1
|
Zaatouf L, Kumar K, Marcotte I, Warschawski DE. Assessment of membrane labelling mechanisms with exogenous fatty acids and detergents in bacteria. Biochimie 2024; 227:12-18. [PMID: 38825063 DOI: 10.1016/j.biochi.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Labelling of bacterial membranes using exogenous fatty acids has proven to be a valuable tool to investigate molecular interactions by in-cell solid-state nuclear magnetic resonance (ssNMR) spectroscopy, notably with antimicrobial peptides. However, the mechanism by which this labelling takes place in non-mutated bacteria has not yet been investigated. In this work, we propose a rapid method to assess the fate of the fatty acids during the labelling of bacteria, involving two different methylation schemes and gas chromatography coupled to mass spectrometry. We applied this approach to Gram(+) and Gram(-) bacteria grown with deuterated palmitic acid under different conditions. We assessed the extent of labelling, then the resulting membrane rigidity by 2H ssNMR. Our results reveal that the labelling mechanism depends on the detergent used to micellize the fatty acids. This labelling can be either active or passive, whether the fatty acids are metabolized and used in the phospholipids biosynthesis, or remain unmodified in the membrane. We discuss the best labelling protocol for studying peptide-membrane interactions.
Collapse
Affiliation(s)
- Laila Zaatouf
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École normale supérieure, PSL University, 75005, Paris, France
| | - Kiran Kumar
- Departement of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montreal, H3C 3P8, Canada
| | - Isabelle Marcotte
- Departement of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montreal, H3C 3P8, Canada
| | - Dror E Warschawski
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École normale supérieure, PSL University, 75005, Paris, France.
| |
Collapse
|
2
|
Wycisk V, Wagner MC, Urner LH. Trends in the Diversification of the Detergentome. Chempluschem 2024; 89:e202300386. [PMID: 37668309 DOI: 10.1002/cplu.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Caritá AC, Cavalcanti RRM, Oliveira MSS, Riske KA. Solubilization of biomimetic lipid mixtures by some commonly used non-ionic detergents. Chem Phys Lipids 2023; 255:105327. [PMID: 37442532 DOI: 10.1016/j.chemphyslip.2023.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Detergents are amphiphilic molecules often used to solubilize biological membranes and separate their components. Here we investigate the solubilization of lipid vesicles by the commonly used non-ionic detergents polyoxyethylene (20) oleyl ether (Brij 98), n-octyl-β-D-glucoside (OG), and n-dodecyl β-D maltoside (DDM) and compare the results with the standard detergent Triton X-100 (TX-100). The vesicles were composed of palmitoyl oleoyl phosphatidylcholine (POPC) or of a biomimetic ternary mixture of POPC, egg sphingomyelin (SM) and cholesterol (2:1:2 molar ratio). To follow the solubilization profile of large unilamellar vesicles (LUVs), 90° light scattering measurements were done along the titration of LUVs with the detergents. Then, giant unilamellar vesicles (GUVs) were observed with optical microscopy during exposure to the detergents, to allow direct visualization of the solubilization process. Isothermal titration calorimetry (ITC) was used to assess the binding constant of the detergents in POPC bilayers. The results show that the incorporation of TX-100, Brij 98 and, to a lesser extent, OG in the pure POPC liposomes leads to an increase in the vesicle area, which indicates their ability to redistribute between the two leaflets of the membrane in a short scale of time. On the other hand, DDM incorporates mainly in the external leaflet causing an increase in vesicle curvature/tension leading ultimately to vesicle burst. Only TX-100 and OG were able to completely solubilize the POPC vesicles, whereas the biomimetic ternary mixture was partially insoluble in all detergents tested. TX-100 and OG were able to incorporate in the bilayer of the ternary mixture and induce macroscopic phase separation of liquid-ordered (Lo) and liquid-disordered (Ld) domains, with selective solubilization of the latter. Combination of ITC data with turbidity results showed that TX-100 and OG can be incorporated up to almost 0.3 detergent/lipid, significantly more than Brij 98 and DDM. This fact seems to be directly related to their higher capacity to solubilize POPC membranes and their ability to induce macroscopic phase separation in the biomimetic lipid mixture.
Collapse
Affiliation(s)
- Amanda C Caritá
- Universidade Federal de São Paulo, Department of Biophysics, São Paulo, Brazil
| | | | | | - Karin A Riske
- Universidade Federal de São Paulo, Department of Biophysics, São Paulo, Brazil.
| |
Collapse
|
4
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
5
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Moon S, Yoon BK, Jackman JA. Effect of Membrane Curvature Nanoarchitectonics on Membrane-Disruptive Interactions of Antimicrobial Lipids and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4606-4616. [PMID: 35389653 DOI: 10.1021/acs.langmuir.1c03384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-chain lipid amphiphiles such as fatty acids and monoglycerides along with structurally related surfactants have received significant attention as membrane-disrupting antimicrobials to inhibit bacteria and viruses. Such promise has motivated deeper exploration of how these compounds disrupt phospholipid membranes, and the membrane-mimicking, supported lipid bilayer (SLB) platform has provided a useful model system to evaluate corresponding mechanisms of action and potency levels. Even so, it remains largely unknown how biologically relevant membrane properties, such as sub-100 nm membrane curvature, might affect these membrane-disruptive interactions, especially from a nanoarchitectonics perspective. Herein, using the quartz crystal microbalance-dissipation (QCM-D) technique, we fabricated intact vesicle adlayers composed of different-size vesicles (70 or 120 nm diameter) with varying degrees of membrane curvature on a titanium oxide surface and tracked changes in vesicle adlayer properties upon adding lauric acid (LA), glycerol monolaurate (GML), or sodium dodecyl sulfate (SDS). Above their critical micelle concentration (CMC) values, LA and GML caused QCM-D measurement shifts associated with tubule- and bud-like formation, respectively, and both compounds interacted similarly with small (high curvature) and large (low curvature) vesicles. In marked contrast, SDS exhibited distinct interactions with small and large vesicles. For large vesicles, SDS caused nearly complete membrane solubilization in a CMC-independent manner, whereas SDS was largely ineffective at solubilizing small vesicles at all tested concentrations. We rationalize these experimental observations by taking into account the interplay of the headgroup properties of LA, GML, and SDS and curvature-induced membrane geometry, and our findings demonstrate that membrane curvature nanoarchitectonics can strongly influence the membrane interaction profiles of antimicrobial lipids and surfactants.
Collapse
Affiliation(s)
- Suji Moon
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Membrane Proteins and Proteomics of Cronobacter sakazakii Cells: Reliable Method for Identification and Subcellular Localization. Appl Environ Microbiol 2022; 88:e0250821. [PMID: 35435719 PMCID: PMC9088360 DOI: 10.1128/aem.02508-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Cronobacter are responsible for severe infections in infants and immunosuppressed individuals. Although several virulence factors have been described, many proteins involved in the pathogenesis of such infections have not yet been mapped. This study is the first to fractionate Cronobacter sakazakii cells into outer membrane, inner membrane, periplasmic, and cytosolic fractions as the basis for improved proteome mapping. A novel method was designed to prepare the fractionated samples for protein identification. The identification was performed via one-dimensional electrophoresis-liquid chromatography electrospray ionization tandem mass spectrometry. To determine the subcellular localization of the identified proteins, we developed a novel Python-based script (Subcelloc) that combines three web-based tools, PSORTb 3.0.2, CELLO 2.5, and UniProtKB. Applying this approach enabled us to identify 1,243 C. sakazakii proteins, which constitutes 28% of all predicted proteins and 49% of all theoretically expressed outer membrane proteins. These results represent a significant improvement on previous attempts to map the C. sakazakii proteome and could provide a major step forward in the identification of Cronobacter virulence factors. IMPORTANCE Cronobacter spp. are opportunistic pathogens that can cause rare and, in many cases, life-threatening infections, such as meningitis, necrotizing enterocolitis, and sepsis. Such infections are mainly linked to the consumption of contaminated powdered infant formula, with Cronobacter sakazakii clonal complex 4 considered the most frequent agent of serious neonatal infection. However, the pathogenesis of diseases caused by these bacteria remains unclear; in particular, the proteins involved throughout the process have not yet been mapped. To help address this, we present an improved method for proteome mapping that emphasizes the isolation and identification of membrane proteins. Specific focus was placed on the identification of the outer membrane proteins, which, being exposed to the surface of the bacterium, directly participate in host-pathogen interaction.
Collapse
|
8
|
Kumar K, Sebastiao M, Arnold AA, Bourgault S, Warschawski DE, Marcotte I. IN SITU SOLID-STATE NMR STUDY OF ANTIMICROBIAL PEPTIDE INTERACTIONs WITH ERYTHROCYTE MEMBRANES. Biophys J 2022; 121:1512-1524. [PMID: 35278426 PMCID: PMC9072582 DOI: 10.1016/j.bpj.2022.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022] Open
Abstract
Antimicrobial peptides are promising therapeutic agents to mitigate the global rise of antibiotic resistance. They generally act by perturbing the bacterial cell membrane and are thus less likely to induce resistance. Because they are membrane-active molecules, it is critical to verify and understand their potential action toward eukaryotic cells to help design effective and safe drugs. In this work, we studied the interaction of two antimicrobial peptides, aurein 1.2 and caerin 1.1, with red blood cell (RBC) membranes using in situ 31P and 2H solid-state NMR (SS-NMR). We established a protocol to integrate up to 25% of deuterated fatty acids in the membranes of ghosts, which are obtained when hemoglobin is removed from RBCs. Fatty acid incorporation and the integrity of the lipid bilayer were confirmed by SS-NMR and fluorescence confocal microscopy. Leakage assays were performed to assess the lytic power of the antimicrobial peptides. The in situ perturbation of the ghost membranes by aurein 1.2 and caerin 1.1 revealed by 31P and 2H SS-NMR is consistent with membrane perturbation through a carpet mechanism for aurein 1.2, whereas caerin 1.1 acts on RBCs via pore formation. These results are compatible with fluorescence microscopy images of the ghosts. The peptides interact with eukaryotic membranes following similar mechanisms that take place in bacteria, highlighting the importance of hydrophobicity when determining such interactions. Our work bridges model membranes and in vitro studies and provides an analytical toolbox to assess drug toxicity toward eukaryotic cells.
Collapse
|
9
|
Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements. Int J Mol Sci 2022; 23:ijms23020869. [PMID: 35055053 PMCID: PMC8775805 DOI: 10.3390/ijms23020869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Triton X-100 (TX-100) is a widely used detergent to prevent viral contamination of manufactured biologicals and biopharmaceuticals, and acts by disrupting membrane-enveloped virus particles. However, environmental concerns about ecotoxic byproducts are leading to TX-100 phase out and there is an outstanding need to identify functionally equivalent detergents that can potentially replace TX-100. To date, a few detergent candidates have been identified based on viral inactivation studies, while direct mechanistic comparison of TX-100 and potential replacements from a biophysical interaction perspective is warranted. Herein, we employed a supported lipid bilayer (SLB) platform to comparatively evaluate the membrane-disruptive properties of TX-100 and a potential replacement, Simulsol SL 11W (SL-11W), and identified key mechanistic differences in terms of how the two detergents interact with phospholipid membranes. Quartz crystal microbalance-dissipation (QCM-D) measurements revealed that TX-100 was more potent and induced rapid, irreversible, and complete membrane solubilization, whereas SL-11W caused more gradual, reversible membrane budding and did not induce extensive membrane solubilization. The results further demonstrated that TX-100 and SL-11W both exhibit concentration-dependent interaction behaviors and were only active at or above their respective critical micelle concentration (CMC) values. Collectively, our findings demonstrate that TX-100 and SL-11W have distinct membrane-disruptive effects in terms of potency, mechanism of action, and interaction kinetics, and the SLB platform approach can support the development of biophysical assays to efficiently test potential TX-100 replacements.
Collapse
|
10
|
Mahler F, Meister A, Vargas C, Durand G, Keller S. Self-Assembly of Protein-Containing Lipid-Bilayer Nanodiscs from Small-Molecule Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103603. [PMID: 34674382 DOI: 10.1002/smll.202103603] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
When membrane proteins are removed from their natural environment, the quality of the membrane-solubilizing agent used is critical for preserving their native structures and functions. Nanodiscs that retain a lipid-bilayer core around membrane proteins have attracted great attention because they offer a much more native-like environment than detergent micelles. Here, two small-molecule amphiphiles with diglucose headgroups and either a hydrocarbon or a fluorocarbon hydrophobic chain are shown to directly assemble lipids and membrane proteins to form native nanodiscs rather than mixed micelles. Self-assembly of nanodiscs of increasing complexity from both defined, artificial vesicles as well as complex, cellular membranes is demonstrated. A detailed investigation of bilayer integrity and membrane-protein activity in these nanodiscs reveals gentle effects on the encapsulated bilayer core. The fluorinated amphiphile appears particularly promising because its lipophobicity results in gentle, non-perturbing interactions with the nanoscale lipid bilayer. A sequential model of nanodisc self-assembly is proposed that proceeds through perforation of the original membrane followed by saturation and complete solubilization of the bilayer. On this basis, pseudophase diagrams are established for mixtures of lipids and nanodisc-forming diglucoside amphiphiles, and the latter are used for the extraction of a broad range of membrane proteins from cellular membranes.
Collapse
Affiliation(s)
- Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), 67663, Kaiserslautern, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry, Martin-Luther-Universität Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Grégory Durand
- Equipe Chimie Bioorganique et Systèmes Amphiphiles, Institut des Biomolécules Max Mousseron, Avignon University, Avignon, 84916, France
- CHEM2STAB, Avignon, 84916, France
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
11
|
Naßwetter LC, Fischer M, Scheidt HA, Heerklotz H. Membrane-water partitioning - Tackling the challenges of poorly soluble drugs using chaotropic co-solvents. Biophys Chem 2021; 277:106654. [PMID: 34265547 DOI: 10.1016/j.bpc.2021.106654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022]
Abstract
Many newly developed drugs suffer from poor water solubility and low bioavailability and hence, need special formulation vehicles like vesicular or micellar drug delivery systems. The knowledge of their membrane-water partition coefficient K becomes critical as is governs drug loading and release from the vehicle, as well as absorption into the body. The dilemma is that measuring K is particularly challenging for these very compounds. Here we establish a strategy to resolve this problem. We added DMSO to shift K and solubility into a convenient range and extrapolated these results back to zero-DMSO. Isothermal titration calorimetry revealed that logK of the kinase inhibitor Lapatinib decreased proportionally to DMSO content (2.5 - 20v%) with a slope of -1/20v% (m value = 28 kJ/mol). This implies a K of 84 mM-1 in DMSO-free buffer. This strategy should be transferable to other poorly soluble drugs and further detection methods.
Collapse
Affiliation(s)
- Leonie C Naßwetter
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Hermann-Herder-Straße 9, 79104 Freiburg, Germany.
| | - Markus Fischer
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Hermann-Herder-Straße 9, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-Universität, Schänzlestraße 18, 79104 Freiburg; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto ON, M5S 3M2, Canada.
| |
Collapse
|
12
|
Interaction of a dirhamnolipid biosurfactant with sarcoplasmic reticulum calcium ATPase (SERCA1a). Arch Biochem Biophys 2021; 699:108764. [PMID: 33460582 DOI: 10.1016/j.abb.2021.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 01/10/2021] [Indexed: 11/21/2022]
Abstract
The interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with calcium ATPase from sarcoplasmic reticulum (SR) was studied by means of different approaches, such as enzyme activity, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and molecular docking simulations. The ATP hydrolysis activity was fully inhibited by incubation with dirhamnolipid (diRL) up to 0.1 mM concentration, corresponding to a surfactant concentration below membrane solubilization threshold. Surfactant-protein interaction induced conformational changes in the protein observed by an increase in the accessibility of tryptophan residues to the aqueous phase and by changes in the secondary structure of the protein as seen by fluorescence and FTIR spectroscopy. As a consequence, the protein become more unstable and denatured at lower temperatures, as seen by enzyme activity and DSC studies. Finally, these results were explained at molecular level throughout molecular docking simulations. It is concluded that there is a specific dirhamnolipid-protein interaction not related to the surface activity of the surfactant but to the particular physicochemical properties of the biosurfactant molecule.
Collapse
|
13
|
Solis-Gonzalez OA, Avendaño-Gómez JR, Rojas-Aguilar A. A thermodynamic study of F108 and F127 block copolymer interactions with liposomes at physiological temperature. J Liposome Res 2021; 32:32-44. [PMID: 33322974 DOI: 10.1080/08982104.2020.1865401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The interactions of egg yolk phosphatidylcholine liposomes with F108 and F127 triblock copolymers, in the monomer state, were analyzed by isothermal titration calorimetry (ITC) at 37 °C. According to the results, the critical micelle concentration was determined to be 0.4 and 0.04 wt.% for F108 and F127, respectively, by surface tension at 37 °C. According to the results, liposomes/poloxamers were not favoured energetically, since endothermic interactions were observed. However, positive changes in entropy promoted a spontaneous process. F127 had a greater partition coefficient (51.97 ± 1.77 × 104), stronger affinity, than F108 (8.19 ± 0.37 × 104) towards the vesicle lipid bilayer due to its larger hydrophobic block. After the ITC experiments, an increased vesicle size (within about 1-3 nm average) by dynamic light scattering and the formation of bilayer discs by electron microscopy (EM) was observed at low copolymer concentrations (0.57 mol% of F108 and 1.01 mol% of F127). The EM and ITC results confirmed the intimate association of the copolymers with the membrane instead of being simply absorbed onto the bilayer surface. Our results indicate that the temperature of the system (37 °C), the copolymer concentration and hydrophobic chain length are important factors for the interaction of poloxamers with lipid bilayers and the stability of liposomes.
Collapse
Affiliation(s)
- Obed Andres Solis-Gonzalez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Ramon Avendaño-Gómez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aarón Rojas-Aguilar
- Departamento de Química, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
14
|
Mishra J, Mishra AK, Swain J. Exploring the biophysical interaction of 3-pentadecylphenol with the head group region of a lipid membrane using fisetin as an interfacial membrane probe. NEW J CHEM 2021. [DOI: 10.1039/d1nj01484f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interaction of PDP with the interfacial head group region of the lipid bilayer membrane.
Collapse
Affiliation(s)
- Jhili Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Ashok Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Jitendriya Swain
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
15
|
Moesgaard L, Petersen D, Szomek M, Reinholdt P, Winkler MBL, Frain KM, Müller P, Pedersen BP, Kongsted J, Wüstner D. Mechanistic Insight into Lipid Binding to Yeast Niemann Pick Type C2 Protein. Biochemistry 2020; 59:4407-4420. [PMID: 33141558 DOI: 10.1021/acs.biochem.0c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Niemann Pick type C2 (NPC2) is a small sterol binding protein in the lumen of late endosomes and lysosomes. We showed recently that the yeast homologue of NPC2 together with its binding partner NCR1 mediates integration of ergosterol, the main sterol in yeast, into the vacuolar membrane. Here, we study the binding specificity and the molecular details of lipid binding to yeast NPC2. We find that NPC2 binds fluorescence- and spin-labeled analogues of phosphatidylcholine (PC), phosphatidylserine, phosphatidylinositol (PI), and sphingomyelin. Spectroscopic experiments show that NPC2 binds lipid monomers in solution but can also interact with lipid analogues in membranes. We further identify ergosterol, PC, and PI as endogenous NPC2 ligands. Using molecular dynamics simulations, we show that NPC2's binding pocket can adapt to the ligand shape and closes around bound ergosterol. Hydrophobic interactions stabilize the binding of ergosterol, but binding of phospholipids is additionally stabilized by electrostatic interactions at the mouth of the binding site. Our work identifies key residues that are important in stabilizing the binding of a phospholipid to yeast NPC2, thereby rationalizing future mutagenesis studies. Our results suggest that yeast NPC2 functions as a general "lipid solubilizer" and binds a variety of amphiphilic lipid ligands, possibly to prevent lipid micelle formation inside the vacuole.
Collapse
Affiliation(s)
- Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Mikael B L Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Kelly May Frain
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Bjørn Panyella Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
16
|
Dietel L, Kalie L, Heerklotz H. Lipid Scrambling Induced by Membrane-Active Substances. Biophys J 2020; 119:767-779. [PMID: 32738218 DOI: 10.1016/j.bpj.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022] Open
Abstract
The functional roles of the lipid asymmetry of biomembranes are attracting increasing attention. This study characterizes the activity of surfactants to induce transmembrane flip-flop of lipids and thus "scramble" this asymmetry. Detergent-induced lipid scrambling of liposomes mimicking the charge asymmetry of bacterial membranes with 20 mol % of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol in the outer leaflet only was quantified by ζ-potential measurements for octaethylene glycol dodecyl ether (C12EO8), octyl glucoside (OG), and dodecyl maltoside. Membrane leakage was separately measured by the fluorescence lifetime-based calcein leakage assay and the onset of the membrane-to-micelle transition by isothermal titration calorimetry. Partition coefficients and partial molar areas were obtained as well. For the quickly membrane-permeant C12EO8 and OG, leakage proceeds at a rather sharp threshold content in the membrane, which is well below the onset of solubilization and little dependent on incubation time; it is accompanied by fast lipid scrambling. However, unlike leakage, flip-flop is a relaxation process that speeds up gradually from taking weeks in the detergent-free membrane to minutes or less in the leaking membrane. Hence, after 24 h of incubation, 10 mol % of C12EO8 or 50 mol % of OG in the membrane suffice for virtually complete lipid scrambling, whereas leakage remains below 10% for up to 14 mol % of C12EO8 and 88 mol % of OG. There is thus a concentration window in which lipid scrambling proceeds without leakage. This implies that lipid scrambling must be considered a possible mode of action of antimicrobial peptides and other membrane-active drugs or biomolecules. A related, detergent-based protocol for scrambling the lipid asymmetry of liposomes and maybe cells without compromising their overall integrity would be a very valuable tool to study functions of lipid asymmetry.
Collapse
Affiliation(s)
- Lisa Dietel
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany.
| | - Louma Kalie
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200003 Israel
| | - Yiyang Lin
- State Key Laboratory of Organic-Inorganic Composites Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
18
|
Desai HH, Bu P, Shah AV, Cheng X, Serajuddin ATM. Evaluation of Cytotoxicity of Self-Emulsifying Formulations Containing Long-Chain Lipids Using Caco-2 Cell Model: Superior Safety Profile Compared to Medium-Chain Lipids. J Pharm Sci 2020; 109:1752-1764. [PMID: 32035926 DOI: 10.1016/j.xphs.2020.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Medium-chain (MC) and long-chain (LC) lipids are used for development of self-emulsifying drug delivery systems (SEDDS). MC lipids are often preferred because of their ability to form stable microemulsions with relatively high drug solubilization capacity. On the other hand, LC lipids could be more biocompatible as most endogenous and dietary lipids are LC glycerides. They also maintain high drug solubilization capacity after digestion. The present study was undertaken to determine the cytotoxicity of LC lipids and their formulations on Caco-2 cells of 1-day, 5-day, and 21-day maturity. The results were compared with the cytotoxicity profiles of MC lipids reported previously from our laboratory. The cell viability and cell membrane integrity were, respectively, determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the lactate dehydrogenase assay. The cytotoxicity was partially due to lipid surfactant-induced membrane rupture, and it was influenced by cell maturity and formulation composition. The lipid-surfactant combinations showed greater tolerance than surfactants alone, and LC-SEDDS were well-tolerated at almost 10-fold higher concentration than corresponding MC-SEDDS. Furthermore, the cytotoxicity of digestion end products of both LC and MC triglycerides in the presence of 3 mM sodium taurocholate was compared on 21-day Caco-2 cultures by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The LC lipid formulations showed better tolerance than MC lipid formulations after digestion. Thus, although MC and LC lipids are well-tolerated at doses normally administered to humans, LC lipids show much better safety than MC lipids in a cell-culture model.
Collapse
Affiliation(s)
- Heta H Desai
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Pkwy, Queens, New York 11439
| | - Pengli Bu
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Pkwy, Queens, New York 11439
| | - Ankita V Shah
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Pkwy, Queens, New York 11439
| | - Xingguo Cheng
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Pkwy, Queens, New York 11439
| | - Abu T M Serajuddin
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Pkwy, Queens, New York 11439.
| |
Collapse
|
19
|
|
20
|
Musatova OE, Garina ES, Grozdova ID. The Ability of Pluronics to Increase the Survival Rate of Cells Determined by a Hydrophilic Poly(ethylene oxide) Block. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x19050134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Dalgarno PA, Juan-Colás J, Hedley GJ, Piñeiro L, Novo M, Perez-Gonzalez C, Samuel IDW, Leake MC, Johnson S, Al-Soufi W, Penedo JC, Quinn SD. Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents. Sci Rep 2019; 9:12897. [PMID: 31501469 PMCID: PMC6733941 DOI: 10.1038/s41598-019-49210-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022] Open
Abstract
The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions.
Collapse
Affiliation(s)
- Paul A Dalgarno
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK.,Institute of Biological Physics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - José Juan-Colás
- Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK
| | - Gordon J Hedley
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK.,School of Chemistry, University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Lucas Piñeiro
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - Mercedes Novo
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK
| | - Ifor D W Samuel
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York, England, YO10 5DD, UK.,Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK
| | - Wajih Al-Soufi
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK.
| | - Steven D Quinn
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK. .,Department of Physics, University of York, Heslington, York, England, YO10 5DD, UK. .,Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
22
|
Goda T, Imaizumi Y, Hatano H, Matsumoto A, Ishihara K, Miyahara Y. Translocation Mechanisms of Cell-Penetrating Polymers Identified by Induced Proton Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8167-8173. [PMID: 31094202 DOI: 10.1021/acs.langmuir.9b00856] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Unlike the majority of nanomaterials designed for cellular uptake via endocytic pathways, some of the functional nanoparticles and nanospheres directly enter the cytoplasm without overt biomembrane injuries. Previously, we have shown that a water-soluble nanoaggregate composed of amphiphilic random copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA), poly(MPC- random-BMA) (PMB), passes live cell membranes in an endocytosis-free manner. Yet, details in its translocation mechanism remain elusive due to the lack of proper analytical methods. To understand this phenomenon experimentally, we elaborated the original pH perturbation assay that is extremely sensitive to the pore formation on cell membranes. The ultimate sensitivity originates from the detection of the smallest indicator H+ (H3O+) passed through the molecularly sized transmembrane pores upon challenge by exogenous reagents. We revealed that water-soluble PMB at the 30 mol % MPC unit (i.e., PMB30W) penetrated into the cytosol of model mammalian cells without any proton leaks, in contrast to conventional cell-penetrating peptides, TAT and R8 as well as the surfactant, Triton X-100. While exposure of PMB30W permeabilized cytoplasmic lactate dehydrogenase out of the cells, indicating the alteration of cell membrane polarity by partitioning of amphiphilic PMB30W into the lipid bilayers. Nevertheless, the biomembrane alterations by PMB30W did not exhibit cytotoxicity. In summary, elucidating translocation mechanisms by proton dynamics will guide the design of nanomaterials with controlled permeabilization to cell membranes for bioengineering applications.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
- Nano Innovation Institute , Inner Mongolia University for Nationalities , No. 22 HuoLinHe Street , Tongliao , Inner Mongolia 028000 , P. R. China
| | - Yuki Imaizumi
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| | - Hiroaki Hatano
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) , 705-1 Shimoimaizumi , Ebina , Kanagawa 243-0435 , Japan
| | | | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| |
Collapse
|
23
|
Curvophilic-curvophobic balance of monoalkyl-mannosides determines the magnitude of disturbance promoted in synthetic bilayers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Li J, Røise JJ, Zhang J, Yang J, Kerr DL, Han H, Murthy N. A novel fluorescent surfactant enhances the delivery of the Cas9 ribonucleoprotein and enables the identification of edited cells. Chem Commun (Camb) 2019; 55:4562-4565. [PMID: 30931453 DOI: 10.1039/c9cc00261h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this report, we designed and synthesized a novel fluorescent single tailed surfactant (termed FEDS), which can disrupt endosomes, complex lipofectamine, and can also identify cells that have been transfected. FEDS was able to increase the gene editing efficiency of lipofectamine/Cas9 ribonucleoprotein by 300% via a combination of fluorescent based enrichment and endosomal disruption.
Collapse
Affiliation(s)
- Jie Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Fan Y, Wang Y. Self-Assembly and Functions of Star-Shaped Oligomeric Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11220-11241. [PMID: 29616549 DOI: 10.1021/acs.langmuir.8b00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oligomeric surfactants consist of three or more amphiphilic moieties which are connected by spacer groups covalently at the level of headgroups. It provides a possible route to bridge the gap from conventional single-chain surfactants to polymeric surfactants and leads to many profound improvements in the properties of surfactants in aqueous solution and at the air/water and water/solid interfaces. Generally, oligomeric surfactants are categorized into linear, ring-like, and star-shaped on the basis of the topological structures of their spacer groups, and their aggregation behavior strongly depends on the resultant topological structures. In recent years, we studied trimeric, tetrameric, and hexameric surfactants with a star-shaped spacer which spreads from a central site of elemental nitrogen or carbon, and their charged headgroups connect with each other through the spacers. It has been found that both the nature of spacer groups and the degree of oligomerization show important influences on the self-assembly of oligomeric surfactants and provide great possibilities in fabricating various surfactant aggregate morphologies by adjusting the molecule conformations. The unique self-assembly behavior endows them with superior physicochemical properties and potential applications. This feature article summarizes the development of star-shaped oligomeric surfactants, including self-assembly at the air/water and water/solid interfaces, self-assembly in aqueous solution, and their functions. We expect that this review could provide a comprehensive understanding of the structure-property relationship and various potential applications of star-shaped oligomeric surfactants and offer additional motivation for their future research.
Collapse
Affiliation(s)
- Yaxun Fan
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
26
|
Maity P, Saha B, Suresh Kumar G, Karmakar S. Effect of Zwitterionic Phospholipid on the Interaction of Cationic Membranes with Monovalent Sodium Salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9810-9817. [PMID: 30056708 DOI: 10.1021/acs.langmuir.8b01792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cationic lipids have attracted much attention because of their potential for biomedical applications, such as gene delivery. The gene transfection efficiency of cationic lipids is greatly influenced by the counterions as well as salt ions. We have systematically investigated the interaction of different monovalent sodium salts with positively charged membrane, composed of 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP, using dynamic light scattering, zeta potential, isothermal titration calorimetry (ITC), and fluorescence spectroscopy techniques. Our results reveal that the affinity of anions with cationic membranes follows the sequence I- ≫ Br- > Cl- according to descending order of their sizes and is consistent with the Hofmeister series. Interestingly, the electrostatic behavior of the DOTAP membrane in the presence of monovalent anions differs significantly from the DOPC/DOTAP membrane. This difference is due to the strong interplay between phosphocholine and trimethylammonium-propane (TAP) headgroups leading to the reorientation of the TAP group in the membrane. The binding constant of anions, derived from zeta potential and ITC is in agreement with the affinity of anions mentioned above. Among all anions, I- shows strongest affinity, as evidenced from the rapid increase in hydrodynamic radius which eventually leads to the formation of large aggregates. The fluorescence spectroscopy of a lypophilic probe Nile red in the presence of cationic vesicles containing ions complements the I- adsorption onto the membrane. Nonlinear Stern-Volmer plot, consisting of accessible and inaccessible Nile red to I- is consistent with the zeta potential as well as ITC results.
Collapse
Affiliation(s)
- Pabitra Maity
- Soft Matter and Biophysics Laboratory, Department of Physics , Jadavpur University , 188, Raja S. C. Mallick Road , Kolkata 700032 , India
| | - Baishakhi Saha
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mallick Road , Kolkata 700 032 , India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mallick Road , Kolkata 700 032 , India
| | - Sanat Karmakar
- Soft Matter and Biophysics Laboratory, Department of Physics , Jadavpur University , 188, Raja S. C. Mallick Road , Kolkata 700032 , India
| |
Collapse
|
27
|
Casadei BR, Domingues CC, Clop EM, Couto VM, Perillo MA, de Paula E. Molecular features of nonionic detergents involved in the binding kinetics and solubilization efficiency, as studied in model (Langmuir films) and biological (Erythrocytes) membranes. Colloids Surf B Biointerfaces 2018; 166:152-160. [PMID: 29571158 DOI: 10.1016/j.colsurfb.2018.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
The effect of the nonionic detergents Brij-98 and Brij-58 over human erythrocytes was studied through quantitative hemolysis and in Langmuir films. Hemolytic tests revealed that Brijs are stronger membrane solubilizers than Triton X-100 (TX-100), with effective detergent/lipid ratios of 0.18 and 0.37 for Brij-98 and Brij-58, respectively. Experiments with Langmuir films provided significant information on the kinetics and thermodynamics of detergent-membrane interaction. The adsorption (ka) and desorption (kd) rate constants of Brijs were lower than those of TX-100. In the case of ka, that is probably due to their larger hydrophilic head (with twice (20) the oxyethylene units of TX-100). As for the thermodynamic binding constant, the linear and longer hydrophobic acyl chains of Brijs favor their stabilization in-between the lipids, through London van der Waals forces. Consequently, Kb,m values of Brij-98 (12,500 M-1) and Brij-58 (19,300 M-1) resulted higher than TX-100 (7500 M-1), in agreement with results from the hemolytic tests. Furthermore, Brij-58 binds with higher affinity than Brij-98 to bilayers and monolayers, despite its shorter (palmitic) hydrocarbon chain, showing that unsaturation restrains the detergent insertion into these environments. Our results provide significant information about the mechanism of interaction between Brijs and membranes, supporting their distinct solubilization effect.
Collapse
Affiliation(s)
- Bruna Renata Casadei
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cleyton Crepaldi Domingues
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Department of Medicine, The George Washington University, Washington-DC, USA
| | - Eduardo M Clop
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Depto. de Química, Cátedra de Química Biológica. Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT). Córdoba, Argentina
| | - Verônica Muniz Couto
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Angelica Perillo
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Depto. de Química, Cátedra de Química Biológica. Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT). Córdoba, Argentina.
| | - Eneida de Paula
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
28
|
Plemel JR, Michaels NJ, Weishaupt N, Caprariello AV, Keough MB, Rogers JA, Yukseloglu A, Lim J, Patel VV, Rawji KS, Jensen SK, Teo W, Heyne B, Whitehead SN, Stys PK, Yong VW. Mechanisms of lysophosphatidylcholine-induced demyelination: A primary lipid disrupting myelinopathy. Glia 2017; 66:327-347. [PMID: 29068088 DOI: 10.1002/glia.23245] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/28/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.
Collapse
Affiliation(s)
- Jason R Plemel
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Nathan J Michaels
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Nina Weishaupt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Michael B Keough
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - James A Rogers
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Aran Yukseloglu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Jaehyun Lim
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Vikas V Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Khalil S Rawji
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Samuel K Jensen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Wulin Teo
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Belinda Heyne
- Department of Chemistry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| |
Collapse
|
29
|
Riske KA, Domingues CC, Casadei BR, Mattei B, Caritá AC, Lira RB, Preté PSC, de Paula E. Biophysical approaches in the study of biomembrane solubilization: quantitative assessment and the role of lateral inhomogeneity. Biophys Rev 2017; 9:649-667. [PMID: 28836235 PMCID: PMC5662047 DOI: 10.1007/s12551-017-0310-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022] Open
Abstract
Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Resat-the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.
Collapse
Affiliation(s)
- Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Cleyton C Domingues
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box - 6109, Campinas, SP, CEP 13083-862, Brazil
- Department of Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 200037, USA
| | - Bruna R Casadei
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box - 6109, Campinas, SP, CEP 13083-862, Brazil
| | - Bruno Mattei
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Amanda C Caritá
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Rafael B Lira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Paulo S C Preté
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box - 6109, Campinas, SP, CEP 13083-862, Brazil
- Departamento de Química, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Eneida de Paula
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box - 6109, Campinas, SP, CEP 13083-862, Brazil.
| |
Collapse
|
30
|
Grozdova ID, Badun GA, Chernysheva MG, Orlov VN, Romanyuk AV, Melik-Nubarov NS. Increase in the length of poly(ethylene oxide) blocks in amphiphilic copolymers facilitates their cellular uptake. J Appl Polym Sci 2017. [DOI: 10.1002/app.45492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Irene D. Grozdova
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| | - Gennadiy A. Badun
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| | - Maria G. Chernysheva
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| | - Victor N. Orlov
- A. N. Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 40, Moscow 119991 Russia
| | - Andrey V. Romanyuk
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| | - Nikolay S. Melik-Nubarov
- School of Chemistry; Lomonosov Moscow State University; GSP-1, Leninskie Gory 1, Building 3 Moscow 119991 Russia
| |
Collapse
|
31
|
Biolytic Effect of Rhamnolipid Biosurfactant and Dodecyl Sulfate Against Phagotrophic Alga Ochromonas danica. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-2005-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Chen Y, Qiao F, Fan Y, Han Y, Wang Y. Interactions of Phospholipid Vesicles with Cationic and Anionic Oligomeric Surfactants. J Phys Chem B 2017; 121:7122-7132. [PMID: 28686026 DOI: 10.1021/acs.jpcb.7b05297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work studied the interactions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with cationic ammonium surfactants and anionic sulfate or sulfonate surfactants of different oligomeric degrees, including cationic monomeric DTAB, dimeric C12C3C12Br2, and trimeric DDAD as well as anionic monomeric SDS, dimeric C12C3C12(SO3)2, and trimeric TED-(C10SO3Na)3. The partition coefficient P of these surfactants between the DOPC vesicles and water was determined with isothermal titration microcalorimetry (ITC) by titrating concentrated DOPC solution into the monomer solution of these surfactants. It was found that the P value increases with the increase of the surfactant oligomeric degree. Moreover, the enthalpy change and the Gibbs free energy for the transition of these surfactants from water into the DOPC bilayer become more negative with increasing the oligomeric degree. Meanwhile, the calcein release experiment proves that the surfactant with a higher oligomeric degree shows stronger ability of changing the permeability of the DOPC vesicles. Furthermore, the solubilization of the DOPC vesicles by these oligomeric surfactants was studied by ITC, turbidity, and dynamic light scattering, and thus the phase boundaries for the surfactant/lipid mixtures have been determined. The critical surfactant to lipid ratios for the onset and end of the solubilization for the DOPC vesicles derived from the phase boundaries decrease remarkably with increasing the oligomeric degree. Overall, the surfactant with a larger oligomerization degree shows stronger ability in incorporating into the lipid bilayer, altering the membrane permeability and solubilizing lipid vesicles, which provides comprehensive understanding about the effects of structure and shape of oligomeric surfactant molecules on lipid-surfactant interactions.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Fulin Qiao
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yaxun Fan
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
33
|
Pizzirusso A, De Nicola A, Sevink GJA, Correa A, Cascella M, Kawakatsu T, Rocco M, Zhao Y, Celino M, Milano G. Biomembrane solubilization mechanism by Triton X-100: a computational study of the three stage model. Phys Chem Chem Phys 2017; 19:29780-29794. [DOI: 10.1039/c7cp03871b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The solubilization mechanism of lipid membranes in the presence of Triton X-100 (TX-100) is investigated at molecular resolution using hybrid particle field–self consistence field simulations.
Collapse
Affiliation(s)
| | - Antonio De Nicola
- Dipartimento di Chimica e Biologia
- Università di Salerno
- Fisciano
- Italy
| | - G. J. Agur Sevink
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Andrea Correa
- Department of Chemical Science
- Federico II University of Naples
- 80126 Napoli
- Italy
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences
- University of Oslo
- 0371 Oslo
- Norway
| | | | - Mattia Rocco
- Biopolimeri e Proteomica
- Ospedale Policlinico San Martino
- Genova
- Italy
| | - Ying Zhao
- Institute of Nano-Photonics
- School of Physics and Materials Engineering
- Dalian Minzu University
- Dalian 116600
- China
| | | | - Giuseppe Milano
- Dipartimento di Chimica e Biologia
- Università di Salerno
- Fisciano
- Italy
| |
Collapse
|
34
|
Imaizumi Y, Goda T, Matsumoto A, Miyahara Y. Identification of types of membrane injuries and cell death using whole cell-based proton-sensitive field-effect transistor systems. Analyst 2017; 142:3451-3458. [DOI: 10.1039/c7an00502d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane injury and apoptosis of mammalian cells by chemical stimuli were distinguished using ammonia-perfused continuous pH-sensing systems.
Collapse
Affiliation(s)
- Yuki Imaizumi
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| |
Collapse
|
35
|
Fait ME, Hermet M, Comelles F, Clapés P, Alvarez HA, Prieto E, Herlax V, Morcelle SR, Bakás L. Microvesicle release and micellar attack as the alternative mechanisms involved in the red-blood-cell-membrane solubilization induced by arginine-based surfactants. RSC Adv 2017. [DOI: 10.1039/c7ra03640j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two novel arginine-based surfactants, Bz-Arg-NHC10 and Bz-Arg-NHC12, were characterized with respect to surface properties and their interaction with human red-blood-cell (HRBC) membranes.
Collapse
Affiliation(s)
- M. Elisa Fait
- Centro de Investigación de Proteínas Vegetales (CIPROVE)
- Departamento
- de Ciencias Biológicas
- Facultad de Ciencias Exactas
- Centro Asociado CIC PBA
| | - Melisa Hermet
- Centro de Investigación de Proteínas Vegetales (CIPROVE)
- Departamento
- de Ciencias Biológicas
- Facultad de Ciencias Exactas
- Centro Asociado CIC PBA
| | - Francesc Comelles
- Department of Chemical and Surfactant Technology
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Barcelona
- Spain
| | - Pere Clapés
- Department of Chemical Biology and Molecular Modeling
- Catalonia Institute of Advanced Chemistry (IQAC-CSIC)
- Barcelona
- Spain
| | - H. Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB)
- CCT-La Plata
- CONICET
- UNLP and Departamento de Ciencias Biológicas
- Facultad de Ciencias Exactas
| | - Eduardo Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- CCT-La Plata
- CONICET
- UNLP
- La Plata
| | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP)
- CCT-La Plata
- CONICET
- UNLP
- La Plata
| | - Susana R. Morcelle
- Centro de Investigación de Proteínas Vegetales (CIPROVE)
- Departamento
- de Ciencias Biológicas
- Facultad de Ciencias Exactas
- Centro Asociado CIC PBA
| | - Laura Bakás
- Centro de Investigación de Proteínas Vegetales (CIPROVE)
- Departamento
- de Ciencias Biológicas
- Facultad de Ciencias Exactas
- Centro Asociado CIC PBA
| |
Collapse
|
36
|
Mattei B, Lira RB, Perez KR, Riske KA. Membrane permeabilization induced by Triton X-100: The role of membrane phase state and edge tension. Chem Phys Lipids 2017; 202:28-37. [DOI: 10.1016/j.chemphyslip.2016.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
37
|
Hayashi Y, Nemoto-Sasaki Y, Matsumoto N, Tanikawa T, Oka S, Tanaka Y, Arai S, Wada I, Sugiura T, Yamashita A. Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. J Biol Chem 2016; 292:1122-1141. [PMID: 27927984 DOI: 10.1074/jbc.m116.746602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/16/2016] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelin synthase (SMS) is the key enzyme for cross-talk between bioactive sphingolipids and glycerolipids. In mammals, SMS consists of two isoforms: SMS1 is localized in the Golgi apparatus, whereas SMS2 is localized in both the Golgi and plasma membranes. SMS2 seems to exert cellular functions through protein-protein interactions; however, the existence and functions of quaternary structures of SMS1 and SMS2 remain unclear. Here we demonstrate that both SMS1 and SMS2 form homodimers. The SMSs have six membrane-spanning domains, and the N and C termini of both proteins face the cytosolic side of the Golgi apparatus. Chemical cross-linking and bimolecular fluorescence complementation revealed that the N- and/or C-terminal tails of the SMSs were in close proximity to those of the other SMS in the homodimer. Homodimer formation was significantly decreased by C-terminal truncations, SMS1-ΔC22 and SMS2-ΔC30, indicating that the C-terminal tails of the SMSs are primarily responsible for homodimer formation. Moreover, immunoprecipitation using deletion mutants revealed that the C-terminal tail of SMS2 mainly interacted with the C-terminal tail of its homodimer partner, whereas the C-terminal tail of SMS1 mainly interacted with a site other than the C-terminal tail of its homodimer partner. Interestingly, homodimer formation occurred in the endoplasmic reticulum (ER) membrane before trafficking to the Golgi apparatus. Reduced homodimerization caused by C-terminal truncations of SMSs significantly reduced ER-to-Golgi transport. Our findings suggest that the C-terminal tails of SMSs are involved in homodimer formation, which is required for efficient transport from the ER.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yoko Nemoto-Sasaki
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Naoki Matsumoto
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Takashi Tanikawa
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Saori Oka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yusuke Tanaka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Seisuke Arai
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Takayuki Sugiura
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Atsushi Yamashita
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| |
Collapse
|
38
|
Conley L, Tao Y, Henry A, Koepf E, Cecchini D, Pieracci J, Ghose S. Evaluation of eco-friendly zwitterionic detergents for enveloped virus inactivation. Biotechnol Bioeng 2016; 114:813-820. [PMID: 27800626 DOI: 10.1002/bit.26209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/27/2016] [Accepted: 10/28/2016] [Indexed: 01/29/2023]
Abstract
Inclusion of a detergent in protein biotherapeutic purification processes is a simple and very robust method for inactivating enveloped viruses. The detergent Triton X-100 has been used for many years and is part of the production process of several commercial therapeutic proteins. However, recent ecological studies have suggested that Triton X-100 and its break-down products can potentially behave as endocrine disrupters in aquatic organisms, raising concerns from an environmental impact perspective. As such, discharge of Triton X-100 into the waste water treatment plants is regulated in some jurisdictions, and alternative detergents for viral inactivation are required. In this work, we report on the identification and evaluation of more eco-friendly detergents as viable replacements for Triton X-100. Five detergent candidates with low to moderate environmental impact were initially identified and evaluated with respect to protein stability, followed by proof-of-concept virus inactivation studies using a model enveloped virus. From the set of candidates lauryldimethylamine N-oxide (LDAO) was identified as the most promising detergent due to its low ecotoxicity, robust anti-viral activity (LRV >4 at validation set-point conditions with X-MuLX), and absence of any negative impact on protein function. This detergent exhibited effective and robust virus inactivation in a broad range of protein concentrations, solution conductivities, pHs, and in several different cell culture fluid matrices. The only process parameter which correlated with reduced virus inactivation potency was LDAO concentration, and then only when the concentration was reduced to below the detergent's critical micelle concentration (CMC). Additionally, this work also demonstrated that LDAO was cleared to below detectable levels after Protein A affinity chromatography, making it suitable for use in a platform process that utilizes this chromatographic mode for protein capture. All these findings suggest that LDAO may be a practical alternative to Triton X-100 for use in protein therapeutic production processes for inactivating enveloped viruses. Biotechnol. Bioeng. 2017;114: 813-820. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lynn Conley
- Process Biochemistry, Biogen, 5000 Davis Drive, Research Triangle Park 27709, North Carolina
| | - Yinying Tao
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, Indiana
| | - Alexis Henry
- Process Biochemistry, Biogen, 5000 Davis Drive, Research Triangle Park 27709, North Carolina
| | - Edward Koepf
- Process Biochemistry, Biogen, 5000 Davis Drive, Research Triangle Park 27709, North Carolina
| | | | - John Pieracci
- Process Biochemistry, Biogen, Cambridge, Massachusetts
| | - Sanchayita Ghose
- Process Biochemistry, Biogen, 5000 Davis Drive, Research Triangle Park 27709, North Carolina
| |
Collapse
|
39
|
Fan HY, Das D, Heerklotz H. "Staying Out" Rather than "Cracking In": Asymmetric Membrane Insertion of 12:0 Lysophosphocholine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11655-11663. [PMID: 27715063 DOI: 10.1021/acs.langmuir.6b03292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interactions between detergents and model membranes are well described by the three-stage model: saturation and solubilization boundaries divide bilayer-only, bilayer-micelle coexistence, and micelle-only ranges. An underlying assumption of the model is the equilibration of detergent between the two membrane leaflets. However, many detergents partition asymmetrically at room temperature due to slow flip-flop, such as sodium dodecyl sulfate (SDS) and lysolipids. In this work, we use isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) to investigate the solubilization of unilamellar POPC vesicles by 12:0 lysophosphocholine (12:0 LPC). Flip-flop of 12:0 LPC occurs beyond the time scale of our experiments, which establish a characteristic nonequilibrated state with asymmetric distribution: 12:0 LPC partitions primarily into the outer leaflet. Increasing asymmetry stress in the membrane does not lead to membrane failure, i.e., "cracking in" as seen for alkyl maltosides and other surfactants; instead, it reduces further membrane insertion which leads to the "staying out" of 12:0 LPC in solution. At above the critical micellar concentration of 12:0 LPC in the presence of the membrane, micelles persist and accommodate further LPC but take up lipid from vesicles only very slowly. Ultimately, solubilization proceeds via the micellar mechanism (Kragh-Hansen et al., 1995). With a combination of demicellization and solubilization experiments, we quantify the molar ratio partition coefficient (0.6 ± 0.1 mM-1) and enthalpy of partitioning (6.1 ± 0.3 kJ·mol-1) and estimate the maximum detergent/lipid ratio reached in the outer leaflet (<0.13). Despite the inapplicability of the three-stage model to 12:0 LPC at room temperature, we are able to extract quantitative information from ITC solubilization experiments and DLS that are important for the understanding of asymmetry-dependent processes such as endocytosis and the gating of mechanosensitive channels in vitro.
Collapse
Affiliation(s)
- Helen Y Fan
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
| | - Dew Das
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
| | - Heiko Heerklotz
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
- Institute for Pharmaceutical Sciences, University of Freiburg , Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies , Freiburg, Germany
| |
Collapse
|
40
|
Haftka JJH, Scherpenisse P, Oetter G, Hodges G, Eadsforth CV, Kotthoff M, Hermens JLM. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2173-2181. [PMID: 26873883 DOI: 10.1002/etc.3397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC.
Collapse
Affiliation(s)
- Joris J-H Haftka
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter Scherpenisse
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Günter Oetter
- Material Physics and Analytics, BASF SE, Ludwigshafen, Germany
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, United Kingdom
| | | | - Matthias Kotthoff
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Joop L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Poongavanam V, Kongsted J, Wüstner D. Computational Analysis of Sterol Ligand Specificity of the Niemann Pick C2 Protein. Biochemistry 2016; 55:5165-79. [DOI: 10.1021/acs.biochem.6b00217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vasanthanathan Poongavanam
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
42
|
La Rosa C, Scalisi S, Lolicato F, Pannuzzo M, Raudino A. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations. J Chem Phys 2016; 144:184901. [DOI: 10.1063/1.4948323] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Carmelo La Rosa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Silvia Scalisi
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Fabio Lolicato
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Martina Pannuzzo
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Antonio Raudino
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
43
|
Niroomand H, Venkatesan GA, Sarles SA, Mukherjee D, Khomami B. Lipid-Detergent Phase Transitions During Detergent-Mediated Liposome Solubilization. J Membr Biol 2016; 249:523-38. [DOI: 10.1007/s00232-016-9894-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/24/2016] [Indexed: 11/24/2022]
|
44
|
Barbosa RM, Severino P, Preté PSC, Santana MHA. Influence of different surfactants on the physicochemical properties of elastic liposomes. Pharm Dev Technol 2016; 22:360-369. [DOI: 10.3109/10837450.2016.1163387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- R. M. Barbosa
- Biotechnological Process Department, College of Chemical Engineering, State University of Campinas, Campinas, Brazil
| | - P. Severino
- Laboratory of Nanotecnology and Nanomedicine (LNMed, Tiradentes University (Unit) and, Institute of Technology and Research (ITP), Aracaju, Brazil
| | - P. S. C. Preté
- Laboratory of Biochemistry, Chemistry Department, University of Lavras, Lavras, Brazil
| | - M. H. A. Santana
- Biotechnological Process Department, College of Chemical Engineering, State University of Campinas, Campinas, Brazil
| |
Collapse
|
45
|
Maity P, Saha B, Kumar GS, Karmakar S. Binding of monovalent alkali metal ions with negatively charged phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:706-14. [DOI: 10.1016/j.bbamem.2016.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
|
46
|
Manaargadoo-Catin M, Ali-Cherif A, Pougnas JL, Perrin C. Hemolysis by surfactants--A review. Adv Colloid Interface Sci 2016; 228:1-16. [PMID: 26687805 DOI: 10.1016/j.cis.2015.10.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023]
Abstract
An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.
Collapse
Affiliation(s)
- Magalie Manaargadoo-Catin
- Horiba Medical, Parc Euromédecine, Rue du caducée BP 7290, 31484 Montpellier Cedex 4, France; Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, 15 avenue Charles Flahault, 34093 Montpellier Cedex, France
| | - Anaïs Ali-Cherif
- Horiba Medical, Parc Euromédecine, Rue du caducée BP 7290, 31484 Montpellier Cedex 4, France
| | - Jean-Luc Pougnas
- Horiba Medical, Parc Euromédecine, Rue du caducée BP 7290, 31484 Montpellier Cedex 4, France
| | - Catherine Perrin
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, 15 avenue Charles Flahault, 34093 Montpellier Cedex, France.
| |
Collapse
|
47
|
Maity P, Saha B, Kumar GS, Karmakar S. Effect of counterions on the binding affinity of Na+ ions with phospholipid membranes. RSC Adv 2016. [DOI: 10.1039/c6ra17056k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have systematically investigated the effect of counterions on the interaction of the Na+ ion with phospholipid membranes using dynamic light scattering, zeta potential, isothermal titration calorimetry and fluorescence spectroscopy techniques.
Collapse
Affiliation(s)
- Pabitra Maity
- Department of Physics
- Jadavpur University
- Kolkata 700032
- India
| | - Baishakhi Saha
- Biophysical Chemistry Laboratory
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Sanat Karmakar
- Department of Physics
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|
48
|
Vargas C, Arenas RC, Frotscher E, Keller S. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. NANOSCALE 2015; 7:20685-96. [PMID: 26599076 DOI: 10.1039/c5nr06353a] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.
Collapse
Affiliation(s)
- Carolyn Vargas
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
49
|
Inácio ÂS, Domingues NS, Nunes A, Martins PT, Moreno MJ, Estronca LM, Fernandes R, Moreno AJM, Borrego MJ, Gomes JP, Vaz WLC, Vieira OV. Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: mechanisms of action and clinical implications in antibacterial prophylaxis. J Antimicrob Chemother 2015; 71:641-54. [PMID: 26679255 DOI: 10.1093/jac/dkv405] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/02/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Broad-spectrum antimicrobial activity of quaternary ammonium surfactants (QAS) makes them attractive and cheap topical prophylactic options for sexually transmitted infections and perinatal vertically transmitted urogenital infections. Although attributed to their high affinity for biological membranes, the mechanisms behind QAS microbicidal activity are not fully understood. We evaluated how QAS structure affects antimicrobial activity and whether this can be exploited for use in prophylaxis of bacterial infections. METHODS Acute toxicity of QAS to in vitro models of human epithelial cells and bacteria were compared to identify selective and potent bactericidal agents. Bacterial cell viability, membrane integrity, cell cycle and metabolism were evaluated to establish the mechanisms involved in selective toxicity of QAS. RESULTS QAS toxicity normalized relative to surfactant critical micelle concentration showed n-dodecylpyridinium bromide (C12PB) to be the most effective, with a therapeutic index of ∼10 for an MDR strain of Escherichia coli and >20 for Neisseria gonorrhoeae after 1 h of exposure. Three modes of QAS antibacterial action were identified: impairment of bacterial energetics and cell division at low concentrations; membrane permeabilization and electron transport inhibition at intermediate doses; and disruption of bacterial membranes and cell lysis at concentrations close to the critical micelle concentration. In contrast, toxicity to mammalian cells occurs at higher concentrations and, as we previously reported, results primarily from mitochondrial dysfunction and apoptotic cell death. CONCLUSIONS Our data show that short chain (C12) n-alkyl pyridinium bromides have a sufficiently large therapeutic window to be good microbicide candidates.
Collapse
Affiliation(s)
- Ângela S Inácio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Neuza S Domingues
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Patrícia T Martins
- Centro de Química de Coimbra and Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Maria J Moreno
- Centro de Química de Coimbra and Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Luís M Estronca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui Fernandes
- IBMC/HEMS - Instituto de Biologia Molecular e Celular/Histology and Electron Microscopy Service, Universidade do Porto, Porto, Portugal
| | | | - Maria J Borrego
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P Gomes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Otília V Vieira
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
50
|
De Nicola A, Kawakatsu T, Rosano C, Celino M, Rocco M, Milano G. Self-Assembly of Triton X-100 in Water Solutions: A Multiscale Simulation Study Linking Mesoscale to Atomistic Models. J Chem Theory Comput 2015; 11:4959-71. [DOI: 10.1021/acs.jctc.5b00485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio De Nicola
- Dipartimento
di Chimica e Biologia, Università di Salerno, I-84084 via
Ponte don Melillo, Salerno, Italy
| | - Toshihiro Kawakatsu
- Department
of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Camillo Rosano
- Biopolimeri
e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10 I-16132 Genova, Italy
| | - Massimo Celino
- ENEA, C.R. Casaccia, Via Anguillarese 301, I-00123 Roma, Italy
| | - Mattia Rocco
- Biopolimeri
e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10 I-16132 Genova, Italy
| | - Giuseppe Milano
- Dipartimento
di Chimica e Biologia, Università di Salerno, I-84084 via
Ponte don Melillo, Salerno, Italy
- IMAST S.c.a.r.l.
Technological District in Polymer and Composite Engineering, P. leBovio 22, I-80133, Napoli, Italy
| |
Collapse
|