1
|
Taktikakis P, Côté M, Subramaniam N, Kroeger K, Youssef H, Badia A, DeWolf C. Understanding the Retention of Vaping Additives in the Lungs: Model Lung Surfactant Membrane Perturbation by Vitamin E and Vitamin E Acetate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5651-5662. [PMID: 38437623 DOI: 10.1021/acs.langmuir.3c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Deviations from the normal physicochemical and functional properties of pulmonary surfactants are associated with the incidence of lung injury and other respiratory disorders. This study aims to evaluate the alteration of the 2D molecular organization and morphology of pulmonary surfactant model membranes by the electronic cigarette additives α-tocopherol (vitamin E) and α-tocopherol acetate (vitamin E acetate), which have been associated with lung injury, termed e-cigarette or vaping-use-associated lung injury (EVALI). The model membranes used contained a 7:3 molar ratio of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to which α-tocopherol and α-tocopherol acetate were added to form mixtures of up to 20 mol % additive. The properties of the neat tocopherol additives and DPPC/POPG (7:3) mixtures with increasing molar proportions of additive were evaluated by surface pressure-area isotherms, excess area calculations, Brewster angle microscopy, grazing incidence X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The addition of either additive alters the essential phase balance of the model pulmonary surfactant membrane by generating a greater proportion of the fluid phase. Despite this net fluidization, both tocopherol additives have space-filling effects on the liquid-expanded and condensed phases, yielding negative excess areas in the liquid-expanded phase and reduced tilt angles in the condensed phase. Both tocopherol additives alter the stability of the fluid phase, pushing the eventual collapse of this phase to higher surface pressures than the model membrane in the absence of an additive.
Collapse
Affiliation(s)
- Panagiota Taktikakis
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Mathieu Côté
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Nivetha Subramaniam
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Kailen Kroeger
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Hala Youssef
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Antonella Badia
- Département de chimie and Institut Courtois, Université de Montréal, Complexe des sciences, C.P. 6128, succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| |
Collapse
|
2
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
3
|
Hemming JM, Szyroka J, Shokano G, Arnold T, Skoda MWA, Rennie AR, Thompson KC. Changes to lung surfactant monolayers upon exposure to gas phase ozone observed using X-ray and neutron reflectivity. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:753-760. [PMID: 35923664 PMCID: PMC9281625 DOI: 10.1039/d2ea00032f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Lung surfactant at the air water interface reacts with ozone leading to changes in surface tension, film thickness, structure.
Collapse
Affiliation(s)
- Joanna M. Hemming
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Justyna Szyroka
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Gracia Shokano
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Thomas Arnold
- European Spallation Source, The ESS Campus, Lund, Sweden, SE-221 00
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
- Department of Chemistry, University of Bath, Claverton Down, Bath, Avon BA2 7AY, UK
| | - Maximilian W. A. Skoda
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Adrian R. Rennie
- Department of Chemistry – Ångström and Centre for Neutron Scattering, Uppsala University, Box 538, 75121 Uppsala, Sweden
| | - Katherine C. Thompson
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
4
|
Ravera F, Miller R, Zuo YY, Noskov BA, Bykov AG, Kovalchuk VI, Loglio G, Javadi A, Liggieri L. Methods and models to investigate the physicochemical functionality of pulmonary surfactant. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Mitra S, Sharma VK, Mitra JB, Chowdhury S, Mukhopadhyay MK, Mukhopadhyay R, Ghosh SK. Thermodynamics and structure of model bio-membrane of liver lipids in presence of imidazolium-based ionic liquids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183589. [PMID: 33652006 DOI: 10.1016/j.bbamem.2021.183589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Ionic liquids (ILs) are the attractions of researchers today due to their vast area of potential applications. For biomedical uses, it becomes essential to understand their interactions with cellular membrane. Here, the membrane is mimicked with lipid bilayer and monolayer composed of liver lipids extract. Three archetypal imidazolium based ILs, 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4] or [C10MIM][BF4]), 1-octyl-3-methylimidazolium tetrafluoroborate, ([OMIM][BF4] or [C8MIM][BF4]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4] or [C2MIM][BF4]) having different alkyl chain lengths are used in the present study. The isothermal titration calorimetry (ITC) measurements showed that [DMIM][BF4] interacts strongest with the liver lipid membrane compared to other two ILs which have relatively shorter alkyl chain length. The low values of stoichiometry ratio of ILs indicates that ILs penetrate within the core of the lipid bilayer. The interaction of ILs with the liver lipid membrane is found to be mainly driven by entropy which could be due to the change in the structure of the lipid membrane at local or global scales. Dynamic light scattering (DLS) measurements indicate that there are no changes in the size of vesicles due to addition of [DMIM][BF4] indicating stability of the vesicles. On the other hand, x-ray reflectivity (XRR) measurements showed a concentration dependent change in the monolayer structure. At low concentration of the IL, the monolayer thickness decreases, exhibiting an increase in the electron density of the layer. However, at higher concentrations, the monolayer thickness increases proving a concentration dependent effects of the IL on the arrangement of the molecules.
Collapse
Affiliation(s)
- Saheli Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 92, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | | | - Jyotsna Bhatt Mitra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Subhadip Chowdhury
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Mrinmay Kumar Mukhopadhyay
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | - Sajal Kumar Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH 92, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
6
|
Enami S, Colussi AJ. OH-Radical Oxidation of Lung Surfactant Protein B on Aqueous Surfaces. Mass Spectrom (Tokyo) 2018; 7:S0077. [PMID: 30533342 PMCID: PMC6245955 DOI: 10.5702/massspectrometry.s0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022] Open
Abstract
Air pollutants generate reactive oxygen species on lung surfaces. Here we report how hydroxyl radicals (·OH) injected on the surface of water react with SP-B1-25, a 25-residue polypeptide surrogate of human lung surfactant protein B. Our experiments consist of intersecting microjets of aqueous SP-B1-25 solutions with O3/O2/H2O/N2(g) gas streams that are photolyzed into ·OH(g) in situ by 266 nm laser nanosecond pulses. Surface-sensitive mass spectrometry enables us to monitor the prompt (<10 μs) and simultaneous formation of primary O n -containing products/intermediates (n≤5) triggered by the reaction of ·OH with interfacial SP-B1-25. We found that O-atoms from both O3 and ·OH are incorporated into the reactive cysteine Cys8 and Cys11 and tryptophan Trp9 components of the hydrophobic N-terminus of SP-B1-25 that lies at the topmost layers of the air-liquid interface. Remarkably, these processes are initiated by ·OH additions rather than by H-atom abstractions from S-H, C-H, or N-H groups. By increasing the hydrophilicity of the N-terminus region of SP-B1-25, these transformations will impair its role as a surfactant.
Collapse
Affiliation(s)
| | - Agustín J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology
| |
Collapse
|
7
|
Qiu Y, Odendahl N, Hudait A, Mason R, Bertram AK, Paesani F, DeMott PJ, Molinero V. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice. J Am Chem Soc 2017; 139:3052-3064. [PMID: 28135412 DOI: 10.1021/jacs.6b12210] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.
Collapse
Affiliation(s)
- Yuqing Qiu
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Nathan Odendahl
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Arpa Hudait
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Ryan Mason
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Paul J DeMott
- Department of Atmospheric Science, Colorado State University , Fort Collins, Colorado 80523-1371, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
8
|
Adams EM, Wellen BA, Thiraux R, Reddy SK, Vidalis AS, Paesani F, Allen HC. Sodium–carboxylate contact ion pair formation induces stabilization of palmitic acid monolayers at high pH. Phys Chem Chem Phys 2017; 19:10481-10490. [DOI: 10.1039/c7cp00167c] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Theory and experiments show that ion-pair formation drives adsorption of deprotonated fatty acids to the interface.
Collapse
Affiliation(s)
- Ellen M. Adams
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Bethany A. Wellen
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Raphael Thiraux
- Department of Chemistry and Biochemistry
- University of California, San Diego
- La Jolla
- USA
| | - Sandeep K. Reddy
- Department of Chemistry and Biochemistry
- University of California, San Diego
- La Jolla
- USA
| | - Andrew S. Vidalis
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry
- University of California, San Diego
- La Jolla
- USA
| | - Heather C. Allen
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
9
|
Li M, Li D. Redistribution of mobile surface charges of an oil droplet in water in applied electric field. Adv Colloid Interface Sci 2016; 236:142-51. [PMID: 27545649 DOI: 10.1016/j.cis.2016.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/06/2016] [Accepted: 08/06/2016] [Indexed: 11/17/2022]
Abstract
Most researches on oil droplets immersed in aqueous solutions assume that the surface charges of oil droplets are, similar to that of solid particles, immobile and distributed uniformly under external electric field. However, the surface charges at the liquid-liquid interface are mobile and will redistribute under external electric field. This paper studies the redistribution of surface charges on an oil droplet under the influence of the external electrical field. Analytical expressions of the local zeta potential on the surface of an oil droplet after the charge redistribution in a uniform electrical field were derived. The effects of the initial zeta potential, droplet radius and strength of applied electric field on the surface charge redistribution were studied. In analogy to the mobile surface charges, the redistribution of Al2O3-passivated aluminum nanoparticles on the oil droplet surface was observed under applied electrical field. Experimental results showed that these nanoparticles moved and accumulated towards one side of the oil droplet under electric field. The redistribution of the nanoparticles is in qualitative agreement with the redistribution model of the mobile surface charges developed in this work.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
10
|
Hemming J, Hughes BR, Rennie AR, Tomas S, Campbell RA, Hughes AV, Arnold T, Botchway SW, Thompson KC. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B). Biochemistry 2015; 54:5185-97. [PMID: 26270023 PMCID: PMC4571829 DOI: 10.1021/acs.biochem.5b00308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air-water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1-25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1-25,63-78)], called SMB. Exposure to dilute levels of ozone (~2 ppm) of monolayers of each peptide at the air-water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air-water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function.
Collapse
Affiliation(s)
- Joanna
M. Hemming
- Department of Biological Sciences
and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E
7HX, U.K.
| | - Brian R. Hughes
- Department of Biological Sciences
and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E
7HX, U.K.
| | - Adrian R. Rennie
- Materials Physics, Department
of
Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Salvador Tomas
- Department of Biological Sciences
and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E
7HX, U.K.
| | - Richard A. Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 09, France
| | - Arwel V. Hughes
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory,
Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Thomas Arnold
- Diamond
Light Source, Harwell
Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Stanley W. Botchway
- STFC, Lasers
for Science Facility,
Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory,
Harwell Oxford, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Katherine C. Thompson
- Department of Biological Sciences
and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E
7HX, U.K.
| |
Collapse
|
11
|
Lin W, Clark AJ, Paesani F. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2147-2156. [PMID: 25642579 DOI: 10.1021/la504603s] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.
Collapse
Affiliation(s)
- Wei Lin
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | | | | |
Collapse
|
12
|
Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer. Proc Natl Acad Sci U S A 2015; 112:E826-35. [PMID: 25675499 DOI: 10.1073/pnas.1419033112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.
Collapse
|
13
|
Nisoh N, Karttunen M, Monticelli L, Wong-ekkabut J. Lipid monolayer disruption caused by aggregated carbon nanoparticles. RSC Adv 2015. [DOI: 10.1039/c4ra17006g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Carbon nanoparticles (CNP) have significant impact on the Pulmonary Surfactant (PS), the first biological barrier in the respiratory system.
Collapse
Affiliation(s)
- Nililla Nisoh
- Department of Physics
- Faculty of Science
- Kasetsart University
- Bangkok
- Thailand
| | - Mikko Karttunen
- Department of Chemistry and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | | | | |
Collapse
|
14
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
15
|
Flasiński M, Wydro P, Broniatowski M. Lyso-phosphatidylcholines in Langmuir monolayers – Influence of chain length on physicochemical characteristics of single-chained lipids. J Colloid Interface Sci 2014; 418:20-30. [DOI: 10.1016/j.jcis.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/29/2013] [Accepted: 12/01/2013] [Indexed: 01/23/2023]
|
16
|
Flasiński M, Broniatowski M, Wydro P, Dynarowicz-Łątka P. Comparative Characteristics of Membrane-Active Single-Chained Ether Phospholipids: PAF and Lyso-PAF in Langmuir Monolayers. J Phys Chem B 2012; 116:3155-63. [DOI: 10.1021/jp2121092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Michał Flasiński
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | - Marcin Broniatowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | | |
Collapse
|
17
|
Dhar P, Eck E, Israelachvili JN, Lee DW, Min Y, Ramachandran A, Waring AJ, Zasadzinski JA. Lipid-protein interactions alter line tensions and domain size distributions in lung surfactant monolayers. Biophys J 2012; 102:56-65. [PMID: 22225798 PMCID: PMC3250676 DOI: 10.1016/j.bpj.2011.11.4007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 01/15/2023] Open
Abstract
The size distribution of domains in phase-separated lung surfactant monolayers influences monolayer viscoelasticity and compressibility which, in turn, influence monolayer collapse and set the compression at which the minimum surface tension is reached. The surfactant-specific protein SP-B decreases the mean domain size and polydispersity as shown by fluorescence microscopy. From the images, the line tension and dipole density difference are determined by comparing the measured size distributions with a theory derived by minimizing the free energy associated with the domain energy and mixing entropy. We find that SP-B increases the line tension, dipole density difference, and the compressibility modulus at surface pressures up to the squeeze-out pressure. The increase in line tension due to SP-B indicates the protein avoids domain boundaries due to its solubility in the more fluid regions of the film.
Collapse
Affiliation(s)
- Prajnaparamita Dhar
- Department of Chemical Engineering, University of Kansas, Lawrence, Kansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dietrich U, Krüger P, Käs JA. Structural investigation on the adsorption of the MARCKS peptide on anionic lipid monolayers - effects beyond electrostatic. Chem Phys Lipids 2011; 164:266-75. [PMID: 21376024 DOI: 10.1016/j.chemphyslip.2011.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/25/2022]
Abstract
The presence of charged lipids in the cell membrane constitutes the background for the interaction with numerous membrane proteins. As a result, the valence of the lipids plays an important role concerning their lateral organization in the membrane and therefore the very manner of this interaction. This present study examines this aspect, particularly regarding to the interaction of the anionic lipid DPPS with the highly basic charged effector domain of the MARCKS protein, examined in monolayer model systems. Film balance, fluorescence microscopy and X-ray reflection/diffraction measurements were used to study the behavior of DPPS in a mixture with DPPC for its dependance on the presence of MARCKS (151-175). In the mixed monolayer, both lipids are completely miscible therefore DPPS is incorporated in the ordered crystalline DPPC domains as well. The interaction of MARCKS peptide with the mixed monolayer leads to the formation of lipid/peptide clusters causing an elongation of the serine group of the DPPS up to 7Å in direction to surface normal into the subphase. The large cationic charge of the peptide pulls out the serine group of the interface which simultaneously causes an elongation of the phosphodiester group of the lipid fraction too. The obtained results were used to compare the interaction of MARCKS peptide with the polyvalent PIP(2) in mixed monolayers. On this way we surprisingly find out, that the relative small charge difference of the anionic lipids causes a significant different interaction with MARCKS (151-175). The lateral arrangement of the anionic lipids depends on their charge values and determines the diffusion of the electrostatic binding clusters within the membrane.
Collapse
Affiliation(s)
- Undine Dietrich
- Division of Soft Matter Physics, Leipzig University, Linnstrasse, Germany.
| | | | | |
Collapse
|
19
|
Ziblat R, Leiserowitz L, Addadi L. Kristalline Lipiddomänen: Charakterisierung durch Röntgenbeugung und ihre Rolle in der Biologie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Ziblat R, Leiserowitz L, Addadi L. Crystalline lipid domains: characterization by X-ray diffraction and their relation to biology. Angew Chem Int Ed Engl 2011; 50:3620-9. [PMID: 21472900 DOI: 10.1002/anie.201004470] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Indexed: 12/29/2022]
Abstract
Biological membranes comprise thousands of different lipids, differing in their alkyl chains, headgroups, and degree of saturation. It is estimated that 5% of the genes in the human genome are responsible for regulating the lipid composition of cell membranes. Conceivably, the functional explanation for this diversity is found, at least in part, in the propensity of lipids to segregate into distinct domains, which are important for cell function. X-ray diffraction has been used increasingly to characterize the packing and phase behavior of lipids in membranes. Crystalline domains have been studied in synthetic membranes using wide- and small-angle X-ray scattering, and grazing incidence X-ray diffraction. Herein we summarize recent results obtained using the various X-ray methods, discuss the correlation between crystalline domains and liquid ordered domains studied with other techniques, and the relevance of crystalline domains to functional lipid domains in biological membranes.
Collapse
Affiliation(s)
- Roy Ziblat
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
21
|
Broniatowski M, Flasiński M, Dynarowicz-Ła̧tka P, Majewski J. Grazing Incidence Diffraction and X-ray Reflectivity Studies of the Interactions of Inorganic Mercury Salts with Membrane Lipids in Langmuir Monolayers at the Air/Water Interface. J Phys Chem B 2010; 114:9474-84. [DOI: 10.1021/jp101668n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcin Broniatowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland and Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Michał Flasiński
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland and Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Patrycja Dynarowicz-Ła̧tka
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland and Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Jarosław Majewski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland and Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
22
|
Chen CH, Málková S, Pingali SV, Long F, Garde S, Cho W, Schlossman ML. Configuration of PKCalpha-C2 domain bound to mixed SOPC/SOPS lipid monolayers. Biophys J 2010; 97:2794-802. [PMID: 19917234 DOI: 10.1016/j.bpj.2009.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/20/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022] Open
Abstract
X-ray reflectivity measurements are used to determine the configuration of the C2 domain of protein kinase Calpha (PKCalpha-C2) bound to a lipid monolayer of a 7:3 mixture of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine supported on a buffered aqueous solution. The reflectivity is analyzed in terms of the known crystallographic structure of PKCalpha-C2 and a slab model representation of the lipid layer. The configuration of lipid-bound PKCalpha-C2 is described by two angles that define its orientation, theta = 35 degrees +/- 10 degrees and phi =210 degrees +/- 30 degrees, and a penetration depth (=7.5 +/- 2 A) into the lipid layer. In this structure, the beta-sheets of PKCalpha-C2 are nearly perpendicular to the lipid layer and the domain penetrates into the headgroup region of the lipid layer, but not into the tailgroup region. This configuration of PKCalpha-C2 determined by our x-ray reflectivity is consistent with many previous findings, particularly mutational studies, and also provides what we believe is new molecular insight into the mechanism of PKCalpha enzyme activation. Our analysis method, which allows us to test all possible protein orientations, shows that our data cannot be explained by a protein that is orientated parallel to the membrane, as suggested by earlier work.
Collapse
Affiliation(s)
- Chiu-Hao Chen
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Walther FJ, Waring AJ, Hernandez-Juviel JM, Gordon LM, Wang Z, Jung CL, Ruchala P, Clark AP, Smith WM, Sharma S, Notter RH. Critical structural and functional roles for the N-terminal insertion sequence in surfactant protein B analogs. PLoS One 2010; 5:e8672. [PMID: 20084172 PMCID: PMC2805716 DOI: 10.1371/journal.pone.0008672] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 12/18/2009] [Indexed: 01/14/2023] Open
Abstract
Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.
Collapse
Affiliation(s)
- Frans J Walther
- Los Angeles Biomedical Research Institute at Harbor, University of California Los Angeles Medical Center, Torrance, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stenger PC, Wu G, Miller CE, Chi EY, Frey SL, Lee KYC, Majewski J, Kjaer K, Zasadzinski JA. X-ray diffraction and reflectivity validation of the depletion attraction in the competitive adsorption of lung surfactant and albumin. Biophys J 2009; 97:777-86. [PMID: 19651036 DOI: 10.1016/j.bpj.2009.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 12/22/2022] Open
Abstract
Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.
Collapse
Affiliation(s)
- Patrick C Stenger
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fernsler JG, Zasadzinski JA. Competitive adsorption: a physical model for lung surfactant inactivation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:8131-8143. [PMID: 19534502 PMCID: PMC2732715 DOI: 10.1021/la8039434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Charged, surface-active serum proteins can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the alveolar air-liquid interface via a kinetically controlled competitive adsorption process. The decreased surfactant concentration at the interface leads to higher surface tensions during the compression of the interface during breathing. The correspondence between the factors governing colloid stability and competitive adsorption is validated via a new method of measuring surfactant and serum protein adsorption rates to the air-water interface, using quantitative Brewster angle microscopy (BAM). Competitive adsorption from a 10 mg/mL albumin subphase prevents the adsorption of lung surfactant from even high subphase concentrations due to the fast diffusion of the water-soluble proteins to the interface. The formation of an albumin film causes an electrostatic and steric barrier to subsequent surfactant adsorption, which can destroy the necessary properties of functional lung surfactant: low surface tension during compression and rapid respreading after film collapse. Surfactant inactivation is at least partially due to decreased surfactant adsorption; such decreased adsorption due to the presence of serum proteins may play a role in the development and severity of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Jonathan G Fernsler
- Department of Physics, California Polytechnic University, San Luis Obispo, CA 93407, USA.
| | | |
Collapse
|
26
|
Dietrich U, Krüger P, Gutberlet T, Käs JA. Interaction of the MARCKS peptide with PIP2 in phospholipid monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1474-81. [PMID: 19362071 DOI: 10.1016/j.bbamem.2009.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/15/2009] [Accepted: 04/01/2009] [Indexed: 11/17/2022]
Abstract
In this present work we have studied the effect of MARCKS (151-175) peptide on a mixed DPPC/PIP2 monolayer. By means of film balance, fluorescence microscopy, x-ray reflection/diffraction and neutron reflection measurements we detected changes in the lateral organization of the monolayer and changes in the perpendicular orientation of the PIP2 molecules depending on the presence of MARCKS (151-175) peptide in the subphase. In the mixed monolayer, the PIP2 molecules are distributed uniformly in the disordered phase of the monolayer, whereas the PI(4,5) groups elongate up to 10 A below the phosphodiester groups. This elongation forms the precondition for the electrostatic interaction of the MARCKS peptide with the PIP2 molecules. Due to the enrichment of PIP2 in the disordered phase, the interaction with the peptide occurs primarily in this phase, causing the PI(4,5) groups to tilt toward the monolayer interface.
Collapse
Affiliation(s)
- Undine Dietrich
- Division of Soft Matter Physics, Faculty for Physics and Earth Sciences, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
27
|
Stenger PC, Alonso C, Zasadzinski JA, Waring AJ, Jung CL, Pinkerton KE. Environmental tobacco smoke effects on lung surfactant film organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:358-70. [PMID: 19118518 DOI: 10.1016/j.bbamem.2008.11.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 01/05/2023]
Abstract
Adsorption of the clinical lung surfactants (LS) Curosurf or Survanta from aqueous suspension to the air-water interface progresses from multi-bilayer aggregates through multilayer films to a coexistence between multilayer and monolayer domains. Exposure to environmental tobacco smoke (ETS) alters this progression as shown by Langmuir isotherms, fluorescence microscopy and atomic force microscopy (AFM). After 12 h of LS exposure to ETS, AFM images of Langmuir-Blodgett deposited films show that ETS reduces the amount of material near the interface and alters how surfactant is removed from the interface during compression. For Curosurf, ETS prevents refining of the film composition during cycling; this leads to higher minimum surface tensions. ETS also changes the morphology of the Curosurf film by reducing the size of condensed phase domains from 8-12 microm to approximately 2 microm, suggesting a decrease in the line tension between the domains. The minimum surface tension and morphology of the Survanta film are less impacted by ETS exposure, although the amount of material associated with the film is reduced in a similar way to Curosurf. Fluorescence and mass spectra of Survanta dispersions containing native bovine SP-B treated with ETS indicate the oxidative degradation of protein aromatic amino acid residue side chains. Native bovine SP-C isolated from ETS exposed Survanta had changes in molecular mass consistent with deacylation of the lipoprotein. Fourier Transform Infrared Spectroscopy (FTIR) characterization of the hydrophobic proteins from ETS treated Survanta dispersions show significant changes in the conformation of SP-B and SP-C that correlate with the altered surface activity and morphology of the lipid-protein film.
Collapse
Affiliation(s)
- Patrick C Stenger
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
| | | | | | | | | | | |
Collapse
|
28
|
Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle. Biophys J 2008; 95:4102-14. [PMID: 18923102 DOI: 10.1529/biophysj.107.123976] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article reports an all-atom molecular dynamics simulation to study a model pulmonary surfactant film interacting with a carbonaceous nanoparticle. The pulmonary surfactant is modeled as a dipalmitoylphosphatidylcholine monolayer with a peptide consisting of the first 25 residues from surfactant protein B. The nanoparticle model with a chemical formula C188H53 was generated using a computational code for combustion conditions. The nanoparticle has a carbon cage structure reminiscent of the buckyballs with open ends. A series of molecular-scale structural and dynamical properties of the surfactant film in the absence and presence of nanoparticle are analyzed, including radial distribution functions, mean-square displacements of lipids and nanoparticle, chain tilt angle, and the surfactant protein B peptide helix tilt angle. The results show that the nanoparticle affects the structure and packing of the lipids and peptide in the film, and it appears that the nanoparticle and peptide repel each other. The ability of the nanoparticle to translocate the surfactant film is one of the most important predictions of this study. The potential of mean force for dragging the particle through the film provides such information. The reported potential of mean force suggests that the nanoparticle can easily penetrate the monolayer but further translocation to the water phase is energetically prohibitive. The implication is that nanoparticles can interact with the lung surfactant, as supported by recent experimental data by Bakshi et al.
Collapse
|
29
|
Stenger PC, Isbell SG, Zasadzinski JA. Molecular weight dependence of the depletion attraction and its effects on the competitive adsorption of lung surfactant. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:2032-40. [PMID: 18433716 PMCID: PMC2575753 DOI: 10.1016/j.bbamem.2008.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/25/2008] [Accepted: 03/17/2008] [Indexed: 11/24/2022]
Abstract
Albumin competes with lung surfactant for the air-water interface, resulting in decreased surfactant adsorption and increased surface tension. Polyethylene glycol (PEG) and other hydrophilic polymers restore the normal rate of surfactant adsorption to the interface, which re-establishes low surface tensions on compression. PEG does so by generating an entropic depletion attraction between the surfactant aggregates and interface, reducing the energy barrier to adsorption imposed by the albumin. For a fixed composition of 10 g/L (1% wt.), surfactant adsorption increases with the 0.1 power of PEG molecular weight from 6 kDa-35 kDa as predicted by simple excluded volume models of the depletion attraction. The range of the depletion attraction for PEG with a molecular weight below 6 kDa is less than the dimensions of albumin and there is no effect on surfactant adsorption. PEG greater than 35 kDa reaches the overlap concentration at 1% wt. resulting in both decreased depletion attraction and decreased surfactant adsorption. Fluorescence images reveal that the depletion attraction causes the surfactant to break through the albumin film at the air-water interface to spread as a monolayer. During this transition, there is a coexistence of immiscible albumin and surfactant domains. Surface pressures well above the normal equilibrium surface pressure of albumin are necessary to force the albumin from the interface during film compression.
Collapse
Affiliation(s)
- Patrick C Stenger
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, USA
| | | | | |
Collapse
|
30
|
Abstract
The structures of films of pulmonary surfactant protein B (SP-B) and mixtures of SP-B and dipalmitoylphosphatidylcholine (DPPC) at the air/water interface have been studied by neutron reflectometry and Langmuir film balance methods. From the film balance studies, we observe that the isotherms of pure DPPC and SP-B/DPPC mixtures very nearly overlay one another at very high pressures, suggesting that the SP-B is being excluded from the film. The use of multiple contrasts with neutron reflectometry at a range of surface pressures has enabled the mixing and squeeze out of the DPPC and SP-B mixtures to be studied. We can identify the SP-B component of the interfacial structure and its position as a function of surface pressure. The mixtures are initially a homogeneous layer at low surface pressures. At higher surface pressures, the SP-B is squeezed out of the lipid layer into the subphase, with the first signs detected at 30 mN m(-1). At 50 mN m(-1), the subphase is almost completely excluded from the DPPC layer, with the SP-B content significantly reduced. Only a small amount of DPPC appears to be associated with the squeezed out SP-B.
Collapse
|
31
|
Chi EY, Ege C, Winans A, Majewski J, Wu G, Kjaer K, Lee KYC. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-beta peptide. Proteins 2008; 72:1-24. [PMID: 18186465 DOI: 10.1002/prot.21887] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The lipid membrane has been shown to mediate the fibrillogenesis and toxicity of Alzheimer's disease (AD) amyloid-beta (Abeta) peptide. Electrostatic interactions between Abeta40 and the phospholipid headgroup have been found to control the association and insertion of monomeric Abeta into lipid monolayers, where Abeta exhibited enhanced interactions with charged lipids compared with zwitterionic lipids. To elucidate the molecular-scale structural details of Abeta-membrane association, we have used complementary X-ray and neutron scattering techniques (grazing-incidence X-ray diffraction, X-ray reflectivity, and neutron reflectivity) in this study to investigate in situ the association of Abeta with lipid monolayers composed of either the anionic lipid 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or the cationic lipid 1,2-dipalmitoyl 3-trimethylammonium propane (DPTAP) at the air-buffer interface. We found that the anionic lipid DPPG uniquely induced crystalline ordering of Abeta at the membrane surface that closely mimicked the beta-sheet structure in fibrils, revealing an intriguing templated ordering effect of DPPG on Abeta. Furthermore, incubating Abeta with lipid vesicles containing the anionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) induced the formation of amyloid fibrils, confirming that the templated ordering of Abeta at the membrane surface seeded fibril formation. This study provides a detailed molecular-scale characterization of the early structural fluctuation and assembly events that may trigger the misfolding and aggregation of Abeta in vivo. Our results implicate that the adsorption of Abeta to anionic lipids, which could become exposed to the outer membrane leaflet by cell injury, may serve as an in vivo mechanism of templated-aggregation and drive the pathogenesis of AD.
Collapse
Affiliation(s)
- Eva Y Chi
- Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, IL 60307, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Mixed monolayers of the ganglioside G(M1) and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by G(M1) on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for G(M1) concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of G(M1) (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher G(M1) concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that G(M1) and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/G(M1) binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of G(M1) to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the G(M1) molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the G(M1) molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the G(M1) molecule.
Collapse
|
33
|
Lozano MM, Talu E, Longo ML. Dissolution of microbubbles generated in seawater obtained offshore: Behavior and surface tension measurements. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jc004108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Danauskas SM, Ratajczak MK, Ishitsuka Y, Gebhardt J, Schultz D, Meron M, Lin B, Lee KYC. Monitoring x-ray beam damage on lipid films by an integrated Brewster angle microscope/x-ray diffractometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:103705. [PMID: 17979426 DOI: 10.1063/1.2796147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We describe an integrated Brewster angle microscope (BAM), Langmuir trough, and grazing incidence x-ray diffraction assembly. The integration of these three techniques allows for the direct observation of radiative beam damage to a lipid monolayer at the air-water interface. Although beam damage has been seen in x-ray measurements, it has not been directly observed in situ at the micron scale. Using this integrated assembly, we examined the effects of radiative beam damage on Langmuir monolayers of 1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] (DMPS), 1:1 DMPS:1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1:1 DMPS:1,2-dioleoyl-sn-glycero-3-phosphocholine held at a constant surface pressure. For constant surface pressure experiments, we observed a marked decrease in the surface area of the film upon exposure to the beam due to photodissociation. For a condensed lipid film, a change in refractive index of the film was observed post-beam-exposure, indicating areas of damage. For DMPS in an oxygenated environment, the Bragg peak intensity decreased with beam exposure. In mixed monolayer systems, with saturated and unsaturated lipids, an increase in the number of small saturated lipid domains was seen as the unsaturated lipid was preferentially damaged and lost from the monolayer. We show that BAM is a highly effective technique for in situ observation of the effects of radiative damage at the air/water interface during a synchrotron experiment.
Collapse
Affiliation(s)
- Stephen M Danauskas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bringezu F, Majerowicz M, Maltseva E, Wen S, Brezesinski G, Waring AJ. Penetration of the Antimicrobial Peptide Dicynthaurin into Phospholipid Monolayers at the Liquid–Air Interface. Chembiochem 2007; 8:1038-47. [PMID: 17492697 DOI: 10.1002/cbic.200600503] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work focuses on the adsorption kinetics of dicynthaurin with lipid monolayers, the effect of peptide adsorption on the structure of the lipid condensed chain lattice, peptide orientation and secondary structure in the adsorbed state. The studies with DPPG as model system revealed strong adsorption and massive incorporation of the peptide into the monolayer. Infrared reflection absorption spectroscopy (IRRAS) experiments showed that the secondary structure of the peptide is maintained upon adsorption. Specular X-ray reflectivity showed the destabilization of the condensed phase of the pure lipid monolayer and revealed a tilted orientation of the long axis of the peptide helix of about 40 degrees from the surface normal. Incorporation of the peptide was found to be pressure dependent, and at high pressure a "squeeze-out" was observed; however, the peptide remained localized to the interface, as suggested by infrared data. These findings were supported by optical fluorescence microscopy measurements which showed the squeeze-out of the peptide on water, but not under physiological conditions. The results suggest that dicynthaurin is able to adsorb to the phosphatidylglycerol-rich inner cytoplasmic membrane of bacteria and alter membrane integrity. To identify and interact with membrane motifs that are characteristic of microbes, but which are absent in eukaryotic cells, might be an intrinsic ability of peptide antibiotics.
Collapse
Affiliation(s)
- Frank Bringezu
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Biswas N, Waring AJ, Walther FJ, Dluhy RA. Structure and conformation of the disulfide bond in dimeric lung surfactant peptides SP-B1–25 and SP-B8–25. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1070-82. [PMID: 17349612 DOI: 10.1016/j.bbamem.2007.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 01/15/2007] [Accepted: 01/24/2007] [Indexed: 11/23/2022]
Abstract
Raman spectroscopy was used to determine the conformation of the disulfide linkage between cysteine residues in the homodimeric construct of the N-terminal alpha helical domain of surfactant protein B (dSP-B(1-25)). The conformation of the disulfide bond between cysteine residues in position 8 of the homodimer of dSP-B(1-25) was compared with that of a truncated homodimer (dSP-B(8-25)) of the peptide having a disulfide linkage at the same position in the alpha helix. Temperature-dependent Raman spectra of the S-S stretching region centered at approximately 500 cm(-1) indicated a stable, although highly strained disulfide conformation with a chi(CS-SC) dihedral angle of +/-10 degrees for the dSP-B(1-25) dimer. In contrast, the truncated dimer dSP-B(8-25) exhibited a series of disulfide conformations with the chi(CS-SC) dihedral angle taking on values of either +/-30 degrees or 85+/-20 degrees . For conformations with chi(CS-SC) close to the +/-90 degrees value, the Raman spectra of the 8-25 truncated dimers exhibited chi(SS-CC) dihedral angles of 90/180 degrees and 20-30 degrees . In the presence of a lipid mixture, both constructs showed a nu(S-S) band at approximately 488 cm(-1), corresponding to a chi(CS-SC) dihedral angle of +/-10 degrees . Polarized infrared spectroscopy was also used to determine the orientation of the helix and beta-sheet portion of both synthetic peptides. These calculations indicated that the helix was oriented primarily in the plane of the surface, at an angle of approximately 60-70 degrees to the surface normal, while the beta structure had approximately 40 degrees tilt. This orientation direction did not change in the presence of a lipid mixture or with temperature. These observations suggest that: (i) the conformational flexibility of the disulfide linkage is dependent on the amino acid residues that flank the cysteine disulfide bond, and (ii) in both constructs, the presence of a lipid matrix locks the disulfide bond into a preferred conformation.
Collapse
Affiliation(s)
- Nilanjana Biswas
- Department of Chemistry, University of Georgia, Athens, GA 30602-2556, USA
| | | | | | | |
Collapse
|
37
|
Ma G, Allen HC. New insights into lung surfactant monolayers using vibrational sum frequency generation spectroscopy. Photochem Photobiol 2007; 82:1517-29. [PMID: 16930094 DOI: 10.1562/2006-06-30-ir-958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At the air-water interface, interfacial molecular structure, intermolecular interactions, film relaxation and film respreading of model lung surfactant monolayers were studied using vibrational sum frequency generation (VSFG) spectroscopy combined with a Langmuir film balance. Chain-perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62), palmitoyloleoyl-phosphatidylglycerol (POPG), palmitic acid (PA) and tripalmitin were investigated. In the DPPC-d62-PA binary monolayer, PA showed a condensing effect on the DPPC chains. On the contrary, in the DPPC-d62-POPG binary monolayer, POPG showed a fluidizing effect on the DPPC chains. In the ternary monolayer system of DPPC-d62-POPG-PA, the balance between the fluidizing and the condensing effect was also observed. In addition, the film relaxation behavior of DPPC-d62 and the enhanced film stability of DPPC-d62 caused by the addition of tripalmitin were observed. Real-time VSFG was also employed to study the respreading properties of a complex lung surfactant mixture containing DPPC-d62, POPG, PA and KL4 (a mimic of SP-B) peptide, which revealed DPPC enrichment after film compression.
Collapse
Affiliation(s)
- Gang Ma
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | | |
Collapse
|
38
|
Ma G, Allen HC. Real-time investigation of lung surfactant respreading with surface vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:11267-74. [PMID: 17154614 DOI: 10.1021/la061476k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The respreading of a lung surfactant monolayer at the air-water interface is investigated with broad bandwidth sum frequency generation (BBSFG) spectroscopy. The lung surfactant mixture contains chain perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62), palmitoyloleoylphosphatidylglycerol (POPG), palmitic acid (PA), and KL4 (a 21-residue polypeptide analogue to the surfactant protein SP-B). DPPC-d62 serves as a probe molecule for the spectroscopic investigation. The BBSFG spectra of DPPC-d62 in the lung surfactant mixture are obtained in the C-D stretching region in real-time during film compression and expansion in a Langmuir trough. The BBSFG intensity of the CD3 stretch peak from DPPC-d62 terminal methyl groups is used as a measure of the interfacial density of DPPC-d62 after careful consideration of orientation effects. For the first time, the interfacial loss of DPPC in a complex lung surfactant mixture is quantified. Spectroscopic results reveal that there is an 18% DPPC-d62 interfacial loss during film respreading. However, the surface pressure-area isotherm measurements demonstrate that there is a rather large trough area reduction (37%) during film expansion. The relatively small interfacial loss of DPPC-d62 and the rather large trough area reduction indicate that the respreading of DPPC and non-DPPC components in the lung surfactant is not uniform and a surface refinement process exists during film compression and expansion. This refinement process results in a DPPC-enriched monolayer with a significant depletion of non-DPPC components after film respreading. Implication for replacement surfactant design from this work is discussed.
Collapse
Affiliation(s)
- Gang Ma
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
39
|
Goubard F, Fichet O, Teyssié D, Fontaine P, Goldmann M. Characterization limits of a polymer adsorbed under a monolayer by GIXD measurements. J Colloid Interface Sci 2006; 306:82-8. [PMID: 17097101 DOI: 10.1016/j.jcis.2006.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/05/2006] [Accepted: 10/06/2006] [Indexed: 10/23/2022]
Abstract
The study of interactions between a polyelectrolyte (sodium polystyrene sulfonate, PSSt) or its water-soluble monomer (SSt) at different concentrations and a monolayer of dioctadecyldimethylammonium bromide (DODA) has been investigated. The monolayer phase behavior and structure at the air-water interface were studied by surface pressure-area isotherms and grazing incidence X-ray diffraction measurements. DODA molecules organize following a rectangular unit cell in all three subphases (pure water, water containing SSt or PSSt). The presence of polyelectrolytes in the subphase decreases, on one hand, the tilt angle and the mean area per molecule in the condensed phase, revealing a higher 2D density in this state, and, on the other hand, the amount of organized matter.
Collapse
Affiliation(s)
- Fabrice Goubard
- Université de Cergy-Pontoise, LPPI, 5 mail Gay-Lussac Neuville-sur-Oise, 95031 Cergy-Pontoise Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Ma G, Allen HC. New Insights into Lung Surfactant Monolayers Using Vibrational Sum Frequency Generation Spectroscopy. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09807.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Ma G, Allen HC. DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:5341-9. [PMID: 16732662 DOI: 10.1021/la0535227] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Dipalmitoylphosphatidylcholine (DPPC) is the predominant lipid component in lung surfactant. In this study, the Langmuir monolayer of deuterated dipalmitoylphosphatidylcholine (DPPC-d62) in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase has been investigated at the air-water interface with broad bandwidth sum frequency generation (BBSFG) spectroscopy combined with a Langmuir film balance. Four moieties of the DPPC molecule are probed by BBSFG: the terminal methyl (CD3) groups of the tails, the methylene (CD2) groups of the tails, the choline methyls (CH3) in the headgroup, and the phosphate in the headgroup. BBSFG spectra of the four DPPC moieties provide information about chain conformation, chain orientation, headgroup orientation, and headgroup hydration. These results provide a comprehensive picture of the DPPC phase behavior at the air-water interface. In the LE phase, the DPPC hydrocarbon chains are conformationally disordered with a significant number of gauche configurations. In the LC phase, the hydrocarbon chains are in an all-trans conformation and are tilted from the surface normal by 25 degrees. In addition, the orientations of the tail terminal methyl groups are found to remain nearly unchanged with the variation of surface area. Qualitative analysis of the BBSFG spectra of the choline methyl groups suggests that these methyl groups are tilted but lie somewhat parallel to the surface plane in both the LE and LC phases. The dehydration of the phosphate headgroup due to the LE-LC phase transition is observed through the frequency blue shift of the phosphate symmetric stretch in the fingerprint region. In addition, implications for lung surfactant function from this work are discussed.
Collapse
Affiliation(s)
- Gang Ma
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
42
|
Ege C, Ratajczak MK, Majewski J, Kjaer K, Lee KYC. Evidence for lipid/cholesterol ordering in model lipid membranes. Biophys J 2006; 91:L01-3. [PMID: 16679372 PMCID: PMC1479074 DOI: 10.1529/biophysj.106.085134] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been postulated that for a binary mixture of phospholipid and cholesterol, phospholipid/cholesterol complexes are formed. Using grazing incidence x-ray diffraction, we have obtained evidence for lipid/cholesterol ordering in model membranes. Scattering features consistent with the existence of lipid/cholesterol complexes persist to high surface pressures even though fluorescence microscopy suggests a homogeneously fluid phase. Contrary to pure phospholipid and cholesterol systems, the resulting lattice spacing, integrated scattering intensity, and coherence lengths of these complexes are almost independent of surface pressure. Furthermore, the single peak observed in these mixed systems is very broad, suggesting that the extent of order for a single scattering structure only persists over a few molecules. This observation is consistent with these complexes being dynamic structures.
Collapse
Affiliation(s)
- Canay Ege
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
43
|
Liu A, Wenzel N, Qi X. Role of lysine residues in membrane anchoring of saposin C. Arch Biochem Biophys 2006; 443:101-12. [PMID: 16256068 DOI: 10.1016/j.abb.2005.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/02/2005] [Accepted: 09/03/2005] [Indexed: 02/04/2023]
Abstract
Molecular dynamics (MD) simulations of the N-terminal region of saposin C, containing amino acid residues 4-20 (saposin C4-20), were performed over 2.5 ns in 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayers. The simulations revealed several strong specific interactions of lysine 13 (Lys13) and lysine 17 (Lys17) in saposin C4-20 with the anionic phospholipids, which are required for membrane anchoring of the peptide. Membrane anchoring of saposin C4-20 facilitates saposin C-induced liposomal membrane fusion. Substitutions of Lys13 or Lys17 with alanine or glutamic acid led to a substantial loss of saposin C's fusogenicity. However, arginine replacement of Lys13 or Lys17 caused a partial loss of saposin C's fusogenic activity. The membrane anchoring of saposin C was altered in the presence of 0.4 M sodium chloride. Differential salt effects on Lys-mutant saposin Cs were observed using Trp fluorescence analysis. Low salt concentration had a more significant impact on Lys-mutant saposin C with a negatively charged amino acid residue replacement than those mutants with a positively charged or neutral residue replacement. These results indicate that positively charged amino acids at positions 13 and 17 are required for the fusogenic function of saposin C. In addition, the side-chain structure of lysine is crucial to the precise membrane anchoring which is necessary for the total fusion activity of saposin C. The MD simulations and vesicle size measurements of lysine-mutant saposins confirm the importance of the two lysine residues in saposin C4-20 for saposin C-induced fusion of negatively charged phospholipid membranes.
Collapse
Affiliation(s)
- Anping Liu
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | | | | |
Collapse
|
44
|
Dluhy R, Shanmukh S, Morita SI. The application of two-dimensional correlation spectroscopy to surface and interfacial analysis. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Lee H, Kandasamy SK, Larson RG. Molecular dynamics simulations of the anchoring and tilting of the lung-surfactant peptide SP-B1-25 in palmitic acid monolayers. Biophys J 2005; 89:3807-21. [PMID: 16169980 PMCID: PMC1366948 DOI: 10.1529/biophysj.105.066241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 08/31/2005] [Indexed: 11/18/2022] Open
Abstract
We have performed molecular dynamics simulations of multiple copies of the lung-surfactant peptide SP-B1-25 in a palmitic acid (PA) monolayer. SP-B1-25 is a shorter version of lung-surfactant protein B, an important component of lung surfactant. Up to 30 ns simulations of 20 wt % SP-B1-25 in the PA monolayers were performed with different surface areas of PA, extents of PA ionization, and various initial configurations of the peptides. Starting with initial peptide orientation perpendicular to the monolayer, the predicted final tilt angles average 54 degrees approximately 62 degrees with respect to the monolayer normal, similar to those measured experimentally by Lee et al. (Biophysical Journal. 2001. Synchrotron x-ray study of lung surfactant-specific protein SP-B in lipid monolayers. 81:572-585). In their final conformations, hydrogen-bond analysis and amino acid mutation studies show that the peptides are anchored by hydrogen bond interactions between the cationic residues Arg-12 and Arg-17 and the hydrogen bond acceptors of the ionized PA headgroup, and the tilt angle is affected by the interactions of Tyr-7 and Gln-19 with the PA headgroup. Our work indicates that the factors controlling orientation of small peptides in lipid layers can now be uncovered through molecular dynamics simulations.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
46
|
Wu G, Majewski J, Ege C, Kjaer K, Weygand MJ, Lee KYC. Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study. Biophys J 2005; 89:3159-73. [PMID: 16100276 PMCID: PMC1366812 DOI: 10.1529/biophysj.104.052290] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase separating from the lipids, forces the lipid molecules to pack tightly and restore the barrier function of the membrane. Upon compression to bilayer equivalent pressure, P188 is squeezed out from the lipid monolayer, allowing a graceful exit of P188 when the membrane integrity is restored.
Collapse
Affiliation(s)
- Guohui Wu
- Department of Chemistry, the Institute for Biophysical Dynamics and the James Franck Institute, the University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kandasamy SK, Larson RG. Molecular dynamics study of the lung surfactant peptide SP-B1-25 with DPPC monolayers: insights into interactions and peptide position and orientation. Biophys J 2005; 88:1577-92. [PMID: 15738465 PMCID: PMC1305215 DOI: 10.1529/biophysj.104.038430] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have performed molecular dynamics simulations of the interactions of the peptide SP-B(1-25), which is a truncated version of the full pulmonary surfactant protein SP-B, with dipalmitoylphosphatidylcholine monolayers, which are the major lipid components of lung surfactant. Simulations of durations of 10-20 ns show that persistent hydrogen bonds form between the donor atoms of the protein and the acceptors of the lipid headgroup and that these bonds determine the position, orientation, and secondary structure of the peptide in the membrane environment. From an ensemble of initial conditions, the most probable equilibrium orientation of the alpha-helix of the peptide is predicted to be parallel to the interface, matching recent experimental results on model lipid mixtures. Simulations of a few mutated analogs of SP-B(1-25) also suggest that the charged amino acids are important in determining the position of the peptide in the interface. The first eight amino acids of the peptide, also known as the insertion sequence, are found to be essential in reducing the fluctuations and anchoring the peptide in the lipid/water interface.
Collapse
Affiliation(s)
- Senthil K Kandasamy
- Chemical Engineering Department, The University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
48
|
Málková S, Long F, Stahelin RV, Pingali SV, Murray D, Cho W, Schlossman ML. X-ray reflectivity studies of cPLA2{alpha}-C2 domains adsorbed onto Langmuir monolayers of SOPC. Biophys J 2005; 89:1861-73. [PMID: 15994899 PMCID: PMC1366689 DOI: 10.1529/biophysj.105.061515] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray reflectivity is used to study the interaction of C2 domains of cytosolic phospholipase A(2) (cPLA(2)alpha-C2) with a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) supported on a buffered aqueous solution containing Ca(2+). The reflectivity is analyzed in terms of the known crystallographic structure of cPLA(2)alpha-C2 domains and a slab model representing the lipid layer to yield an electron density profile of the lipid layer and bound C2 domains. This new method of analysis determines the angular orientation and penetration depth of the cPLA(2)alpha-C2 domains bound to the SOPC monolayer, information not available from the standard slab model analysis of x-ray reflectivity. The best-fit orientation places the protein-bound Ca(2+) ions within 1 A of the lipid phosphate group (with an accuracy of +/-3 A). Hydrophobic residues of the calcium-binding loops CBL1 and CBL3 penetrate deepest into the lipid layer, with a 2 A penetration into the tailgroup region. X-ray measurements with and without the C2 domain indicate that there is a loss of electrons in the headgroup region of the lipid monolayer upon binding of the domains. We suggest that this is due to a loss of water molecules bound to the headgroup. Control experiments with a non-calcium buffer and with domain mutants confirm that the cPLA(2)alpha-C2 binding to the SOPC monolayer is Ca(2+)-dependent and that the hydrophobic residues in the calcium-binding loops are critical for membrane binding. These results indicate that an entropic component (due to water loss) as well as electrostatic and hydrophobic interactions contributes to the binding mechanism.
Collapse
Affiliation(s)
- Sárka Málková
- Department of Physics, Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Shanmukh S, Biswas N, Waring AJ, Walther FJ, Wang Z, Chang Y, Notter RH, Dluhy RA. Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B(1-25) II. Peptide conformation by infrared spectroscopy. Biophys Chem 2005; 113:233-44. [PMID: 15620508 DOI: 10.1016/j.bpc.2004.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/15/2004] [Accepted: 09/15/2004] [Indexed: 11/20/2022]
Abstract
The conformation and orientation of synthetic monomeric human sequence SP-B(1-25) (mSP-B(1-25)) was studied in films with phospholipids at the air-water (A/W) interface by polarization modulation infrared reflectance absorption spectroscopy (PM-IRRAS). Modified two-dimensional infrared (2D IR) correlation analysis was applied to PM-IRRAS spectra to define changes in the secondary structure and rates of reorientation of mSP-B(1-25) in the monolayer during compression. PM-IRRAS spectra and 2D IR correlation analysis showed that, in pure films, mSP-B(1-25) had a major alpha-helical conformation plus regions of beta-sheet structure. These alpha-helical regions reoriented later during film compression than beta structural regions, and became oriented normal to the A/W interface as surface pressure increased. In mixed films with 4:1 mol:mol acyl chain perdeuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPC-d(62):DOPG), the IR spectra of mSP-B(1-25) showed that a significant, concentration-dependent conformational change occurred when mSP-B(1-25) was incorporated into a DPPC-d(62):DOPG monolayer. At an mSP-B(1-25) concentration of 10 wt.%, the peptide assumed a predominantly beta-sheet conformation with no contribution from alpha-helical structures. At lower, more physiological peptide concentrations, 2D IR correlation analysis showed that the propensity of mSP-B(1-25) to form alpha-helical structures was increased. In phospholipid films containing 5 wt.% mSP-B(1-25), a substantial alpha-helical peptide structural component was observed, but regions of alpha and beta structure reoriented together rather than independently during compression. In films containing 1 wt.% mSP-B(1-25), peptide conformation was predominantly alpha-helical and the helical regions reoriented later during compression than the remaining beta structural components. The increased alpha-helical structure of mSP-B(1-25) demonstrated here by PM-IRRAS and 2D IR correlation analysis in monolayers of 4:1 DPPC:DOPG containing 1 wt.% (and, to a lesser extent, 5 wt.%) peptide may be relevant for the formation of the intermediate order 'dendritic' surface phase observed in similar surface films by epi-fluorescence.
Collapse
|
50
|
Biswas N, Shanmukh S, Waring AJ, Walther F, Wang Z, Chang Y, Notter RH, Dluhy RA. Structure and properties of phospholipid–peptide monolayers containing monomeric SP-B1–25. Biophys Chem 2005; 113:223-32. [PMID: 15620507 DOI: 10.1016/j.bpc.2004.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/15/2004] [Accepted: 09/15/2004] [Indexed: 11/26/2022]
Abstract
Epifluorescence microscopy was used to study the structure and phase behavior of phospholipid films containing a human-sequence monomeric SP-B(1-25) synthetic peptide (mSP-B(1-25)). Measurements were done directly at the air-water (A/W) interface on films in a Langmuir-Whilhelmy balance coupled to a fluorescence microscope and real-time detection system to yield an approximate optical resolution of 1 mum. Fluorescence was achieved by laser excitation of 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-PC (BODIPY-PC, concentration </=1 mol%). The presence of mSP-B(1-25) in films of 4:1 (mol/mol) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DOPG) had a substantial effect on lipid morphology and phase behavior that depended on both surface pressure and peptide concentration (10, 5, and 1 wt.%). The mSP-B(1-25) peptide tended to fluidize phospholipid monolayers based on expanded molecular areas and reduced collapse pressures. In addition, epifluorescence measurements revealed the formation of solid-phase domains apparent as three-armed counterclockwise spirals separated from regions of fluid liquid-expanded phase domains in compressed phospholipid-peptide films. The appearance of these separated solid-phase domains resembled pure L-DPPC rather than the ensemble-type solid domains found in films of DPPC/DOPG alone and were most apparent when 10 wt.% mSP-B(1-25) was present. In contrast, films containing lower, more physiological mSP-B(1-25) contents of 5 and 1 wt.% exhibited a prominent intermediate 'dendritic' phase that increased in extent as surface pressure was raised. This phase was characterized by branching structures that formed a lattice-like mesh network with fluorescence intensities between a dye-depleted solid domain and a dye-enriched liquid phase. These results indicate that mSP-B(1-25) at near-physiological levels produces morphological changes in phospholipid monolayers analogous to those observed for native SP-B(1-79).
Collapse
Affiliation(s)
- Nilanjana Biswas
- Department of Chemistry, University of Georgia, Athens, GA 30602-2556, USA
| | | | | | | | | | | | | | | |
Collapse
|