, USA
| | - Ted Hubbard
- Mechanical Engineering Department, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
11
|
Collier S, Paschke P, Kay RR, Bretschneider T. Image based modeling of bleb site selection. Sci Rep 2017; 7:6692. [PMID: 28751725 PMCID: PMC5532237 DOI: 10.1038/s41598-017-06875-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/20/2017] [Indexed: 12/02/2022] Open
Abstract
Cells often employ fast, pressure-driven blebs to move through tissues or against mechanical resistance, but how bleb sites are selected and directed to the cell front remains an open question. Previously, we found that chemotaxing Dictyostelium cells preferentially bleb from concave regions, where membrane tension facilitates membrane-cortex detachment. Now, through a novel modeling approach based on actual cell contours, we use cell geometry to predict where blebs will form in migrating cells. We find that cell geometry alone, and by implication, physical forces in the membrane, is sufficient to predict the location of blebs in rounded cells moving in a highly resistive environment. The model is less successful with more polarized cells moving against less resistance, but can be greatly improved by positing a front-to-back gradient in membrane-cortex adhesion. In accord with this prediction, we find that Talin, which links membrane and cortex, forms such a front-to-back gradient. Thus our model provides a means of dissecting out the role of physical forces in controlling where blebs form, and shows that in certain circumstances they could be the major determining factor.
Collapse
Affiliation(s)
- Sharon Collier
- MOAC Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Peggy Paschke
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Robert R Kay
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
Kurokawa C, Fujiwara K, Morita M, Kawamata I, Kawagishi Y, Sakai A, Murayama Y, Nomura SIM, Murata S, Takinoue M, Yanagisawa M. DNA cytoskeleton for stabilizing artificial cells. Proc Natl Acad Sci U S A 2017; 114:7228-7233. [PMID: 28652345 PMCID: PMC5514726 DOI: 10.1073/pnas.1702208114] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cell-sized liposomes and droplets coated with lipid layers have been used as platforms for understanding live cells, constructing artificial cells, and implementing functional biomedical tools such as biosensing platforms and drug delivery systems. However, these systems are very fragile, which results from the absence of cytoskeletons in these systems. Here, we construct an artificial cytoskeleton using DNA nanostructures. The designed DNA oligomers form a Y-shaped nanostructure and connect to each other with their complementary sticky ends to form networks. To undercoat lipid membranes with this DNA network, we used cationic lipids that attract negatively charged DNA. By encapsulating the DNA into the droplets, we successfully created a DNA shell underneath the membrane. The DNA shells increased interfacial tension, elastic modulus, and shear modulus of the droplet surface, consequently stabilizing the lipid droplets. Such drastic changes in stability were detected only when the DNA shell was in the gel phase. Furthermore, we demonstrate that liposomes with the DNA gel shell are substantially tolerant against outer osmotic shock. These results clearly show the DNA gel shell is a stabilizer of the lipid membrane akin to the cytoskeleton in live cells.
Collapse
Affiliation(s)
- Chikako Kurokawa
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588 Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Kanagawa 223-8522, Japan
| | - Masamune Morita
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| | - Ibuki Kawamata
- Department of Robotics, Tohoku University, Sendai 980-8579, Japan
| | - Yui Kawagishi
- Department of Robotics, Tohoku University, Sendai 980-8579, Japan
| | - Atsushi Sakai
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588 Japan
| | - Yoshihiro Murayama
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588 Japan
| | | | - Satoshi Murata
- Department of Robotics, Tohoku University, Sendai 980-8579, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan;
| | - Miho Yanagisawa
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588 Japan;
| |
Collapse
|
13
|
Shibata K, Nagasaki A, Adachi H, Uyeda TQP. Actin binding domain of filamin distinguishes posterior from anterior actin filaments in migrating Dictyostelium cells. Biophys Physicobiol 2016; 13:321-331. [PMID: 28409084 PMCID: PMC5283175 DOI: 10.2142/biophysico.13.0_321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/28/2016] [Indexed: 01/20/2023] Open
Abstract
Actin filaments in different parts of a cell interact with specific actin binding proteins (ABPs) and perform different functions in a spatially regulated manner. However, the mechanisms of those spatially-defined interactions have not been fully elucidated. If the structures of actin filaments differ in different parts of a cell, as suggested by previous in vitro structural studies, ABPs may distinguish these structural differences and interact with specific actin filaments in the cell. To test this hypothesis, we followed the translocation of the actin binding domain of filamin (ABDFLN) fused with photoswitchable fluorescent protein (mKikGR) in polarized Dictyostelium cells. When ABDFLN-mKikGR was photoswitched in the middle of a polarized cell, photoswitched ABDFLN-mKikGR rapidly translocated to the rear of the cell, even though actin filaments were abundant in the front. The speed of translocation (>3 μm/s) was much faster than that of the retrograde flow of cortical actin filaments. Rapid translocation of ABDFLN-mKikGR to the rear occurred normally in cells lacking GAPA, the only protein, other than actin, known to bind ABDFLN. We suggest that ABDFLN recognizes a certain feature of actin filaments in the rear of the cell and selectively binds to them, contributing to the posterior localization of filamin.
Collapse
Affiliation(s)
- Keitaro Shibata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Akira Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroyuki Adachi
- Department of Biotechnology, University of Tokyo, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Taro Q P Uyeda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan.,Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
14
|
Abstract
Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- a Faculty of Physics and Earth Science; Institute of Experimental Physics I; Biological Physics Division; University of Leipzig ; Leipzig , Germany
| |
Collapse
|
15
|
Alert R, Casademunt J. Bleb Nucleation through Membrane Peeling. PHYSICAL REVIEW LETTERS 2016; 116:068101. [PMID: 26919015 DOI: 10.1103/physrevlett.116.068101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 06/05/2023]
Abstract
We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.
Collapse
Affiliation(s)
- Ricard Alert
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Casademunt
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Alert R, Casademunt J, Brugués J, Sens P. Model for probing membrane-cortex adhesion by micropipette aspiration and fluctuation spectroscopy. Biophys J 2016; 108:1878-86. [PMID: 25902428 DOI: 10.1016/j.bpj.2015.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022] Open
Abstract
We propose a model for membrane-cortex adhesion that couples membrane deformations, hydrodynamics, and kinetics of membrane-cortex ligands. In its simplest form, the model gives explicit predictions for the critical pressure for membrane detachment and for the value of adhesion energy. We show that these quantities exhibit a significant dependence on the active acto-myosin stresses. The model provides a simple framework to access quantitative information on cortical activity by means of micropipette experiments. We also extend the model to incorporate fluctuations and show that detailed information on the stability of membrane-cortex coupling can be obtained by a combination of micropipette aspiration and fluctuation spectroscopy measurements.
Collapse
Affiliation(s)
- Ricard Alert
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Casademunt
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Institute for Physics of Complex Systems, Dresden, Germany.
| | - Pierre Sens
- Laboratoire Gulliver, Centre National de la Recherche Scientifique-ESPCI Paris Tech, UMR 7083, Paris, France.
| |
Collapse
|
17
|
Ramalingam N, Franke C, Jaschinski E, Winterhoff M, Lu Y, Brühmann S, Junemann A, Meier H, Noegel AA, Weber I, Zhao H, Merkel R, Schleicher M, Faix J. A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement. Nat Commun 2015; 6:8496. [PMID: 26415699 PMCID: PMC4598863 DOI: 10.1038/ncomms9496] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Anatomy III/Cell Biology, BioMedCenter, Ludwig-Maximilians-University, Grosshaderner Str. 9, Planegg-Martinsried, Germany
| | - Christof Franke
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Evelin Jaschinski
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich 52425 Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Yao Lu
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Alexander Junemann
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Helena Meier
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln 50931, Germany
| | - Igor Weber
- Division of Molecular Biology, Ruder Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Rudolf Merkel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich 52425 Germany
| | - Michael Schleicher
- Anatomy III/Cell Biology, BioMedCenter, Ludwig-Maximilians-University, Grosshaderner Str. 9, Planegg-Martinsried, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| |
Collapse
|
18
|
Plaza GR, Uyeda TQP, Mirzaei Z, Simmons CA. Study of the influence of actin-binding proteins using linear analyses of cell deformability. SOFT MATTER 2015; 11:5435-5446. [PMID: 26059185 DOI: 10.1039/c5sm00125k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing.
Collapse
Affiliation(s)
- Gustavo R Plaza
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
19
|
Takahashi K, Toyota T. Autonomous buckling of micrometer-sized lipid-protein membrane patches constructed by Dictyostelium discoideum. J Biol Eng 2015; 9:3. [PMID: 25972921 PMCID: PMC4429478 DOI: 10.1186/1754-1611-9-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/11/2015] [Indexed: 12/02/2022] Open
Abstract
Background The cytosol of amoeba cells controls the membrane deformation during their motion in vivo. To investigate such ability of the cytosol of amoeba cell, Dictyostelium discoideum (Dictyostelium), in vitro, we used lipids extracted from Dictyostelium and commercially available phospholipids, and prepared substrate-supported lipid membrane patches on the micrometer scale by spin coating. Results We found that the spin coater holder, which has pores (pore size = 3.1 mm) of negative pressure to hold the cover glass induced the concave surface of the cover glass. The membrane lipid patches were formed at each position in the vicinity of the holder pores and their sizes were in the range of 2.7 to 3.2 × 104 μm2. After addition of the cytosol extracted from Dictyostelium to the lipid membrane patches, through time-lapse observation with a confocal laser scanning fluorescence microscope, we observed an autonomous buckling of the Dictyostelium lipid patches and localized behaviours of proteins found within. Conclusion The current method serves as the novel technique for the preparation of film patches in which the positions of patches are controlled by the holder pores without fabricating, modifying, and arranging the chemical properties of the solution components of lipids. The findings imply that lipid-binding proteins in the cytosol were adsorbed and accumulated within the Dictyostelium lipid patches, inducing the transformation of the cell-sized patch. Electronic supplementary material The online version of this article (doi:10.1186/1754-1611-9-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902 Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902 Japan ; Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902 Japan
| |
Collapse
|
20
|
Kashef J, Franz CM. Quantitative methods for analyzing cell–cell adhesion in development. Dev Biol 2015; 401:165-74. [DOI: 10.1016/j.ydbio.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 11/26/2022]
|
21
|
Ruan R, Zou L, Sun S, Liu J, Wen L, Gao D, Ding W. Cell blebbing upon addition of cryoprotectants: a self-protection mechanism. PLoS One 2015; 10:e0125746. [PMID: 25875076 PMCID: PMC4395349 DOI: 10.1371/journal.pone.0125746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/26/2015] [Indexed: 11/23/2022] Open
Abstract
In this work, the mechanism of cell bleb formation upon the addition of cryoprotectants (CPAs) was investigated, and the role of cell blebs in protecting cells was determined. The results show that after adding CPAs, the hyperosmotic stress results in the breakage of the cortical cytoskeleton and the detachment of the cell membrane from the cortical cytoskeleton, causing the formation of cell blebs. Multiple blebs decrease the intracellular hydrostatic pressure induced by the extracellular hyperosmotic shock and alleviate the osmotic damage to cells, which reduces the cell mortality rate. In the presence of a low concentration of CPAs, cell blebs can effectively protect cells. In contrast, in the presence of a high concentration of CPAs, the protective effect is limited because of severe disruption in the cortical cytoskeleton. To determine the relationship between blebs and the mortality rate of cells, we defined a bleb index and found that the bleb index of 0.065 can be regarded as a reference value for the safe addition of DMSO to HeLa cells. The bleb index can also explain why the stepwise addition of CPAs is better than the single-step addition of CPAs. Moreover, the mechanism of the autophagy of cells induced by the hyperosmotic stress was studied, and the protective effect associated with the autophagy was compared with the effect of the blebbing. The findings reported here elucidate a self-protection mechanism of cells experiencing the hyperosmotic stress in the presence of CPAs, and they provide significant evidence for cell tolerance in the field of cryopreservation.
Collapse
Affiliation(s)
- Renquan Ruan
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lili Zou
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Sijie Sun
- Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, United States of America
| | - Jing Liu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Longping Wen
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, United States of America
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
- * E-mail:
| |
Collapse
|
22
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Shin JW, Discher DE. Blood and immune cell engineering: Cytoskeletal contractility and nuclear rheology impact cell lineage and localization: Biophysical regulation of hematopoietic differentiation and trafficking. Bioessays 2015; 37:633-42. [PMID: 25810145 DOI: 10.1002/bies.201400166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinical success with human hematopoietic stem cell (HSC) transplantation establishes a paradigm for regenerative therapies with other types of stem cells. However, it remains generally challenging to therapeutically treat tissues after engineering of stem cells in vitro. Recent studies suggest that stem and progenitor cells sense physical features of their niches. Here, we review biophysical contributions to lineage decisions, maturation, and trafficking of blood and immune cells. Polarized cellular contractility and nuclear rheology are separately shown to be functional markers of a hematopoietic hierarchy that predict the ability of a lineage to traffic in and out of the bone marrow niche. These biophysical determinants are regulated by a set of structural molecules, including cytoplasmic myosin-II and nuclear lamins, which themselves are modulated by a diverse range of transcriptional and post-translational mechanisms. Small molecules that target these mechanobiological circuits, along with novel bioengineering methods, could prove broadly useful in programming blood and immune cells for therapies ranging from blood transfusions to immune attack of tumors.
Collapse
Affiliation(s)
- Jae-Won Shin
- Biophysical Engineering Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Biophysical Engineering Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Xu Q, Li C, Kang Y, Zhang Y. Long term effects of substrate stiffness on the development of hMSC mechanical properties. RSC Adv 2015. [DOI: 10.1039/c5ra17233k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Micropipette aspiration of hMSCs cultured on different PDMS substrates showed that cells aligned their mechanical properties with the substrate stiffness and cell moduli always displayed a non-monotonic trend along culture time.
Collapse
Affiliation(s)
- Qinwei Xu
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore
| | - Cheng Li
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Interdisciplinary Graduate School
| | - Yuejun Kang
- School of Chemical and Biological Engineering
- Nanyang Technological University
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore
- Complexity Institute
- Nanyang Technological University
| |
Collapse
|
25
|
Lee LM, Liu AP. The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells. J Nanotechnol Eng Med 2014; 5:0408011-408016. [PMID: 26155329 DOI: 10.1115/1.4029936] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/24/2015] [Indexed: 11/08/2022]
Abstract
Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by micro/nanotechnology, several novel microfluidic devices have been developed recently with better accuracy, sensitivity, and throughput. Further technical advancements of microfluidics-based micropipette aspiration would have broad applications in both fundamental cell mechanics studies and for disease diagnostics.
Collapse
Affiliation(s)
- Lap Man Lee
- Department of Mechanical Engineering, University of Michigan , 2350 Hayward Street , Ann Arbor, MI 48109-2125 e-mail:
| | - Allen P Liu
- Department of Mechanical Engineering, Biomedical Engineering, Cell and Molecular Biology Program, Biophysics Program, University of Michigan , 2350 Hayward Street , Ann Arbor, MI 48109-2125 e-mail:
| |
Collapse
|
26
|
Beckham Y, Vasquez RJ, Stricker J, Sayegh K, Campillo C, Gardel ML. Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly. PLoS One 2014; 9:e100943. [PMID: 24967897 PMCID: PMC4072770 DOI: 10.1371/journal.pone.0100943] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
Here we demonstrate that Arp2/3 regulates a transition between mesenchymal and amoeboid protrusions in MCF10A epithelial cells. Using genetic and pharmacological means, we first show Arp2/3 inhibition impairs directed cell migration. Arp2/3 inhibition results in a dramatically impaired cell adhesion, causing deficient cell attachment and spreading to ECM as well as an 8-fold decrease in nascent adhesion assembly at the leading edge. While Arp2/3 does not play a significant role in myosin-dependent adhesion growth, mature focal adhesions undergo large scale movements against the ECM suggesting reduced coupling to the ECM. Cell edge protrusions occur at similar rates when Arp2/3 is inhibited but their morphology is dramatically altered. Persistent lamellipodia are abrogated and we observe a markedly increased incidence of blebbing and unstable pseuodopods. Micropipette-aspiration assays indicate that Arp2/3-inhibited cells have a weak coupling between the cell cortex and the plasma membrane, and suggest a potential mechanism for increased pseudopod and bleb formation. Pseudopods are not sensitive to reduced in formin or myosin II activity. Collectively, these results indicate that Arp2/3 is not necessary for rapid protrusion of the cell edge but plays a crucial role in assembling focal adhesions required for its stabilization.
Collapse
Affiliation(s)
- Yvonne Beckham
- Institute for Biophysical Dynamics, University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Robert J. Vasquez
- Section of Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Jonathan Stricker
- James Franck Institute, University of Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
| | - Kareem Sayegh
- James Franck Institute, University of Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
| | - Clement Campillo
- Laboratoire Physico-Chimie, Institut Curie, Centre de Recherche, Paris, France
- Laboratoire Analyse et Modélisation pour la Biologie et l’ Environnement, Université d’Evry Val d’Essonne, Evry, France
| | - Margaret L. Gardel
- Institute for Biophysical Dynamics, University of Chicago Medical Center, Chicago, Illinois, United States of America
- James Franck Institute, University of Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell 2013; 14:81-93. [PMID: 24268694 DOI: 10.1016/j.stem.2013.10.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 07/31/2013] [Accepted: 10/17/2013] [Indexed: 12/31/2022]
Abstract
Self-renewal and differentiation of stem cells depend on asymmetric division and polarized motility processes that in other cell types are modulated by nonmuscle myosin-II (MII) forces and matrix mechanics. Here, mass spectrometry-calibrated intracellular flow cytometry of human hematopoiesis reveals MIIB to be a major isoform that is strongly polarized in hematopoietic stem cells and progenitors (HSC/Ps) and thereby downregulated in differentiated cells via asymmetric division. MIIA is constitutive and activated by dephosphorylation during cytokine-triggered differentiation of cells grown on stiff, endosteum-like matrix, but not soft, marrow-like matrix. In vivo, MIIB is required for generation of blood, while MIIA is required for sustained HSC/P engraftment. Reversible inhibition of both isoforms in culture with blebbistatin enriches for long-term hematopoietic multilineage reconstituting cells by 5-fold or more as assessed in vivo. Megakaryocytes also become more polyploid, producing 4-fold more platelets. MII is thus a multifunctional node in polarized division and niche sensing.
Collapse
|
28
|
Bausch AR, Schwarz US. Cellular mechanosensing: Sharing the force. NATURE MATERIALS 2013; 12:948-949. [PMID: 24150409 DOI: 10.1038/nmat3791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Andreas R Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, 85748 Garching, Germany
| | | |
Collapse
|
29
|
Shin JW, Swift J, Ivanovska I, Spinler KR, Buxboim A, Discher DE. Mechanobiology of bone marrow stem cells: from myosin-II forces to compliance of matrix and nucleus in cell forms and fates. Differentiation 2013; 86:77-86. [PMID: 23790394 PMCID: PMC3964600 DOI: 10.1016/j.diff.2013.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022]
Abstract
Adult stem cells and progenitors are of great interest for their clinical application as well as their potential to reveal deep sensitivities to microenvironmental factors. The bone marrow is a niche for at least two types of stem cells, and the prototype is the hematopoietic stem cell/progenitors (HSC/Ps), which have saved many thousands of patients for several decades now. In bone marrow, HSC/Ps interact functionally with marrow stromal cells that are often referred to as mesenchymal stem cells (MSCs) or derivatives thereof. Myosin and matrix elasticity greatly affect MSC function, and these mechanobiological factors are now being explored with HSC/Ps both in vitro and in vivo. Also emerging is a role for the nucleus as a mechanically sensitive organelle that is semi-permeable to transcription factors which are modified for nuclear entry by cytoplasmic mechanobiological pathways. Since therapies envisioned with induced pluripotent stem cells and embryonic stem cells generally involve in vitro commitment to an adult stem cell or progenitor, a very deep understanding of stem cell mechanobiology is essential to progress with these multi-potent cells.
Collapse
Affiliation(s)
- Jae-Won Shin
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Iwadate Y, Okimura C, Sato K, Nakashima Y, Tsujioka M, Minami K. Myosin-II-mediated directional migration of Dictyostelium cells in response to cyclic stretching of substratum. Biophys J 2013; 104:748-58. [PMID: 23442953 DOI: 10.1016/j.bpj.2013.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 11/29/2022] Open
Abstract
Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin.
Collapse
Affiliation(s)
- Yoshiaki Iwadate
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
The role and regulation of blebs in cell migration. Curr Opin Cell Biol 2013; 25:582-90. [PMID: 23786923 PMCID: PMC3989058 DOI: 10.1016/j.ceb.2013.05.005] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/25/2013] [Indexed: 12/22/2022]
Abstract
Blebs are cellular protrusions that have been shown to be instrumental for cell migration in development and disease. Bleb expansion is driven by hydrostatic pressure generated in the cytoplasm by the contractile actomyosin cortex. The mechanisms of bleb formation thus fundamentally differ from the actin polymerization-based mechanisms responsible for lamellipodia expansion. In this review, we summarize recent findings relevant for the mechanics of bleb formation and the underlying molecular pathways. We then review the processes involved in determining the type of protrusion formed by migrating cells, in particular in vivo, in the context of embryonic development. Finally, we discuss how cells utilize blebs for their forward movement in the presence or absence of strong substrate attachment.
Collapse
|
32
|
Allena R. Cell migration with multiple pseudopodia: temporal and spatial sensing models. Bull Math Biol 2013; 75:288-316. [PMID: 23319383 DOI: 10.1007/s11538-012-9806-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/20/2012] [Indexed: 01/15/2023]
Abstract
Cell migration triggered by pseudopodia (or "false feet") is the most used method of locomotion. A 3D finite element model of a cell migrating over a 2D substrate is proposed, with a particular focus on the mechanical aspects of the biological phenomenon. The decomposition of the deformation gradient is used to reproduce the cyclic phases of protrusion and contraction of the cell, which are tightly synchronized with the adhesion forces at the back and at the front of the cell, respectively. First, a steady active deformation is considered to show the ability of the cell to simultaneously initiate multiple pseudopodia. Here, randomness is considered as a key aspect, which controls both the direction and the amplitude of the false feet. Second, the migration process is described through two different strategies: the temporal and the spatial sensing models. In the temporal model, the cell "sniffs" the surroundings by extending several pseudopodia and only the one that receives a positive input will become the new leading edge, while the others retract. In the spatial model instead, the cell senses the external sources at different spots of the membrane and only protrudes one pseudopod in the direction of the most attractive one.
Collapse
Affiliation(s)
- Rachele Allena
- Arts et Metiers ParisTech, LBM, 151 bd de l'hopital, 75013 Paris, France.
| |
Collapse
|
33
|
Kee YS, Robinson DN. Micropipette aspiration for studying cellular mechanosensory responses and mechanics. Methods Mol Biol 2013; 983:367-82. [PMID: 23494318 DOI: 10.1007/978-1-62703-302-2_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Micropipette aspiration (MPA) is a widely applied method for studying cortical tension and deformability. Based on simple hydrostatic principles, this assay allows the application of a specific magnitude of mechanical stress on cells. This powerful method has revealed insights about cell mechanics and mechanosensing, not only in Dictyostelium discoideum but also in other cell types. In this chapter, we present how to set up a micropipette aspiration system and the experimental procedures for determining cortical tension and mechanosensory responses.
Collapse
Affiliation(s)
- Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
34
|
Yumura S, Itoh G, Kikuta Y, Kikuchi T, Kitanishi-Yumura T, Tsujioka M. Cell-scale dynamic recycling and cortical flow of the actin-myosin cytoskeleton for rapid cell migration. Biol Open 2012; 2:200-9. [PMID: 23430058 PMCID: PMC3575654 DOI: 10.1242/bio.20122899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/23/2012] [Indexed: 01/14/2023] Open
Abstract
Actin and myosin II play major roles in cell migration. Whereas pseudopod extension by actin polymerization has been intensively researched, less attention has been paid to how the rest of the actin cytoskeleton such as the actin cortex contributes to cell migration. In this study, cortical actin and myosin II filaments were simultaneously observed in migrating Dictyostelium cells under total internal reflection fluorescence microscopy. The cortical actin and myosin II filaments remained stationary with respect to the substratum as the cells advanced. However, fluorescence recovery after photobleaching experiments and direct observation of filaments showed that they rapidly turned over. When the cells were detached from the substratum, the actin and myosin filaments displayed a vigorous retrograde flow. Thus, when the cells migrate on the substratum, the cortical cytoskeleton firmly holds the substratum to generate the motive force instead. The present studies also demonstrate how myosin II localizes to the rear region of the migrating cells. The observed dynamic turnover of actin and myosin II filaments contributes to the recycling of their subunits across the whole cell and enables rapid reorganization of the cytoskeleton.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University , Yamaguchi 753-8512 , Japan
| | | | | | | | | | | |
Collapse
|
35
|
Talin couples the actomyosin cortex to the plasma membrane during rear retraction and cytokinesis. Proc Natl Acad Sci U S A 2012; 109:12992-7. [PMID: 22826231 DOI: 10.1073/pnas.1208296109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Contraction of the cortical actin cytoskeleton underlies both rear retraction in directed cell migration and cytokinesis. Here, we show that talin, a central component of focal adhesions, has a major role in these processes. We found that Dictyostelium talin A colocalized with myosin II in the rear of migrating cells and the cleavage furrow. During directed cell migration, talin A-null cells displayed a long thin tail devoid of actin filaments, whereas additional depletion of SibA, a transmembrane adhesion molecule that binds to talin A, reverted this phenotype, suggesting a requirement of the link between actomyosin and SibA by talin A for rear retraction. Disruptions of talin A also resulted in detachment of the actomyosin contractile ring from the cell membrane and concomitant regression of the cleavage furrow under certain conditions. The C-terminal actin-binding domain (ABD) of talin A exhibited a localization pattern identical to that of full-length talin A. The N-terminal FERM domain was found to bind phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] in vitro. In vivo, however, PtdIns(4,5)P2, which is known to activate talin, is believed to be enriched in the rear of migrating cells and the cleavage furrow in Dictyostelium. From these results, we propose that talin A activated by PtdIns(4,5)P2 in the cell posterior or cleavage furrow links actomyosin cytoskeleton to adhesion molecules or other membrane proteins, and that the force is transmitted through these links to retract the tail during cell migration or to cause efficient ingression of the equator during cytokinesis.
Collapse
|
36
|
West-Foyle H, Robinson DN. Cytokinesis mechanics and mechanosensing. Cytoskeleton (Hoboken) 2012; 69:700-9. [PMID: 22761196 DOI: 10.1002/cm.21045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/11/2012] [Indexed: 01/13/2023]
Abstract
Cytokinesis shape change occurs through the interfacing of three modules, cell mechanics, myosin II-mediated contractile stress generation and sensing, and a control system of regulatory proteins, which together ensure flexibility and robustness. This integrated system then defines the stereotypical shape changes of successful cytokinesis, which occurs under a diversity of mechanical contexts and environmental conditions.
Collapse
Affiliation(s)
- Hoku West-Foyle
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
37
|
Kocun M, Janshoff A. Pulling tethers from pore-spanning bilayers: towards simultaneous determination of local bending modulus and lateral tension of membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:847-51. [PMID: 22228680 DOI: 10.1002/smll.201101557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/31/2011] [Indexed: 05/16/2023]
Affiliation(s)
- Marta Kocun
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, 37077 Goettingen, Germany
| | | |
Collapse
|
38
|
Cooper RM, Wingreen NS, Cox EC. An excitable cortex and memory model successfully predicts new pseudopod dynamics. PLoS One 2012; 7:e33528. [PMID: 22457772 PMCID: PMC3310873 DOI: 10.1371/journal.pone.0033528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/15/2012] [Indexed: 11/19/2022] Open
Abstract
Motile eukaryotic cells migrate with directional persistence by alternating left and right turns, even in the absence of external cues. For example, Dictyostelium discoideum cells crawl by extending distinct pseudopods in an alternating right-left pattern. The mechanisms underlying this zig-zag behavior, however, remain unknown. Here we propose a new Excitable Cortex and Memory (EC&M) model for understanding the alternating, zig-zag extension of pseudopods. Incorporating elements of previous models, we consider the cell cortex as an excitable system and include global inhibition of new pseudopods while a pseudopod is active. With the novel hypothesis that pseudopod activity makes the local cortex temporarily more excitable--thus creating a memory of previous pseudopod locations--the model reproduces experimentally observed zig-zag behavior. Furthermore, the EC&M model makes four new predictions concerning pseudopod dynamics. To test these predictions we develop an algorithm that detects pseudopods via hierarchical clustering of individual membrane extensions. Data from cell-tracking experiments agrees with all four predictions of the model, revealing that pseudopod placement is a non-Markovian process affected by the dynamics of previous pseudopods. The model is also compatible with known limits of chemotactic sensitivity. In addition to providing a predictive approach to studying eukaryotic cell motion, the EC&M model provides a general framework for future models, and suggests directions for new research regarding the molecular mechanisms underlying directional persistence.
Collapse
Affiliation(s)
| | | | - Edward C. Cox
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
39
|
Uyeda TQP, Iwadate Y, Umeki N, Nagasaki A, Yumura S. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS One 2011; 6:e26200. [PMID: 22022566 PMCID: PMC3192770 DOI: 10.1371/journal.pone.0026200] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/22/2011] [Indexed: 11/18/2022] Open
Abstract
To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli.
Collapse
Affiliation(s)
- Taro Q P Uyeda
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
40
|
Hecht I, Skoge ML, Charest PG, Ben-Jacob E, Firtel RA, Loomis WF, Levine H, Rappel WJ. Activated membrane patches guide chemotactic cell motility. PLoS Comput Biol 2011; 7:e1002044. [PMID: 21738453 PMCID: PMC3127810 DOI: 10.1371/journal.pcbi.1002044] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/23/2011] [Indexed: 12/31/2022] Open
Abstract
Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches. Different types of cells are able to directionally migrate, responding to spatially-varying environmental cues. To do so, the cell needs to sense its environment, decide on the correct direction, and finally implement the needed mechanical changes in order to actually move. In this work we study the relation between the sensing-signaling system and the mechanical motion. We first show that membrane protrusions which drive the overall translocation occur exactly at the same locations at which membrane-bound signal-transduction effectors accumulate. These high concentration areas, also termed “patches”, exhibit interesting dynamics of disappearing and reappearing. Based on these findings, we develop a mathematical-computational model, in which membrane protrusions are driven by these membrane “patches”. These protrusions are then coupled to other cellular forces and the overall model predicts motion and its relationship to shape changes. Using our approach, we show that several observed features of cellular motility, for example the splitting of the cell tip, can be explained by the upstream signaling dynamics.
Collapse
Affiliation(s)
- Inbal Hecht
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Saenz Cogollo JF, Tedesco M, Martinoia S, Raiteri R. A new integrated system combining atomic force microscopy and micro-electrode array for measuring the mechanical properties of living cardiac myocytes. Biomed Microdevices 2011; 13:613-21. [DOI: 10.1007/s10544-011-9531-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Norman LL, Brugués J, Brugés J, Sengupta K, Sens P, Aranda-Espinoza H. Cell blebbing and membrane area homeostasis in spreading and retracting cells. Biophys J 2011; 99:1726-33. [PMID: 20858416 DOI: 10.1016/j.bpj.2010.07.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022] Open
Abstract
Cells remodel their plasma membrane and cytoskeleton during numerous physiological processes, including spreading and motility. Morphological changes require the cell to adjust its membrane tension on different timescales. While it is known that endo- and exocytosis regulate the cell membrane area in a timescale of 1 h, faster processes, such as abrupt cell detachment, require faster regulation of the plasma membrane tension. In this article, we demonstrate that cell blebbing plays a critical role in the global mechanical homeostasis of the cell through regulation of membrane tension. Abrupt cell detachment leads to pronounced blebbing (which slow detachment does not), and blebbing decreases with time in a dynamin-dependent fashion. Cells only start spreading after a lag period whose duration depends on the cell's blebbing activity. Our model quantitatively reproduces the monotonic decay of the blebbing activity and accounts for the lag phase in the spreading of blebbing cells.
Collapse
Affiliation(s)
- Leann L Norman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kasza KE, Zallen JA. Dynamics and regulation of contractile actin-myosin networks in morphogenesis. Curr Opin Cell Biol 2010; 23:30-8. [PMID: 21130639 DOI: 10.1016/j.ceb.2010.10.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 10/25/2010] [Accepted: 10/30/2010] [Indexed: 11/18/2022]
Abstract
Contractile actin-myosin networks generate forces that drive cell shape changes and tissue remodeling during development. These forces can also actively regulate cell signaling and behavior. Novel features of actin-myosin network dynamics, such as pulsed contractile behaviors and the regulation of myosin localization by tension, have been uncovered in recent studies of Drosophila. In vitro studies of single molecules and reconstituted protein networks reveal intrinsic properties of motor proteins and actin-myosin networks, while in vivo studies have provided insight into the regulation of their dynamics and organization. Analysis of the complex behaviors of actin-myosin networks will be crucial for understanding force generation in actively remodeling cells and the coordination of cell shape and movement at the tissue level.
Collapse
Affiliation(s)
- Karen E Kasza
- Howard Hughes Medical Institute, Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
44
|
Cyclic stretch of the substratum using a shape-memory alloy induces directional migration in Dictyostelium cells. Biotechniques 2010; 47:757-67. [PMID: 19852761 DOI: 10.2144/000113217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Living cells are constantly subjected to various mechanical stimulations. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. In general, cells adhere to substrata. Thus, the cells must receive and respond to mechanical stimuli mainly from the substrata. For example, migrating cells can create their own polarity and migrate in a certain direction even in the absence of any attractive substance. In order to generate such polarity, cells must sense mechanical stimuli from the substrata and transduce these stimuli into intracellular signals. To investigate the relationship between signals derived from mechanical stimuli and related cell functions, one of the most commonly used techniques is the application of mechanical stimuli via stretching of elastic substrata. Here, we developed a new stretching device using a shape-memory alloy (SMA). An SMA has three advantages as an actuator of stretching devices: (i) the cost of the SMA required for the device is inexpensive, approximately 30 USD, (ii) the size of an SMA is very small (0.62 mm in diameter and 22 mm in length), and (iii) an SMA does not generate any vibrating noise, which can negatively affect cells. In response to the cyclic stretching by the new stretching device, Dictyostelium discoideum cells migrated perpendicular to the stretching direction and the migrating speed increased significantly. To our knowledge, this is the first report indicating that migrating cells can create their own polarity by the mechanical stimuli from the substrata.
Collapse
|
45
|
Shao D, Rappel WJ, Levine H. Computational model for cell morphodynamics. PHYSICAL REVIEW LETTERS 2010; 105:108104. [PMID: 20867552 PMCID: PMC3048783 DOI: 10.1103/physrevlett.105.108104] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Indexed: 05/05/2023]
Abstract
We develop a computational model, based on the phase-field method, for cell morphodynamics and apply it to fish keratocytes. Our model incorporates the membrane bending force and the surface tension and enforces a constant area. Furthermore, it implements a cross-linked actin filament field and an actin bundle field that are responsible for the protrusion and retraction forces, respectively. We show that our model predicts steady state cell shapes with a wide range of aspect ratios, depending on system parameters. Furthermore, we find that the dependence of the cell speed on this aspect ratio matches experimentally observed data.
Collapse
Affiliation(s)
- Danying Shao
- Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, La Jolla, California 92093-0374, USA
| | | | | |
Collapse
|
46
|
Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration. Proc Natl Acad Sci U S A 2010; 107:15415-20. [PMID: 20713731 DOI: 10.1073/pnas.0913669107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bleb-based cell motility proceeds by the successive inflation and retraction of large spherical membrane protrusions ("blebs") coupled with substrate adhesion. In addition to their role in motility, cellular blebs constitute a remarkable illustration of the dynamical interactions between the cytoskeletal cortex and the plasma membrane. Here we study the bleb-based motions of Entamoeba histolytica in the constrained geometry of a micropipette. We construct a generic theoretical model that combines the polymerization of an actin cortex underneath the plasma membrane with the myosin-generated contractile stress in the cortex and the stress-induced failure of membrane-cortex adhesion. One major parameter dictating the cell response to micropipette suction is the stationary cortex thickness, controlled by actin polymerization and depolymerization. The other relevant physical parameters can be combined into two characteristic cortex thicknesses for which the myosin stress (i) balances the suction pressure and (ii) provokes membrane-cortex unbinding. We propose a general phase diagram for cell motions inside a micropipette by comparing these three thicknesses. In particular, we theoretically predict and experimentally verify the existence of saltatory and oscillatory motions for a well-defined range of micropipette suction pressures.
Collapse
|
47
|
Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces. Bioelectrochemistry 2010; 79:198-210. [PMID: 20472511 DOI: 10.1016/j.bioelechem.2010.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
Abstract
Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5 s. Secondly applying a high potential pulse (2.5 V/Ref, 0.1s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by LimE(Deltacoil)-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8-11s after the electric pulse and the next ones appear regularly, separated by about 10s. Synchronized actin-polymerization activity continues for 40s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.
Collapse
|
48
|
Sarvestani AS. Cell adhesion on ligand gradient substrates: A thermodynamic study. Biotechnol Bioeng 2010; 105:172-83. [DOI: 10.1002/bit.22509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Pramanik MK, Iijima M, Iwadate Y, Yumura S. PTEN is a mechanosensing signal transducer for myosin II localization in Dictyostelium cells. Genes Cells 2009; 14:821-34. [PMID: 19515202 DOI: 10.1111/j.1365-2443.2009.01312.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To investigate the role of PTEN in regulation of cortical motile activity, especially in myosin II localization, eGFP-PTEN and mRFP-myosin II were simultaneously expressed in Dictyostelium cells. PTEN and myosin II co-localized at the posterior of migrating cells and furrow region of dividing cells. In suspension culture, PTEN knockout (pten(-)) cells became multinucleated, and myosin II significantly decreased in amount at the furrow. During pseudopod retraction and cell aspiration by microcapillary, PTEN accumulated at the tips of pseudopods and aspirated lobes prior to the accumulation of myosin II. In pten(-) cells, only a small amount of myosin II accumulated at the retracting pseudopods and aspirated cell lobes. PTEN accumulated at the retracting pseudopods and aspirated lobes even in myosin II null cells and latrunculin B-treated cells though in reduced amounts, indicating that PTEN accumulates partially depending on myosin II and cortical actin. Accumulation of PTEN prior to myosin II suggests that PTEN is an upstream component in signaling pathway to localize myosin II, possibly with mechanosensing signaling loop where actomyosin-driven contraction further augments accumulation of PTEN and myosin II by a positive feedback mechanism.
Collapse
Affiliation(s)
- Md Kamruzzaman Pramanik
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | | | |
Collapse
|
50
|
Stock C, Schwab A. Protons make tumor cells move like clockwork. Pflugers Arch 2009; 458:981-92. [PMID: 19437033 DOI: 10.1007/s00424-009-0677-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 04/28/2009] [Indexed: 01/10/2023]
Abstract
Cancer accounts for 13% of the yearly total mortality worldwide. Most cancer deaths are the sequel of metastatic diseases rather than of primary tumor growth. Thus, the major challenge in tumor therapy is the tumor cells' ability to metastasize. The extent to which a tumor metastasizes correlates with the tumor cells' migratory activity. Tumor cell migration requires a coordinated formation and release of cell adhesion contacts, a controlled cytoskeletal dynamics, the digestion and reorganization of the extracellular matrix, and local ion and water transport across the plasma membrane. All of these operations depend on intracellular pH (pH(i)) and extracellular pH (pH(e)). Numerous H(+), HCO (3) (-) , and monocarboxylate transporters as well as different carbonic anhydrase isozymes have considerable impact on pH(i) and pH(e) which spotlights them as possible, potential targets for anticancer therapeutics. Especially in solid tumors whose vascularization is often not sufficient, tumor cells cope with hypoxia and the resulting glycolysis by overexpressing the Na(+)/H(+) exchanger NHE1, monocarboxylate transporters MCT1 and/or MCT4, and the carbonic anhydrase CA IX. NHE1, MCT, and CA IX activity lead to an acidification of the extracellular space in order to maintain the cytosolic pH homeostasis stable. The present article gives a review on how this characteristic, acidic tumor micro- and nanoenvironment controls tumor cell migration.
Collapse
Affiliation(s)
- Christian Stock
- Institut für Physiologie II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
| | | |
Collapse
|