1
|
Rodríguez-López MA, Coll-Marqués JM, Talens-Perales D, Marín-Navarro J, Polaina J, Vázquez-Contreras E. Analysis of Amyloid Fibrillation of Two Family 1 Glycoside Hydrolases. Int J Mol Sci 2024; 25:8536. [PMID: 39126103 PMCID: PMC11313343 DOI: 10.3390/ijms25158536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The formation and analysis of amyloid fibers by two β-glucosidases, BglA and BglB, belonging to the GH1 enzyme family, are reported. Both proteins have the (β/α)8 TIM-barrel fold, which is characteristic of this family and is also the most common protein structure. BglA is an octamer, whereas BglB is a monomer. Amyloid fibrillation using pH and temperature as perturbing agents was investigated using fluorescence spectroscopy as a preliminary approach and corroborated using wide-field optical microscopy, confocal microscopy, and field-emission scanning electron microscopy. These analyses showed that both enzymes fibrillate at a wide range of acidic and alkaline conditions and at several temperature conditions, particularly at acidic pH (3-4) and at temperatures between 45 and 65 °C. Circular dichroism spectroscopy corroborated the transition from an α-helix to a β-sheet secondary structure of both proteins in conditions where fibrillation was observed. Overall, our results suggest that fibrillation is a rather common phenomenon caused by protein misfolding, driven by a transition from an α-helix to a β-sheet secondary structure, that many proteins can undergo if subjected to conditions that disturb their native conformation.
Collapse
Affiliation(s)
- Miguel A. Rodríguez-López
- Postgraduate in Natural Sciences and Engineering, Autonomous Metropolitan University, Cuajimalpa, Mexico City 05348, Mexico;
- Departament of Natural Sciences, Autonomous Metropolitan University, Cuajimalpa, Mexico City 05348, Mexico
| | - José María Coll-Marqués
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Paterna, Valencia, Spain; (J.M.C.-M.); (D.T.-P.)
| | - David Talens-Perales
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Paterna, Valencia, Spain; (J.M.C.-M.); (D.T.-P.)
| | - Julia Marín-Navarro
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Paterna, Valencia, Spain; (J.M.C.-M.); (D.T.-P.)
- Departament of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Julio Polaina
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Paterna, Valencia, Spain; (J.M.C.-M.); (D.T.-P.)
| | - Edgar Vázquez-Contreras
- Departament of Natural Sciences, Autonomous Metropolitan University, Cuajimalpa, Mexico City 05348, Mexico
| |
Collapse
|
2
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
3
|
Miller JG, Hughes SA, Modlin C, Conticello VP. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Q Rev Biophys 2022; 55:1-103. [PMID: 35307042 DOI: 10.1017/s0033583522000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSynthetic peptide and peptido-mimetic filaments and tubes represent a diverse class of nanomaterials with a broad range of potential applications, such as drug delivery, vaccine development, synthetic catalyst design, encapsulation, and energy transduction. The structures of these filaments comprise supramolecular polymers based on helical arrangements of subunits that can be derived from self-assembly of monomers based on diverse structural motifs. In recent years, structural analyses of these materials at near-atomic resolution (NAR) have yielded critical insights into the relationship between sequence, local conformation, and higher-order structure and morphology. This structural information offers the opportunity for development of new tools to facilitate the predictable and reproduciblede novodesign of synthetic helical filaments. However, these studies have also revealed several significant impediments to the latter process – most notably, the common occurrence of structural polymorphism due to the lability of helical symmetry in structural space. This article summarizes the current state of knowledge on the structures of designed peptide and peptido-mimetic filamentous assemblies, with a focus on structures that have been solved to NAR for which reliable atomic models are available.
Collapse
Affiliation(s)
- Jessalyn G Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Spencer A Hughes
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Charles Modlin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | | |
Collapse
|
4
|
Ghosh P, Bera A, De P. Current status, challenges and future directions in the treatment of neurodegenerative diseases by polymeric materials. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Mannem R, Yousuf M, Sreerama L. Nanostructures Formed by Custom-Made Peptides Based on Amyloid Peptide Sequences and Their Inhibition by 2-Hydroxynaphthoquinone. Front Chem 2020; 8:684. [PMID: 32850681 PMCID: PMC7424059 DOI: 10.3389/fchem.2020.00684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023] Open
Abstract
Extensive research on amyloid fibril formations shows that certain core sequences within Aβ peptide play an important role in their formation. It is impossible to track these events in vivo. Many proteins and peptides with such core sequences form amyloid fibrils and such Aβ sheet mimics have become excellent tools to study amyloid fibril formation and develop therapeutic strategies. A group of peptides based on amyloid peptide sequences obtained from PDB searches, where glycine residues are substituted with alanine and isoleucine, are tested for aggregation by SEM and ThT binding assay. SEM of different peptide sequences showed morphologically different structures such as nanorods, crystalline needles and nanofibrils. The peptides were co-incubated with HNQ (a quinone) to study its effect on the process of aggregation and/or fibrillation. In conclusion, this group of peptides seem to be Aβ sheet mimics and can be very useful in understanding the different morphologies of amyloid fibrils arising from different peptide sequences and the effective strategies to inhibit or anneal them.
Collapse
Affiliation(s)
- Radhika Mannem
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Mohammed Yousuf
- Central Laboratory Unit (CLU), Qatar University, Doha, Qatar
| | | |
Collapse
|
6
|
Sakaguchi T, Wada T, Kasai T, Shiratori T, Minami Y, Shimada Y, Otsuka Y, Komatsu K, Goto S. Effects of ionic and reductive atmosphere on the conformational rearrangement in hen egg white lysozyme prior to amyloid formation. Colloids Surf B Biointerfaces 2020; 190:110845. [DOI: 10.1016/j.colsurfb.2020.110845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
|
7
|
Investigating the effects of different natural molecules on the structure and oligomerization propensity of hen egg-white lysozyme. Int J Biol Macromol 2019; 134:189-201. [DOI: 10.1016/j.ijbiomac.2019.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
|
8
|
Kubánková M, Lin X, Albrecht T, Edel JB, Kuimova MK. Rapid Fragmentation during Seeded Lysozyme Aggregation Revealed at the Single Molecule Level. Anal Chem 2019; 91:6880-6886. [PMID: 30999745 DOI: 10.1021/acs.analchem.9b01221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein aggregation is associated with neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The poorly understood pathogenic mechanism of amyloid diseases makes early stage diagnostics or therapeutic intervention a challenge. Seeded polymerization that reduces the duration of the lag phase and accelerates fibril growth is a widespread model to study amyloid formation. Seeding effects are hypothesized to be important in the "infectivity" of amyloids and are linked to the development of systemic amyloidosis in vivo. The exact mechanism of seeding is unclear yet critical to illuminating the propagation of amyloids. Here we report on the lateral and axial fragmentation of seed fibrils in the presence of lysozyme monomers at short time scales, followed by the generation of oligomers and growth of fibrils.
Collapse
Affiliation(s)
- Markéta Kubánková
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Xiaoyan Lin
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Tim Albrecht
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K.,School of Chemistry, Edgbaston Campus , University of Birmingham , Birmingham B15 2TT , U.K
| | - Joshua B Edel
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Marina K Kuimova
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| |
Collapse
|
9
|
Tang JD, Mura C, Lampe KJ. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering. J Am Chem Soc 2019; 141:4886-4899. [PMID: 30830776 DOI: 10.1021/jacs.8b13363] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Short peptides are uniquely versatile building blocks for self-assembly. Supramolecular peptide assemblies can be used to construct functional hydrogel biomaterials-an attractive approach for neural tissue engineering. Here, we report a new class of short, five-residue peptides that form hydrogels with nanofiber structures. Using rheology and spectroscopy, we describe how sequence variations, pH, and peptide concentration alter the mechanical properties of our pentapeptide hydrogels. We find that this class of seven unmodified peptides forms robust hydrogels from 0.2-20 kPa at low weight percent (less than 3 wt %) in cell culture media and undergoes shear-thinning and rapid self-healing. The peptides self-assemble into long fibrils with sequence-dependent fibrillar morphologies. These fibrils exhibit a unique twisted ribbon shape, as visualized by transmission electron microscopy (TEM) and Cryo-EM imaging, with diameters in the low tens of nanometers and periodicities similar to amyloid fibrils. Experimental gelation behavior corroborates our molecular dynamics simulations, which demonstrate peptide assembly behavior, an increase in β-sheet content, and patterns of variation in solvent accessibility. Our rapidly assembling pentapeptides for injectable delivery (RAPID) hydrogels are syringe-injectable and support cytocompatible encapsulation of oligodendrocyte progenitor cells (OPCs), as well as their proliferation and three-dimensional process extension. Furthermore, RAPID gels protect OPCs from mechanical membrane disruption and acute loss of viability when ejected from a syringe needle, highlighting the protective capability of the hydrogel as potential cell carriers for transplantation therapies. The tunable mechanical and structural properties of these supramolecular assemblies are shown to be permissive to cell expansion and remodeling, making this hydrogel system suitable as an injectable material for cell delivery and tissue engineering applications.
Collapse
|
10
|
La Manna S, Roviello V, Scognamiglio PL, Diaferia C, Giannini C, Sibillano T, Morelli G, Novellino E, Marasco D. Amyloid fibers deriving from the aromatic core of C-terminal domain of nucleophosmin 1. Int J Biol Macromol 2019; 122:517-525. [DOI: 10.1016/j.ijbiomac.2018.10.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
11
|
de Freitas MS, Rezaei Araghi R, Brandenburg E, Leiterer J, Emmerling F, Folmert K, Gerling-Driessen UIM, Bardiaux B, Böttcher C, Pagel K, Diehl A, Berlepsch HV, Oschkinat H, Koksch B. The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide. J Struct Biol 2018; 203:263-272. [PMID: 29857134 DOI: 10.1016/j.jsb.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023]
Abstract
Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson's and Alzheimer's diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements.
Collapse
Affiliation(s)
- Mônica Santos de Freitas
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem, Av. Carlos Chagas Filho 373, Rio de Janeiro, Brazil
| | - Raheleh Rezaei Araghi
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Enrico Brandenburg
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Jork Leiterer
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Kristin Folmert
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Ulla I M Gerling-Driessen
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Benjamin Bardiaux
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, 75015 Paris, France
| | - Christoph Böttcher
- Freie Universität Berlin, Research Center for Electron Microscopy, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hans V Berlepsch
- Freie Universität Berlin, Research Center for Electron Microscopy, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany.
| | - Beate Koksch
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany.
| |
Collapse
|
12
|
Humenik M, Mohrand M, Scheibel T. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity. Bioconjug Chem 2018; 29:898-904. [DOI: 10.1021/acs.bioconjchem.7b00759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Riekel C, Burghammer M, Dane TG, Ferrero C, Rosenthal M. Nanoscale Structural Features in Major Ampullate Spider Silk. Biomacromolecules 2016; 18:231-241. [PMID: 28001374 DOI: 10.1021/acs.biomac.6b01537] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spider major ampullate silk is often schematically represented as a two-phase material composed of crystalline nanodomains in an amorphous matrix. Here we are interested in revealing its more complex nanoscale organization by probing Argiope bruennichi dragline-type fibers using scanning X-ray nanodiffraction. This allows resolving transversal structural features such as an about 1 μm skin layer composed of around 100 nm diameter nanofibrils serving presumably as an elastic sheath. The core consists of a composite of several nm size crystalline nanodomains with poly(l-alanine) microstructure, embedded in a polypeptide network with short-range order. Stacks of nanodomains separated by less ordered nanosegments form nanofibrils with a periodic axial density modulation which is particularly sensitive to radiation damage. The precipitation of larger β-type nanocrystallites in the outer core-shell is attributed to MaSp1 protein molecules.
Collapse
Affiliation(s)
- Christian Riekel
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France
| | - Manfred Burghammer
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France.,Department of Analytical Chemistry, Ghent University , Krijgslaan 281, S12B-9000 Ghent, Belgium
| | - Thomas G Dane
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France
| | - Claudio Ferrero
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France
| | - Martin Rosenthal
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France
| |
Collapse
|
15
|
Psonka-Antonczyk KM, Hammarström P, Johansson LBG, Lindgren M, Stokke BT, Nilsson KPR, Nyström S. Nanoscale Structure and Spectroscopic Probing of Aβ1-40 Fibril Bundle Formation. Front Chem 2016; 4:44. [PMID: 27921029 PMCID: PMC5118468 DOI: 10.3389/fchem.2016.00044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022] Open
Abstract
Amyloid plaques composed of fibrillar Amyloid-β (Aβ) are hallmarks of Alzheimer's disease. However, Aβ fibrils are morphologically heterogeneous. Conformation sensitive luminescent conjugated oligothiophenes (LCOs) are versatile tools for monitoring such fibril polymorphism in vivo and in vitro. Biophysical methods applied on in vitro generated Aβ fibrils, stained with LCOs with different binding and fluorescence properties, can be used to characterize the Aβ fibrillation in depth, far beyond that possible for in vivo generated amyloid plaques. In this study, in vitro fibrillation of the Aβ1-40 peptide was monitored by time-lapse transmission electron microscopy, LCO fluorescence, and atomic force microscopy. Differences in the LCO binding in combination with nanoscale imaging revealed that spectral variation correlated with fibrils transforming from solitary filaments (Ø~2.5 nm) into higher order bundled structures (Ø~5 nm). These detailed in vitro experiments can be used to derive data that reflects the heterogeneity of in vivo generated Aβ plaques observed by LCO fluorescence. Our work provides new structural basis for targeted drug design and molecular probe development for amyloid imaging.
Collapse
Affiliation(s)
| | - Per Hammarström
- IFM-Department of Chemistry, Linköping UniversityLinköping, Sweden
| | | | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology NTNUTrondheim, Norway
- IFM-Department of Chemistry, Linköping UniversityLinköping, Sweden
| | - Bjørn T. Stokke
- Department of Physics, Norwegian University of Science and Technology NTNUTrondheim, Norway
| | | | - Sofie Nyström
- IFM-Department of Chemistry, Linköping UniversityLinköping, Sweden
| |
Collapse
|
16
|
Muthu SA, Mothi N, Shiriskar SM, Pissurlenkar RR, Kumar A, Ahmad B. Physical basis for the ofloxacin-induced acceleration of lysozyme aggregation and polymorphism in amyloid fibrils. Arch Biochem Biophys 2016; 592:10-9. [DOI: 10.1016/j.abb.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/25/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
|
17
|
How SC, Yang SM, Hsin A, Tseng CP, Hsueh SS, Lin MS, Chen RPY, Chou WL, Wang SSS. Examining the inhibitory potency of food additive fast green FCF against amyloid fibrillogenesis under acidic conditions. Food Funct 2016; 7:4898-4907. [DOI: 10.1039/c6fo00792a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid fibril formation of hen lysozyme (HEWL) can be attenuated by fast green FCF.
Collapse
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Szu-Ming Yang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Ai Hsin
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chia-Ping Tseng
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Shu-Shun Hsueh
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | | | - Rita P.-Y. Chen
- Institute of Biochemical Sciences
- National Taiwan University
- Taipei 10617
- Taiwan
- Institute of Biological Chemistry
| | - Wei-Lung Chou
- Department of Safety
- Health and Environmental Engineering
- Hungkuang University
- Taichung City 433
- Taiwan
| | - Steven S.-S. Wang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
18
|
Abstract
The generation of mechanical forces are central to a wide range of vital biological processes, including the function of the cytoskeleton. Although the forces emerging from the polymerization of native proteins have been studied in detail, the potential for force generation by aberrant protein polymerization has not yet been explored. Here, we show that the growth of amyloid fibrils, archetypical aberrant protein polymers, is capable of unleashing mechanical forces on the piconewton scale for individual filaments. We apply microfluidic techniques to measure the forces released by amyloid growth for two systems: insulin and lysozyme. The level of force measured for amyloid growth in both systems is comparable to that observed for actin and tubulin, systems that have evolved to generate force during their native functions and, unlike amyloid growth, rely on the input of external energy in the form of nucleotide hydrolysis for maximum force generation. Furthermore, we find that the power density released from growing amyloid fibrils is comparable to that of high-performance synthetic polymer actuators. These findings highlight the potential of amyloid structures as active materials and shed light on the criteria for regulation and reversibility that guide molecular evolution of functional polymers.
Collapse
|
19
|
Computational Approaches to Identification of Aggregation Sites and the Mechanism of Amyloid Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:213-39. [DOI: 10.1007/978-3-319-17344-3_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Takor GA, Higashiya S, Sorci M, Topilina NI, Belfort G, Welch JT. Chimera-induced folding: implications for amyloidosis. Biomacromolecules 2014; 15:2992-3001. [PMID: 25003653 DOI: 10.1021/bm5006068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The discoveries that non-native proteins have a role in amyloidosis and that multiple protein misfolding diseases can occur concurrently suggest that cross-seeding of amyloidogenic proteins may be central to misfolding. To study this process, a synthetic chimeric amyloidogenic protein (YEHK21-YE8) composed of two components, one that readily folds to form fibrils (YEHK21) and one that does not (YE8), was designed. Secondary structural conformational changes during YEHK21-YE8 aggregation demonstrate that, under the appropriate conditions, YEHK21 is able to induce fibril formation of YE8. The unambiguous demonstration of the induction of folding and fibrillation within a single molecule illuminates the factors controlling this process and hence suggests the importance of those factors in amyloidogenic diseases.
Collapse
Affiliation(s)
- Gaius A Takor
- Department of Chemistry and §Department of Biological Sciences, University at Albany, State University of New York , Albany, New York 12222, United States
| | | | | | | | | | | |
Collapse
|
21
|
Jayamani J, Shanmugam G. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur J Med Chem 2014; 85:352-8. [PMID: 25105923 DOI: 10.1016/j.ejmech.2014.07.111] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023]
Abstract
Proteins under stressful conditions can lead to the formation of an ordered self-assembled structure, referred to as amyloid fibrils, to which many neurodegenerative diseases such as Type II diabetes, Alzheimer's, Parkinson's, Huntington's, etc., are attributed. Inhibition of amyloid fibril formation using natural products is one of the main therapeutic strategies to prevent the progression of these diseases. Polyphenols are the mostly consumed as antioxidants in a human nutrition. Herein, we have studied the effect of a simple polyphenol, gallic acid (GA), one of the main components in plant tissues, especially in tea leaves, on the insulin amyloid fibril formation. Different biophysical characterizations such as turbidity, atomic force microscopy (AFM), Thioflavin T (ThT) assays, circular dichroism, and Fourier transform-infrared spectroscopy have been used to analyze the inhibition of amyloid fibril formation. The occurrence of fibrils in an AFM image and ThT fluorescence enhancement confirms the formation of insulin amyloid fibrils when incubated under acidic pH 2 at 65 °C. In the presence of GA, absence of fibrils in AFM image and no change in the intensity of ThT fluorescence confirms the inhibition of insulin amyloid fibrils by GA. Spectroscopic results reveal that GA inhibits the conformational transition of α-helix → β-sheet, which is generally induced during the insulin fibril formation. It was found that the inhibitory effect of GA is concentration dependent and non-linear. Based on the observed results, we propose that GA interacts with native insulin, preventing nuclei formation, which is essential for fibril growth, thereby inhibiting the amyloid fibril formation. The present results thus demonstrate that GA can effectively inhibit insulin amyloid fibril formation in vitro.
Collapse
Affiliation(s)
- Jayaraman Jayamani
- Bioorganic Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawn, 2 Rafi Marg, New Delhi 110 001, India
| | - Ganesh Shanmugam
- Bioorganic Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawn, 2 Rafi Marg, New Delhi 110 001, India.
| |
Collapse
|
22
|
v Berlepsch H, Ludwig K, Schade B, Haag R, Böttcher C. Progress in the direct structural characterization of fibrous amphiphilic supramolecular assemblies in solution by transmission electron microscopic techniques. Adv Colloid Interface Sci 2014; 208:279-92. [PMID: 24508499 DOI: 10.1016/j.cis.2014.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 11/28/2022]
Abstract
The self-assembly of amphiphilic molecules into fibrous structures has been the subject of numerous studies over past decades due to various current and promising technical applications. Although very different in their head group chemistry many natural as well as synthetic amphiphilic compounds derived from carbohydrates, carbocyanine dyes, or amino acids tend to form fibrous structures by molecular self-assembly in water predominantly twisted ribbons or tubes. Often a transition between these assembly structures is observed, which is a phenomenon already theoretically approached by Wolfgang Helfrich and still focus point in current research. With the development of suitable sample preparation and electron optical imaging techniques, cryogenic transmission electron microscopy (cryo-TEM) in combination with three-dimensional (3D) reconstruction techniques has become a particular popular direct characterization technique for supramolecular assemblies in general. Here we review the recent progress in deriving precise structural information from cryo-TEM data of particularly fibrous structures preferably in three dimensions.
Collapse
Affiliation(s)
- Hans v Berlepsch
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany; Core Facility BioSupraMol an der Freien Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Rainer Haag
- Core Facility BioSupraMol an der Freien Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany; Institut für Chemie und Biochemie - Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany.
| |
Collapse
|
23
|
Tinker-Mill C, Mayes J, Allsop D, Kolosov OV. Ultrasonic force microscopy for nanomechanical characterization of early and late-stage amyloid-β peptide aggregation. Sci Rep 2014; 4:4004. [PMID: 24500006 PMCID: PMC3915309 DOI: 10.1038/srep04004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/20/2014] [Indexed: 11/09/2022] Open
Abstract
The aggregation of amyloid-β peptides into protein fibres is one of the main neuropathological features of Alzheimer's disease (AD). While imaging of amyloid-β aggregate morphology in vitro is extremely important for understanding AD pathology and in the development of aggregation inhibitors, unfortunately, potentially highly toxic, early aggregates are difficult to observe by current electron microscopy and atomic force microscopy (AFM) methods, due to low contrast and variability of peptide attachment to the substrate. Here, we use a poly-L-Lysine (PLL) surface that captures all protein components from monomers to fully formed fibres, followed by nanomechanical mapping via ultrasonic force microscopy (UFM), which marries high spatial resolution and nanomechanical contrast with the non-destructive nature of tapping mode AFM. For the main putative AD pathogenic component, Aβ1-42, the PLL-UFM approach reveals the morphology of oligomers, protofibrils and mature fibres, and finds that a fraction of small oligomers is still present at later stages of fibril assembly.
Collapse
Affiliation(s)
| | - Jennifer Mayes
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YB, UK
| | - David Allsop
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YB, UK
| | - Oleg V. Kolosov
- Physics Department, Lancaster University, Lancaster, LA1 4YB, UK
| |
Collapse
|
24
|
Matsunaga R, Yanaka S, Nagatoishi S, Tsumoto K. Hyperthin nanochains composed of self-polymerizing protein shackles. Nat Commun 2014; 4:2211. [PMID: 23884289 DOI: 10.1038/ncomms3211] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022] Open
Abstract
Protein fibrils are expected to have applications as functional nanomaterials because of their sophisticated structures; however, nanoscale ordering of the functional units of protein fibrils remains challenging. Here we design a series of self-polymerizing protein monomers, referred to as protein shackles, derived from modified recombinant subunits of pili from Streptococcus pyogenes. The monomers polymerize into nanochains through spontaneous irreversible covalent bond formation. We design the protein shackles so that their reactions can be controlled by altering redox conditions, which affect disulphide bond formation between engineered cysteine residues. The interaction between the monomers improves their polymerization reactivity and determines morphologies of the polymers. In addition, green fluorescent protein-tagged protein shackles can polymerize, indicating proteins can be stably attached to the nanochains with its functionality preserved. Furthermore we demonstrate that a molecular-recognizable nanochain binds to its partner with an enhanced binding ability in solution. These characteristics are expected to be applied for novel protein nanomaterials.
Collapse
Affiliation(s)
- Ryo Matsunaga
- The Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
25
|
Fluorescence Investigation of Interactions Between Novel Benzanthrone Dyes and Lysozyme Amyloid Fibrils. J Fluoresc 2013; 24:493-504. [DOI: 10.1007/s10895-013-1318-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 11/07/2013] [Indexed: 10/25/2022]
|
26
|
Structural and thermodynamic studies of two centrin isoforms from Blastocladiella emersonii upon calcium binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2823-31. [DOI: 10.1016/j.bbapap.2013.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 11/22/2022]
|
27
|
Smaoui MR, Poitevin F, Delarue M, Koehl P, Orland H, Waldispühl J. Computational assembly of polymorphic amyloid fibrils reveals stable aggregates. Biophys J 2013; 104:683-93. [PMID: 23442919 DOI: 10.1016/j.bpj.2012.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 11/27/2022] Open
Abstract
Amyloid proteins aggregate into polymorphic fibrils that damage tissues of the brain, nerves, and heart. Experimental and computational studies have examined the structural basis and the nucleation of short fibrils, but the ability to predict and precisely quantify the stability of larger aggregates has remained elusive. We established a complete classification of fibril shapes and developed a tool called CreateFibril to build such complex, polymorphic, modular structures automatically. We applied stability landscapes, a technique we developed to reveal reliable fibril structural parameters, to assess fibril stability. CreateFibril constructed HET-s, Aβ, and amylin fibrils up to 17 nm in length, and utilized a novel dipolar solvent model that captured the effect of dipole-dipole interactions between water and very large molecular systems to assess their aqueous stability. Our results validate experimental data for HET-s and Aβ, and suggest novel (to our knowledge) findings for amylin. In particular, we predicted the correct structural parameters (rotation angles, packing distances, hydrogen bond lengths, and helical pitches) for the one and three predominant HET-s protofilaments. We reveal and structurally characterize all known Aβ polymorphic fibrils, including structures recently classified as wrapped fibrils. Finally, we elucidate the predominant amylin fibrils and assert that native amylin is more stable than its amyloid form. CreateFibril and a database of all stable polymorphic fibril models we tested, along with their structural energy landscapes, are available at http://amyloid.cs.mcgill.ca.
Collapse
|
28
|
Garvey M, Meehan S, Gras SL, Schirra HJ, Craik DJ, Van der Weerden NL, Anderson MA, Gerrard JA, Carver JA. A radish seed antifungal peptide with a high amyloid fibril-forming propensity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1615-23. [PMID: 23665069 DOI: 10.1016/j.bbapap.2013.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
Abstract
The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.
Collapse
Affiliation(s)
- Megan Garvey
- School of Chemistry and Physics, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Do TD, Economou NJ, LaPointe NE, Kincannon WM, Bleiholder C, Feinstein SC, Teplow DB, Buratto SK, Bowers MT. Factors that drive peptide assembly and fibril formation: experimental and theoretical analysis of Sup35 NNQQNY mutants. J Phys Chem B 2013; 117:8436-46. [PMID: 23802812 DOI: 10.1021/jp4046287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Residue mutations have substantial effects on aggregation kinetics and propensities of amyloid peptides and their aggregate morphologies. Such effects are attributed to conformational transitions accessed by various types of oligomers such as steric zipper or single β-sheet. We have studied the aggregation propensities of six NNQQNY mutants: NVVVVY, NNVVNV, NNVVNY, VIQVVY, NVVQIY, and NVQVVY in water using a combination of ion-mobility mass spectrometry, transmission electron microscopy, atomic force microscopy, and all-atom molecular dynamics simulations. Our data show a strong correlation between the tendency to form early β-sheet oligomers and the subsequent aggregation propensity. Our molecular dynamics simulations indicate that the stability of a steric zipper structure can enhance the propensity for fibril formation. Such stability can be attained by either hydrophobic interactions in the mutant peptide or polar side-chain interdigitations in the wild-type peptide. The overall results display only modest agreement with the aggregation propensity prediction methods such as PASTA, Zyggregator, and RosettaProfile, suggesting the need for better parametrization and model peptides for these algorithms.
Collapse
Affiliation(s)
- Thanh D Do
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mezzenga R, Fischer P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:046601. [PMID: 23455715 DOI: 10.1088/0034-4885/76/4/046601] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aggregation of proteins is of fundamental relevance in a number of daily phenomena, as important and diverse as blood coagulation, medical diseases, or cooking an egg in the kitchen. Colloidal food systems, in particular, are examples that have great significance for protein aggregation, not only for their importance and implications, which touches on everyday life, but also because they allow the limits of the colloidal science analogy to be tested in a much broader window of conditions, such as pH, ionic strength, concentration and temperature. Thus, studying the aggregation and self-assembly of proteins in foods challenges our understanding of these complex systems from both the molecular and statistical physics perspectives. Last but not least, food offers a unique playground to study the aggregation of proteins in three, two and one dimensions, that is to say, in the bulk, at air/water and oil/water interfaces and in protein fibrillation phenomena. In this review we will tackle this very ambitious task in order to discuss the current understanding of protein aggregation in the framework of foods, which is possibly one of the broadest contexts, yet is of tremendous daily relevance.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- ETH Zurich, Food and Soft Materials Science, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland.
| | | |
Collapse
|
31
|
The role of amyloidogenic protein oligomerization in neurodegenerative disease. J Mol Med (Berl) 2013; 91:653-64. [PMID: 23529761 DOI: 10.1007/s00109-013-1025-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/20/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023]
Abstract
A common pathological hallmark in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, is the formation of fibrillar protein aggregates referred to as amyloids. The amyloidogenic aggregates were long thought to be toxic, but mounting evidence supports the notion that a variety of amyloid aggregate intermediates to fibril formation, termed oligomers, may in fact be the primary culprit leading to neuronal dysfunction and cell death. While amyloid formation is a complex, heterogeneous process, aggregates formed by diverse, diseases-related proteins share many conformational similarities, suggesting common toxic mechanisms among these diseases. Ideally, similar therapeutic strategies may be applicable. This review focuses on the potential role of amyloidogenic oligomers in neurodegenerative disease, highlighting some promising therapeutic strategies.
Collapse
|
32
|
Burke KA, Yates EA, Legleiter J. Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front Neurol 2013; 4:17. [PMID: 23459674 PMCID: PMC3585431 DOI: 10.3389/fneur.2013.00017] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/09/2013] [Indexed: 11/13/2022] Open
Abstract
There are a vast number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), associated with the rearrangement of specific proteins to non-native conformations that promotes aggregation and deposition within tissues and/or cellular compartments. These diseases are commonly classified as protein-misfolding or amyloid diseases. The interaction of these proteins with liquid/surface interfaces is a fundamental phenomenon with potential implications for protein-misfolding diseases. Kinetic and thermodynamic studies indicate that significant conformational changes can be induced in proteins encountering surfaces, which can play a critical role in nucleating aggregate formation or stabilizing specific aggregation states. Surfaces of particular interest in neurodegenerative diseases are cellular and subcellular membranes that are predominately comprised of lipid components. The two-dimensional liquid environments provided by lipid bilayers can profoundly alter protein structure and dynamics by both specific and non-specific interactions. Importantly for misfolding diseases, these bilayer properties can not only modulate protein conformation, but also exert influence on aggregation state. A detailed understanding of the influence of (sub)cellular surfaces in driving protein aggregation and/or stabilizing specific aggregate forms could provide new insights into toxic mechanisms associated with these diseases. Here, we review the influence of surfaces in driving and stabilizing protein aggregation with a specific emphasis on lipid membranes.
Collapse
Affiliation(s)
- Kathleen A Burke
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown, WV, USA
| | | | | |
Collapse
|
33
|
Ridgley DM, Barone JR. Evolution of the amyloid fiber over multiple length scales. ACS NANO 2013; 7:1006-1015. [PMID: 23268732 DOI: 10.1021/nn303489a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The amyloid is a natural self-assembled peptide material comparable in specific stiffness to spider silk and steel. Throughout the literature there are many studies of the nanometer-sized amyloid fibril; however, peptide mixtures are capable of self-assembling beyond the nanometer scale into micrometer-sized fibers. Here, atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to observe the self-assembly of the peptide mixtures in solution for 20 days and the fibers upon drying. Beyond the nanometer scale, self-assembling fibers differentiate into two morphologies, cylindrical or rectangular cross-section, depending on peptide properties. Microscopic observations delineate a four stage self-assembly mechanism: (1) protofibril (2-4 nm high and 15-30 nm wide) formation; (2) protofibril aggregation into fibrils 6-10 nm high and 60-120 nm wide; (3) fibril aggregation into large fibrils and morphological differentiation where large fibrils begin to resemble the final fiber morphology of cylinders (WG peptides) or tapes (Gd:My peptides). WG large fibrils are 50 nm high and 480 nm wide and Gd:My large fibrils are 10 nm high and 150 nm wide; (4) micrometer-sized fiber formation upon drying at 480 h resulting in 18.0 μm diameter cylindrical fibers (WG peptides) and 14.0 μm wide and 6.0 μm thick flat tapes (Gd:My peptides). Evolution of the large fiber morphology can be rationalized on the basis of the peptide properties.
Collapse
Affiliation(s)
- Devin M Ridgley
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
34
|
Avdeev MV, Aksenov VL, Gazová Z, Almásy L, Petrenko VI, Gojzewski H, Feoktystov AV, Siposova K, Antosova A, Timko M, Kopcansky P. On the determination of the helical structure parameters of amyloid protofilaments by small-angle neutron scattering and atomic force microscopy. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889812050042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The helical structure of amyloid protofilaments of hen egg white lysozyme was analyzed by small-angle neutron scattering (SANS) and atomic force microscopy (AFM). The structure of these formations in bulk solutions was adequately described by SANS in terms of a simplified model of a helix with spherical structural units. The found main helix parameters (pitch and effective diameter) are consistent with the results of AFM analysis for amyloid fibrils adsorbed on a mica surface. Both methods reveal a strong isotope effect on the structure of amyloid fibrils with respect to the substitution of heavy for light water in the solvent. Specific details responsible for the structural differences when comparing SANS and AFM data are discussed from the viewpoint of methodological aspects, the influence of different (native and adsorbed) amyloid states and sample preparation.
Collapse
|
35
|
Koroleva ON, Dubrovin EV, Khodak YA, Kuzmina NV, Yaminsky IV, Drutsa VL. The model of amyloid aggregation of Escherichia coli RNA polymerase σ70 subunit based on AFM data and in vitro assays. Cell Biochem Biophys 2013; 66:623-36. [PMID: 23306967 DOI: 10.1007/s12013-012-9507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To propose a model for recently described amyloid aggregation of E.coli RNA polymerase σ(70) subunit, we have investigated the role of its N-terminal region. For this purpose, three mutant variants of protein with deletions Δ1-73, Δ1-100 and Δ74-100 were constructed and studied in a series of in vitro assays and using atomic force microscopy (AFM). Specifically, all RNA polymerase holoenzymes, reconstituted with the use of mutant σ subunits, have shown reduced affinity for promoter-containing DNA and reduced activity in run-off transcription experiments (compared to that of WT species), thus substantiating the modern concept on the modulatory role of N-terminus in formation of open complex and transcription initiation. The ability of mutant proteins to form amyloid-like structures has been investigated using AFM, which revealed the increased propensity of mutant proteins to form rodlike aggregates with the effect being more pronounced for the mutant with the deletion Δ1-73 (10 fold increase). σ(70) subunit aggregation ability has shown complex dependence on the ionic surrounding, which we explain by Debye screening effect and the change of the internal state of the protein. Basing on the obtained data, we propose the model of amyloid fibril formation by σ(70) subunit, implying the involvement of N-terminal region according to the domain swapping mechanism.
Collapse
Affiliation(s)
- Olga N Koroleva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
36
|
DePas WH, Chapman MR. Microbial manipulation of the amyloid fold. Res Microbiol 2012; 163:592-606. [PMID: 23108148 PMCID: PMC3532741 DOI: 10.1016/j.resmic.2012.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
Microbial biofilms are encased in a protein, DNA, and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold, and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review.
Collapse
Affiliation(s)
- William H. DePas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan LSA, 830 North University Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
37
|
Raccosta S, Martorana V, Manno M. Thermodynamic versus conformational metastability in fibril-forming lysozyme solutions. J Phys Chem B 2012; 116:12078-87. [PMID: 22984801 DOI: 10.1021/jp303430g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of intermolecular interaction in fibril-forming protein solutions and its relation with molecular conformation is a crucial aspect for the control and inhibition of amyloid structures. Here, we study the fibril formation and the protein-protein interactions of lysozyme at acidic pH and low ionic strength. The amyloid formation occurs after a long lag time and is preceded by the formation of oligomers, which seems to be off-pathway with respect to fibrillation. By measuring the osmotic isothermal compressibility and the collective diffusion coefficient of lysozyme in solution, we observe that the monomeric solution is kept in a thermodynamically metastable state by strong electrostatic repulsion, even in denaturing conditions. The measured repulsive interaction between monomers is satisfactorily accounted for by classical polyelectrolyte theory. Further, we observe a slow conformational change involving both secondary and tertiary structure, which drives the proteins toward a more hydrophobic conformation. Denatured proteins are driven out of metastability through conformational substates, which are kinetically populated and experience a lower activation energy for fibril formation. Thus, our results highlight the role of electrostatic repulsion, which hinders the aggregation of partially denatured proteins and operates as a gatekeeper favoring the association of those monomers whose conformation is capable of forming amyloid structure.
Collapse
Affiliation(s)
- Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, via U. La Malfa 153, I-90146 Palermo, Italy
| | | | | |
Collapse
|
38
|
Moretti M, Canale C, Canale C, Francardi M, Dante S, De Angelis F, Di Fabrizio E. AFM characterization of biomolecules in physiological environment by an advanced nanofabricated probe. Microsc Res Tech 2012; 75:1723-31. [DOI: 10.1002/jemt.22122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/09/2012] [Indexed: 11/12/2022]
|
39
|
Hall D, Edskes H. Computational modeling of the relationship between amyloid and disease. Biophys Rev 2012; 4:205-222. [PMID: 23495357 PMCID: PMC3595053 DOI: 10.1007/s12551-012-0091-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023] Open
Abstract
Amyloid is a title conferred upon a special type of linear protein aggregate that exhibits a common set of structural features and dye binding capabilities. The formation of amyloid is associated with over twenty-seven distinct human diseases which are collectively referred to as the amyloidoses. Although there is great diversity amongst the amyloidoses with regard to the polypeptide monomeric precursor, targeted tissues and the nature and time course of disease development, the common underlying link of a structurally similar amyloid aggregate has prompted the search for a unified theory of disease progression in which amyloid production is the central element. Computational modeling has allowed the formulation and testing of scientific hypotheses for exploring this relationship. However, the majority of computational studies on amyloid aggregation are pitched at the atomistic level of description, in simple ideal solution environments, with simulation time scales of the order of microseconds and system sizes limited to a hundred monomers (or less). The experimental reality is that disease related amyloid aggregation processes occur in extremely complex reaction environments (i.e. the human body), over time-scales of months to years with monitoring of the reaction achieved using extremely coarse or indirect experimental markers that yield little or no atomistic insight. Clearly a substantial gap exists between computational and experimental communities with a deficit of 'useful' computational methodology that can be directly related to available markers of disease progression. This Review will place its focus on the development of these latter types of computational models and discuss them in relation to disease onset and progression.
Collapse
Affiliation(s)
- Damien Hall
- Institute of Basic Medical Science, University of Tsukuba, Lab 225-B, Building D. 1-1-1 Tennodai, Tsukuba-shi, Ibaraki-ken 305-8577 Japan
| | - Herman Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830 USA
| |
Collapse
|
40
|
Sweers KKM, van der Werf KO, Bennink ML, Subramaniam V. Atomic force microscopy under controlled conditions reveals structure of C-terminal region of α-synuclein in amyloid fibrils. ACS NANO 2012; 6:5952-5960. [PMID: 22695112 DOI: 10.1021/nn300863n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) is widely used to measure morphological and mechanical properties of biological materials at the nanoscale. AFM is able to visualize and measure these properties in different environmental conditions. However, these conditions can influence the results considerably, rendering their interpretation a matter of some subtlety. We demonstrate this by imaging ~10 nm diameter α-synuclein amyloid fibrils, focusing specifically on the structure of the C-terminal part of the protein monomers incorporated into fibrils. Despite these influences leading to variations in fibril heights, we have shown that by maintaining careful control of AFM settings we can quantitatively compare the morphological parameters of fibrils imaged in air or in buffer conditions. From this comparison we were able to deduce the semiflexible character of this C-terminal region. Fibril height differences measured in air and liquid indicate that the C-terminal region collapses onto the fibril core upon drying. The fibril heights decrease upon increasing ion concentration in solution, suggesting that the C-terminal tails collapse into more compact structures as a result of charge screening. Finally, PeakForce QNM measurements show an apparent heterogeneity of C-terminal packing along the fibril length.
Collapse
Affiliation(s)
- Kim K M Sweers
- Nanobiophysics, MESA, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
41
|
On the use of size exclusion chromatography for the resolution of mixed amyloid aggregate distributions: I. Equilibrium partition models. Anal Biochem 2012; 426:69-85. [DOI: 10.1016/j.ab.2012.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/30/2012] [Accepted: 04/01/2012] [Indexed: 11/24/2022]
|
42
|
Dai X, Chang P, Liu W, Xu K, Sun Y, Zhu S, Jiang Z. Aβ-40 Y10F increases βfibrils formation but attenuates the neurotoxicity of amyloid-β peptide. Int J Mol Sci 2012; 13:5324-5337. [PMID: 22754299 PMCID: PMC3382774 DOI: 10.3390/ijms13055324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the abnormal aggregation of amyloid-β peptide (Aβ) in extracellular deposits known as senile plaques. The tyrosine residue (Tyr-10) is believed to be important in Aβ-induced neurotoxicity due to the formation of tyrosyl radicals. To reduce the likelihood of cross-linking, here we designed an Aβ-40 analogue (Aβ-40 Y10F) in which the tyrosine residue was substituted by a structurally similar residue, phenylalanine. The aggregation rate was determined by the Thioflavin T (ThT) assay, in which Aβ-40 Y10F populated an ensemble of folded conformations much quicker and stronger than the wild type Aβ. Biophysical tests subsequently confirmed the results of the ThT assay, suggesting the measured increase of β-aggregation may arise predominantly from enhancement of hydrophobicity upon substitution and thus the propensity of intrinsic β-sheet formation. Nevertheless, Aβ-40 Y10F exhibited remarkably decreased neurotoxicity compared to Aβ-40 which could be partly due to the reduced generation of hydrogen peroxide. These findings may lead to further understanding of the structural perturbation of Aβ to its fibrillation.
Collapse
Affiliation(s)
- Xueling Dai
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing 100191, China; E-Mail:
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China; E-Mails: (P.C.); (W.L.); (Y.S.)
| | - Ping Chang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China; E-Mails: (P.C.); (W.L.); (Y.S.)
| | - Wenjuan Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China; E-Mails: (P.C.); (W.L.); (Y.S.)
| | - Ke Xu
- College of Life Science, Capital Normal University, Beijing 100048, China; E-Mail:
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China; E-Mails: (P.C.); (W.L.); (Y.S.)
| | - Shigong Zhu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing 100191, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (Z.J.); (S.Z.); Tel.: +86-10-62004534 (Z.J.); +86-10-82801477 (S.Z.); Fax: +86-10-62388926 (Z.J.); +86-10-82801477 (S.Z.)
| | - Zhaofeng Jiang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China; E-Mails: (P.C.); (W.L.); (Y.S.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.J.); (S.Z.); Tel.: +86-10-62004534 (Z.J.); +86-10-82801477 (S.Z.); Fax: +86-10-62388926 (Z.J.); +86-10-82801477 (S.Z.)
| |
Collapse
|
43
|
Ostapchenko V, Gasset M, Baskakov IV. Atomic force fluorescence microscopy in the characterization of amyloid fibril assembly and oligomeric intermediates. Methods Mol Biol 2012; 849:157-67. [PMID: 22528089 DOI: 10.1007/978-1-61779-551-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atomic force microscopy (AFM) has become a conventional tool for elucidation of the molecular mechanisms of protein aggregation and, specifically, for analysis of assembly pathways, architecture, aggregation state, and heterogeneity of oligomeric intermediates or mature fibrils. AFM imaging provides useful information about particle dimensions, shape, and substructure with nanometer resolution. Conventional AFM methods have been very helpful in the analysis of polymorphic assemblies formed in vitro from homogeneous proteins or peptides. However, AFM imaging on its own provides limited insight into conformation or composition of assemblies produced in the complex environment of a cell, or prepared from a mixture of proteins as a result of cross-seeding. In these cases, its combination with fluorescence microscopy (AFFM) increases its resolution.
Collapse
Affiliation(s)
- Valeriy Ostapchenko
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | | | | |
Collapse
|
44
|
Zhou X, Tan J, Zheng L, Pillai S, Li B, Xu P, Zhang B, Zhang Y. The opposite effects of Cu(ii) and Fe(iii) on the assembly of glucagon amyloid fibrils. RSC Adv 2012. [DOI: 10.1039/c2ra20651j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
45
|
Affiliation(s)
- Jozef Adamcik
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Raffaele Mezzenga
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
46
|
Maltsev AV, Bystryak S, Galzitskaya OV. The role of β-amyloid peptide in neurodegenerative diseases. Ageing Res Rev 2011; 10:440-52. [PMID: 21406255 DOI: 10.1016/j.arr.2011.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 12/27/2022]
Abstract
Studies of neurodegenerative disorders (NDDs) are drawing more attention of researchers worldwide due to the high incidence of Alzheimer's disease (AD). The pathophysiology of such disorders is, in part, characterized by the transition of a wild-type peptide from its native conformation into a very stable pathological isoform. Subsequently, these abnormal proteins form aggregates of amyloid fibrils that continuously increase in size. Changes in the metabolic processes of neurons (e.g. oxidative stress, hyperphosphorylation of the tau protein, and resulting secondary changes in the cell metabolism) ultimately lead to cell death. We hypothesize that extracellular deposition of β-amyloid peptide fibrils and neurofibrillary tangles represents the body's adaptation mechanism, aimed at preservation of autonomic functioning; while the cognitive decline is severe, the rest of the organ systems remain unaffected and continue to function. This hypothesis is supported by the fact that destruction of pathological plaques, fibrils, and tangles and the use of vaccines targeting β-amyloid result in undesirable side effects. To gain a better understanding of the pathophysiology of Alzheimer's disease and to develop novel therapies, continued studies of the sporadic form of disease and the mechanisms triggering conformational changes in β-amyloid peptide fragments are essential. This review is focused on studies investigating the formation of amyloid fibrils and their role in the pathogenesis of neurodegenerative diseases. In addition, we discuss a related disorder--amyloidosis--where formation of fibrils, tangles, and plaques leads to neuronal death which may occur as a result of a failed adaptation process. Further in-depth investigation and comprehensive analysis of alterations in the metabolism of APP, β-amyloid, and tau protein, which have a pathological effect on cell membrane, alter phosphate exchange, and impair other key metabolic functions of the cell long before the characteristic amyloid deposition takes place, is warranted. A better understanding of intraneuronal processes is crucial in identifying specific inhibitors of pathologic neuronal processes and, consequently, will allow for targeted therapy, thus maximizing efficacy of selected therapeutic regimens.
Collapse
Affiliation(s)
- A V Maltsev
- Russian Gerontological Research Clinical Center, Russian Ministry of Health Care, Moscow, Russia.
| | | | | |
Collapse
|
47
|
Dubrovin EV, Koroleva ON, Khodak YA, Kuzmina NV, Yaminsky IV, Drutsa VL. AFM study of Escherichia coli RNA polymerase σ⁷⁰ subunit aggregation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2011; 8:54-62. [PMID: 21703992 DOI: 10.1016/j.nano.2011.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED The self-assembly of Escherichia coli RNA polymerase σ⁷⁰ subunit was investigated using several experimental approaches. A novel rodlike shape was reported for σ⁷⁰ subunit aggregates. Atomic force microscopy reveals that these aggregates, or σ⁷⁰ polymers, have a straight rodlike shape 5.4 nm in diameter and up to 300 nm in length. Atomic force microscopy data, Congo red binding assay, and sodium dodecyl sulfate gel electrophoresis confirm the amyloid nature of observed aggregates. The process of formation of rodlike structures proceeds spontaneously under nearly physiological conditions. E. coli RNA polymerase σ⁷⁰ subunit may be an interesting object for investigation of amyloidosis as well as for biotechnological applications that exploit self-assembled bionanostructures. Polymerization of σ⁷⁰ subunit may be a competitive process with its three-dimensional crystallization and association with core RNA polymerase. FROM THE CLINICAL EDITOR In this basic science study, the self-assembly of Escherichia coli RNA polymerase σ⁷⁰( subunit was investigated using atomic force microscopy and other complementary approaches.
Collapse
Affiliation(s)
- Evgeniy V Dubrovin
- Department of Physics of Polymers and Crystals, Faculty of Physics, Moscow State University, Russia.
| | | | | | | | | | | |
Collapse
|
48
|
Galzitskaya OV. Regions which are Responsible for Swapping are also Responsible for Folding and Misfolding. Open Biochem J 2011; 5:27-36. [PMID: 21769300 PMCID: PMC3134983 DOI: 10.2174/1874091x01105010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/17/2011] [Accepted: 05/28/2011] [Indexed: 12/01/2022] Open
Abstract
Domain swapping is a term used to describe a process when two or more protein chains exchange identical structural elements. Some cases of amyloid formation can be explained through a domain swapping mechanism therefore this deserves theoretical consideration and studying. It has been demonstrated that diverse proteins in sequence and structure are able to oligomerize via domain swapping. This allows us to suggest that the exchangeable regions are important in folding and misfolding processes of proteins, i.e. the residues from the swapping regions are typically incorporated into the native structure early during its formation. The modeling of folding of the proteins with swapped domains demonstrates that the regions exchanged in the oligomeric form in most cases are also responsible for folding and misfolding. For 11 out of 17 proteins, swapping regions intersect with the predicted amyloidogenic regions. Moreover, for 10 out of 17 proteins, high Φ-values (>0.5) belong to residues from the swapping regions. Our data confirm that the exchangeable regions are important in folding, misfolding, and domain swapping processes of the proteins, therefore the suggestion that domain swapping can serve as a mechanism for functional interconversion between monomers and oligomers is likely to be correct.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str. 4, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
49
|
El Moustaine D, Perrier V, Van Ba IAT, Meersman F, Ostapchenko VG, Baskakov IV, Lange R, Torrent J. Amyloid features and neuronal toxicity of mature prion fibrils are highly sensitive to high pressure. J Biol Chem 2011; 286:13448-59. [PMID: 21357423 PMCID: PMC3075691 DOI: 10.1074/jbc.m110.192872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/24/2011] [Indexed: 12/22/2022] Open
Abstract
Prion proteins (PrP) can aggregate into toxic and possibly infectious amyloid fibrils. This particular macrostructure confers on them an extreme and still unexplained stability. To provide mechanistic insights into this self-assembly process, we used high pressure as a thermodynamic tool for perturbing the structure of mature amyloid fibrils that were prepared from recombinant full-length mouse PrP. Application of high pressure led to irreversible loss of several specific amyloid features, such as thioflavin T and 8-anilino-1-naphthalene sulfonate binding, alteration of the characteristic proteinase K digestion pattern, and a significant decrease in the β-sheet structure and cytotoxicity of amyloid fibrils. Partial disaggregation of the mature fibrils into monomeric soluble PrP was observed. The remaining amyloid fibrils underwent a change in secondary structure that led to morphologically different fibrils composed of a reduced number of proto-filaments. The kinetics of these reactions was studied by recording the pressure-induced dissociation of thioflavin T from the amyloid fibrils. Analysis of the pressure and temperature dependence of the relaxation rates revealed partly unstructured and hydrated kinetic transition states and highlighted the importance of collapsing and hydrating inter- and intramolecular cavities to overcome the high free energy barrier that stabilizes amyloid fibrils.
Collapse
Affiliation(s)
- Driss El Moustaine
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Veronique Perrier
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Isabelle Acquatella-Tran Van Ba
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Filip Meersman
- the Department of Chemistry, Katholieke Universiteit Leuven, Leuven B-3001, Belgium, and
| | - Valeriy G. Ostapchenko
- the Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ilia V. Baskakov
- the Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Reinhard Lange
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Joan Torrent
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| |
Collapse
|
50
|
Webster GT, Dusting J, Balabani S, Blanch EW. Detecting the early onset of shear-induced fibril formation of insulin in situ. J Phys Chem B 2011; 115:2617-26. [PMID: 21348502 DOI: 10.1021/jp110367t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new approach is presented for detecting the early onset of amyloid fibril formation of insulin in a fluidic environment. The fibrillogenesis of insulin in a well-characterized Taylor-Couette flow cell was analyzed in situ using Raman spectroscopy in combination with principal components analysis (PCA). Raman spectra recorded using a 532.5 nm excitation laser revealed a more rapid fibrillogenesis process during the first 90 min of shearing than previously reported for samples exposed to flow. Bands corresponding to intermolecular H-bonded β-sheet structure of insulin at 1678, 1630, and 1625 cm(-1) observed in the Raman difference spectra between unsheared insulin and sheared insulin show an increase in intensity as a function of shear exposure time, which is characteristic of fibril formation, with the first changes detected after 10 min. Additional analysis of samples removed from the flow cell after specific time periods provided conformation of the flow-enhanced fibrillogenesis process, including the detection of early fibril formation after only 1 min of shearing. FT-IR spectra of the insulin solutions showed evolution of bands at 1673 and 1633 cm(-1) from an increase in H-bonded β-turn and β-sheet structures, respectively, while fluorescence emission spectra detected the presence of a new emission band at 482 nm. TEM images confirmed the early onset of fibril formation at 1 min shear exposure, before a maturation and concentration increase of fibrils with further shearing. This study highlights the ability of fluid flows to accelerate insulin fibril formation, which has important implications for biotechnology applications such as the purification process of insulin therapeutic drugs in the pharmaceutical industry, as well as the use of optical-based methods for detecting fibrillogenesis.
Collapse
Affiliation(s)
- Grant T Webster
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|