1
|
Kanda T, Ishikita H. Redox Potentials of Iron-Sulfur Clusters in Type I Photosynthetic Reaction Centers. J Phys Chem B 2023; 127:4998-5004. [PMID: 37226417 PMCID: PMC10259448 DOI: 10.1021/acs.jpcb.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Indexed: 05/26/2023]
Abstract
The electron transfer pathways in type I photosynthetic reaction centers, such as photosystem I (PSI) and reaction centers from green sulfur bacteria (GsbRC), are terminated by two Fe4S4 clusters, FA and FB. The protein structures are the basis of understanding how the protein electrostatic environment interacts with the Fe4S4 clusters and facilitates electron transfer. Using the protein structures, we calculated the redox potential (Em) values for FA and FB in PSI and GsbRC, solving the linear Poisson-Boltzmann equation. The FA-to-FB electron transfer is energetically downhill in the cyanobacterial PSI structure, while it is isoenergetic in the plant PSI structure. The discrepancy arises from differences in the electrostatic influences of conserved residues, including PsaC-Lys51 and PsaC-Arg52, located near FA. The FA-to-FB electron transfer is slightly downhill in the GsbRC structure. Em(FA) and Em(FB) exhibit similar levels upon isolation of the membrane-extrinsic PsaC and PscB subunits from the PSI and GsbRC reaction centers, respectively. The binding of the membrane-extrinsic subunit at the heterodimeric/homodimeric reaction center plays a key role in tuning Em(FA) and Em(FB).
Collapse
Affiliation(s)
- Tomoki Kanda
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Moody JD, Hill S, Lundahl MN, Saxton AJ, Galambas A, Broderick WE, Lawrence CM, Broderick JB. Computational engineering of previously crystallized pyruvate formate-lyase activating enzyme reveals insights into SAM binding and reductive cleavage. J Biol Chem 2023; 299:104791. [PMID: 37156396 PMCID: PMC10267522 DOI: 10.1016/j.jbc.2023.104791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes are ubiquitous in nature and carry out a broad variety of difficult chemical transformations initiated by hydrogen atom abstraction. Although numerous radical SAM (RS) enzymes have been structurally characterized, many prove recalcitrant to crystallization needed for atomic-level structure determination using X-ray crystallography, and even those that have been crystallized for an initial study can be difficult to recrystallize for further structural work. We present here a method for computationally engineering previously observed crystallographic contacts and employ it to obtain more reproducible crystallization of the RS enzyme pyruvate formate-lyase activating enzyme (PFL-AE). We show that the computationally engineered variant binds a typical RS [4Fe-4S]2+/+ cluster that binds SAM, with electron paramagnetic resonance properties indistinguishable from the native PFL-AE. The variant also retains the typical PFL-AE catalytic activity, as evidenced by the characteristic glycyl radical electron paramagnetic resonance signal observed upon incubation of the PFL-AE variant with reducing agent, SAM, and PFL. The PFL-AE variant was also crystallized in the [4Fe-4S]2+ state with SAM bound, providing a new high-resolution structure of the SAM complex in the absence of substrate. Finally, by incubating such a crystal in a solution of sodium dithionite, the reductive cleavage of SAM is triggered, providing us with a structure in which the SAM cleavage products 5'-deoxyadenosine and methionine are bound in the active site. We propose that the methods described herein may be useful in the structural characterization of other difficult-to-resolve proteins.
Collapse
Affiliation(s)
- James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Sarah Hill
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Maike N Lundahl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Aubrianna J Saxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Amanda Galambas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - William E Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
3
|
Crack JC, Balasiny BK, Bennett SP, Rolfe MD, Froes A, MacMillan F, Green J, Cole JA, Le Brun NE. The Di-Iron Protein YtfE Is a Nitric Oxide-Generating Nitrite Reductase Involved in the Management of Nitrosative Stress. J Am Chem Soc 2022; 144:7129-7145. [PMID: 35416044 PMCID: PMC9052748 DOI: 10.1021/jacs.1c12407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 01/09/2023]
Abstract
Previously characterized nitrite reductases fall into three classes: siroheme-containing enzymes (NirBD), cytochrome c hemoproteins (NrfA and NirS), and copper-containing enzymes (NirK). We show here that the di-iron protein YtfE represents a physiologically relevant new class of nitrite reductases. Several functions have been previously proposed for YtfE, including donating iron for the repair of iron-sulfur clusters that have been damaged by nitrosative stress, releasing nitric oxide (NO) from nitrosylated iron, and reducing NO to nitrous oxide (N2O). Here, in vivo reporter assays confirmed that Escherichia coli YtfE increased cytoplasmic NO production from nitrite. Spectroscopic and mass spectrometric investigations revealed that the di-iron site of YtfE exists in a mixture of forms, including nitrosylated and nitrite-bound, when isolated from nitrite-supplemented, but not nitrate-supplemented, cultures. Addition of nitrite to di-ferrous YtfE resulted in nitrosylated YtfE and the release of NO. Kinetics of nitrite reduction were dependent on the nature of the reductant; the lowest Km, measured for the di-ferrous form, was ∼90 μM, well within the intracellular nitrite concentration range. The vicinal di-cysteine motif, located in the N-terminal domain of YtfE, was shown to function in the delivery of electrons to the di-iron center. Notably, YtfE exhibited very low NO reductase activity and was only able to act as an iron donor for reconstitution of apo-ferredoxin under conditions that damaged its di-iron center. Thus, YtfE is a high-affinity, low-capacity nitrite reductase that we propose functions to relieve nitrosative stress by acting in combination with the co-regulated NO-consuming enzymes Hmp and Hcp.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Basema K. Balasiny
- Institute
of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sophie P. Bennett
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew D. Rolfe
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Afonso Froes
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Fraser MacMillan
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Jeffrey Green
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey A. Cole
- Institute
of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
4
|
Monu, Oram BK, Bandyopadhyay B. A unified cost-effective method for the construction of reliable potential energy surfaces for H 2S and H 2O clusters. Phys Chem Chem Phys 2021; 23:18044-18057. [PMID: 34387290 DOI: 10.1039/d1cp01544c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A DFT-based methodology has been used to construct the potential energy surface of H2S clusters up to pentamers. Geometrical parameters and energetics show very good agreement with the existing experimental and high-level theoretical results. Distinct stable conformers of three dimers, six trimers, eleven tetramers and twenty-three pentamers have been identified. Both S-HS H-bond and SS interactions are identified in dimers, trimers and pentamers, while no SS interactions could be found in any of the 11 tetramer conformers. The binding energies of the most stable dimer, trimer, tetramer and pentamer are -1.66, -5.21, -8.57 and -12.54 kcal mol-1, respectively. The PES has been found to be exceedingly flat and the energy gap between the most and the least stable conformers was found to be only 0.09, 2.13, 1.65 and 1.13 kcal mol-1, from the dimer to the pentamer, respectively. The proposed method has also been used for water clusters up to the pentamer. The results obtained were found to agree closely with the existing results. Only one conformer was found for the water dimer, whereas four, five and fifteen conformers were obtained for the trimer, tetramer and pentamer, respectively. Atoms in molecular calculations were found to corroborate with the geometric and energetic results for both clusters.
Collapse
Affiliation(s)
- Monu
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur - 302017, India.
| | - Binod Kumar Oram
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur - 302017, India.
| | - Biman Bandyopadhyay
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur - 302017, India.
| |
Collapse
|
5
|
Kang F, Yu L, Xia Y, Yu M, Xia L, Wang Y, Yang L, Wang T, Gong W, Tian C, Liu X, Wang J. Rational Design of a Miniature Photocatalytic CO 2-Reducing Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fuying Kang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yan Xia
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minling Yu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xia
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuchuan Wang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Yang
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Tianyuan Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weimin Gong
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li B, Steindel P, Haddad N, Elliott SJ. Maximizing (Electro)catalytic CO 2 Reduction with a Ferredoxin-Based Reduction Potential Gradient. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bin Li
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Phillip Steindel
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Narmien Haddad
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean J. Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
7
|
Mishra KK, Borish K, Singh G, Panwaria P, Metya S, Madhusudhan MS, Das A. Observation of an Unusually Large IR Red-Shift in an Unconventional S-H···S Hydrogen-Bond. J Phys Chem Lett 2021; 12:1228-1235. [PMID: 33492971 DOI: 10.1021/acs.jpclett.0c03183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The S-H···S non-covalent interaction is generally known as an extremely unconventional weak hydrogen-bond in the literature. The present gas-phase spectroscopic investigation shows that the S-H···S hydrogen-bond can be as strong as any conventional hydrogen-bond in terms of the IR red-shift in the stretching frequency of the hydrogen-bond donor group. Herein, the strength of the S-H···S hydrogen-bond has been determined by measuring the red-shift (∼150 cm-1) of the S-H stretching frequency in a model complex of 2-chlorothiophenol and dimethyl sulfide using isolated gas-phase IR spectroscopy coupled with quantum chemistry calculations. The observation of an unusually large IR red-shift in the S-H···S hydrogen-bond is explained in terms of the presence of a significant amount of charge-transfer interactions in addition to the usual electrostatic interactions. The existence of ∼750 S-H···S interactions between the cysteine and methionine residues in 642 protein structures determined from an extensive Protein Data Bank analysis also indicates that this interaction is important for the structures of proteins.
Collapse
Affiliation(s)
- Kamal K Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Gulzar Singh
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Surajit Metya
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - M S Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| |
Collapse
|
8
|
Chand A, Biswal HS. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Sarkar S, Monu, Bandyopadhyay B. Cooperative nature of the sulfur centered hydrogen bond: investigation of (H 2S) n (n = 2-4) clusters using an affordable yet accurate level of theory. Phys Chem Chem Phys 2019; 21:25439-25448. [PMID: 31712792 DOI: 10.1039/c9cp05326c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Existing studies have shown that appreciably high level quantum chemical calculations are required to reproduce experimental energetic and geometric features of a H2S dimer. This condition severely restricts any practical possibility of obtaining reliable results for higher order H2S clusters. We have shown here that the binding energies calculated at the CCSD(T)/CBS level with counterpoise corrected geometries calculated at the MP2/aug-cc-pV(Q+d)Z level of theory excellently match with the experimental results for the H2S dimer. Subsequently, the above mentioned levels of theory were used for trimers and tetramers. (H2S)n (n = 2-4) clusters were found to show cooperative strengthening of S-HS hydrogen bonds, which is clearly evident from the evolution of binding energies and hydrogen bond lengths, with increasing cluster size. Localized molecular orbital energy decomposition analyses have been carried out to understand how the contributions of various energy components modulate with the size of the clusters and what are their relative contributions towards the overall stabilization of the clusters. Natural bond orbital and atoms in molecules analyses were also carried out in order to look into the evolution of the electronic charge transfer and electron density topology with cluster size.
Collapse
Affiliation(s)
- Saptarshi Sarkar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Monu
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Biman Bandyopadhyay
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
10
|
Mirts EN, Petrik ID, Hosseinzadeh P, Nilges MJ, Lu Y. A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme. Science 2018; 361:1098-1101. [PMID: 30213908 DOI: 10.1126/science.aat8474] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023]
Abstract
Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved-through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites-to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.
Collapse
Affiliation(s)
- Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Igor D Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark J Nilges
- School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
11
|
Lemke KH. Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit. J Chem Phys 2017. [DOI: 10.1063/1.4985094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kono H. Lemke
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
12
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Biswal HS, Bhattacharyya S, Bhattacherjee A, Wategaonkar S. Nature and strength of sulfur-centred hydrogen bonds: laser spectroscopic investigations in the gas phase and quantum-chemical calculations. INT REV PHYS CHEM 2015. [DOI: 10.1080/0144235x.2015.1022946] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Hydrogen Bonds Involving Sulfur: New Insights from ab Initio Calculations and Gas Phase Laser Spectroscopy. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2015. [DOI: 10.1007/978-3-319-14163-3_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Perrin BS, Miller BT, Schalk V, Woodcock HL, Brooks BR, Ichiye T. Web-based computational chemistry education with CHARMMing III: Reduction potentials of electron transfer proteins. PLoS Comput Biol 2014; 10:e1003739. [PMID: 25058418 PMCID: PMC4110074 DOI: 10.1371/journal.pcbi.1003739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A module for fast determination of reduction potentials, E°, of redox-active proteins has been implemented in the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org). The free energy of reduction, which is proportional to E°, is composed of an intrinsic contribution due to the redox site and an environmental contribution due to the protein and solvent. Here, the intrinsic contribution is selected from a library of pre-calculated density functional theory values for each type of redox site and redox couple, while the environmental contribution is calculated from a crystal structure of the protein using Poisson-Boltzmann continuum electrostatics. An accompanying lesson demonstrates a calculation of E°. In this lesson, an ionizable residue in a [4Fe-4S]-protein that causes a pH-dependent E° is identified, and the E° of a mutant that would test the identification is predicted. This demonstration is valuable to both computational chemistry students and researchers interested in predicting sequence determinants of E° for mutagenesis.
Collapse
Affiliation(s)
- B. Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Benjamin T. Miller
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vinushka Schalk
- Department of Natural Sciences, New College of Florida, Sarasota, Florida, United States of America
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, D.C., United States of America
| |
Collapse
|
16
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Perrin BS, Ichiye T. Identifying sequence determinants of reduction potentials of metalloproteins. J Biol Inorg Chem 2013; 18:599-608. [PMID: 23690205 PMCID: PMC3723707 DOI: 10.1007/s00775-013-1004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
The reduction potential of an electron transfer protein is one of its most important functional characteristics. Although the type of redox site and the protein fold are the major determinants of the reduction potential of a redox-active protein, its amino acid sequence may tune the reduction potential as well. Thus, homologous proteins can often be divided into different classes, with each class characterized by a biological function and a reduction potential. Site-specific mutagenesis of the sequence determinants of the differences in the reduction potential between classes should change the reduction potential of a protein in one class to that of the other class. Here, a procedure is presented that combines energetic and bioinformatic analysis of homologous proteins to identify sequence determinants that are also good candidates for site-specific mutations, using the [4Fe-4S] ferredoxins and the [4Fe-4S] high-potential iron-sulfur proteins as examples. This procedure is designed to guide site-specific mutations or more computationally expensive studies, such as molecular dynamics simulations. To make the procedure more accessible to the general scientific community, it is being implemented into CHARMMing, a Web-based portal, with a library of density functional theory results for the redox site that are used in the setting up of Poisson-Boltzmann continuum electrostatics calculations for the protein energetics.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| |
Collapse
|
18
|
Perrin BS, Niu S, Ichiye T. Calculating standard reduction potentials of [4Fe-4S] proteins. J Comput Chem 2013; 34:576-82. [PMID: 23115132 PMCID: PMC3570669 DOI: 10.1002/jcc.23169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/20/2012] [Accepted: 09/30/2012] [Indexed: 11/08/2022]
Abstract
The oxidation-reduction potentials of electron transfer proteins determine the driving forces for their electron transfer reactions. Although the type of redox site determines the intrinsic energy required to add or remove an electron, the electrostatic interaction energy between the redox site and its surrounding environment can greatly shift the redox potentials. Here, a method for calculating the reduction potential versus the standard hydrogen electrode, E°, of a metalloprotein using a combination of density functional theory and continuum electrostatics is presented. This work focuses on the methodology for the continuum electrostatics calculations, including various factors that may affect the accuracy. The calculations are demonstrated using crystal structures of six homologous HiPIPs, which give E° that are in excellent agreement with experimental results.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| | - Shuqiang Niu
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| |
Collapse
|
19
|
Perrin BS, Ichiye T. Characterizing the effects of the protein environment on the reduction potentials of metalloproteins. J Biol Inorg Chem 2013; 18:103-10. [PMID: 23229112 PMCID: PMC3567609 DOI: 10.1007/s00775-012-0955-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/18/2012] [Indexed: 11/26/2022]
Abstract
The reduction potentials of electron transfer proteins are critically determined by the degree of burial of the redox site within the protein and the degree of permanent polarization of the polypeptide around the redox site. Although continuum electrostatics calculations of protein structures can predict the net effect of these factors, quantifying each individual contribution is a difficult task. Here, the burial of the redox site is characterized by a dielectric radius R(p) (a Born-type radius for the protein), the polarization of the polypeptide is characterized by an electret potential ϕ(p) (the average electrostatic potential at the metal atoms), and an electret-dielectric spheres (EDS) model of the entire protein is then defined in terms of R(p) and ϕ(p). The EDS model shows that for a protein with a redox site of charge Q, the dielectric response free energy is a function of Q(2), while the electret energy is a function of Q. In addition, R(p) and ϕ(p) are shown to be characteristics of the fold of a protein and are predictive of the most likely redox couple for redox sites that undergo different redox couples.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| |
Collapse
|
20
|
Galardon E, Roger T, Deschamps P, Roussel P, Tomas A, Artaud I. Synthesis of a FeIISH Complex Stabilized by an Intramolecular N–H···S Hydrogen Bond, Which Acts as a H2S Donor. Inorg Chem 2012; 51:10068-70. [DOI: 10.1021/ic300952d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Erwan Galardon
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| | - Thomas Roger
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| | - Patrick Deschamps
- Laboratoire
de Crystallographie
et RMN Biologiques, UMR 8015 CNRS, Université Paris Descartes, PRES Paris cité, 4 avenue de
l’Observatoire, 75270 Paris Cedex 06, France
| | - Pascal Roussel
- Unité de Catalyse et Chimie
du Solide (UCCS), UMR 8012 CNRS, École Nationale Supérieure de Chimie de Lille, BP 90108, 59652
Villeneuve d’Ascq Cedex, France
| | - Alain Tomas
- Laboratoire
de Crystallographie
et RMN Biologiques, UMR 8015 CNRS, Université Paris Descartes, PRES Paris cité, 4 avenue de
l’Observatoire, 75270 Paris Cedex 06, France
| | - Isabelle Artaud
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| |
Collapse
|
21
|
Niu S, Ichiye T. Density functional theory calculations of redox properties of iron–sulphur protein analogues. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.582111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Perrin BS, Ichiye T. Fold versus sequence effects on the driving force for protein-mediated electron transfer. Proteins 2011; 78:2798-808. [PMID: 20635418 DOI: 10.1002/prot.22794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Electron transport chains composed of electron transfer reactions mainly between proteins provide fast efficient flow of energy in a variety of metabolic pathways. Reduction potentials are essential characteristics of the proteins because they determine the driving forces for the electron transfers. As both polar and charged groups from the backbone and side chains define the electrostatic environment, both the fold and the sequence will contribute. However, although the role of a specific sequence may be determined by experimental mutagenesis studies of reduction potentials, understanding the role of the fold by experiment is much more difficult. Here, continuum electrostatics and density functional theory calculations are used to analyze reduction potentials in [4Fe-4S] proteins. A key feature is that multiple homologous proteins in three different folds are compared: six high potential iron-sulfur proteins, four bacterial ferredoxins, and four nitrogenase iron proteins. Calculated absolute reduction potentials are shown to be in quantitative agreement with electrochemical reduction potentials. Calculations further demonstrate that the contribution of the backbone is larger than that of the side chains and is consistent for homologous proteins but differs for nonhomologous proteins, indicating that the fold is the major protein factor determining the reduction potential, whereas the specific amino acid sequence tunes the reduction potential for a given fold. Moreover, the fold contribution is determined mainly by the proximity of the redox site to the protein surface and the orientation of the dipoles of backbone near the redox site.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, District of Columbia 20057-1227, USA
| | | |
Collapse
|
23
|
Luo Y, Ergenekan CE, Fischer JT, Tan ML, Ichiye T. The molecular determinants of the increased reduction potential of the rubredoxin domain of rubrerythrin relative to rubredoxin. Biophys J 2010; 98:560-8. [PMID: 20159152 DOI: 10.1016/j.bpj.2009.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/28/2022] Open
Abstract
Based on the crystal structures, three possible sequence determinants have been suggested as the cause of a 285 mV increase in reduction potential of the rubredoxin domain of rubrerythrin over rubredoxin by modulating the polar environment around the redox site. Here, electrostatic calculations of crystal structures of rubredoxin and rubrerythrin and molecular dynamics simulations of rubredoxin wild-type and mutants are used to elucidate the contributions to the increased reduction potential. Asn(160) and His(179) in rubrerythrin versus valines in rubredoxins are predicted to be the major contributors, as the polar side chains contribute significantly to the electrostatic potential in the redox site region. The mutant simulations show both side chains rotating on a nanosecond timescale between two conformations with different electrostatic contributions. Reduction also causes a change in the reduction energy that is consistent with a linear response due to the interesting mechanism of shifting the relative populations of the two conformations. In addition to this, a simulation of a triple mutant indicates the side-chain rotations are approximately anticorrelated so whereas one is in the high potential conformation, the other is in the low potential conformation. However, Ala(176) in rubrerythrin versus a leucine in rubredoxin is not predicted to be a large contributor, because the solvent accessibility increases only slightly in mutant simulations and because it is buried in the interface of the rubrerythrin homodimer.
Collapse
Affiliation(s)
- Yan Luo
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
24
|
Kuznetsov AM, Zueva EM, Masliy AN, Krishtalik LI. Redox potential of the Rieske iron-sulfur protein quantum-chemical and electrostatic study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:347-59. [PMID: 20026009 DOI: 10.1016/j.bbabio.2009.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/04/2009] [Accepted: 12/08/2009] [Indexed: 11/15/2022]
Abstract
Quantum-chemical study of structures, energies, and effective partial charge distribution for several models of the Rieske protein redox center is performed in terms of the B3LYP density functional method in combination with the broken symmetry approach using three different atomic basis sets. The structure of the redox complex optimized in vacuum differs markedly from that inside the protein. This means that the protein matrix imposes some stress on the active site resulting in distortion of its structure. The redox potentials calculated for the real active site structure are in a substantially better agreement with the experiment than those calculated for the idealized structure. This shows an important role of the active site distortion in tuning its redox potential. The reference absolute electrode potential of the standard hydrogen electrode is used that accounts for the correction caused by the water surface potential. Electrostatic calculations are performed in the framework of the polarizable solute model. Two dielectric permittivities of the protein are employed: the optical permittivity for calculation of the intraprotein electric field, and the static permittivity for calculation of the dielectric response energy. Only this approach results in a reasonable agreement of the calculated and experimental redox potentials.
Collapse
Affiliation(s)
- Andrey M Kuznetsov
- Kazan State Technological University, ul. K. Marksa 68, 420015, Kazan, Russia.
| | | | | | | |
Collapse
|
25
|
Abstract
The cleavage of [4Fe-4S]-type clusters is thought to be important in proteins such as Fe-S scaffold proteins and nitrogenase. However, most [4Fe-4S](2+) clusters in proteins have two antiferromagnetically coupled high-spin layers in which a minority spin is delocalized in each layer, thus forming a symmetric Fe(2.5+)-Fe(2.5+) pair, and how cleavage occurs between the irons is puzzling because of the shared electron. Previously, we proposed a novel mechanism for the fission of a [4Fe-4S] core into two [2Fe-2S] cores in which the minority spin localizes on one iron, thus breaking the symmetry and creating a transition state with two Fe(3+)-Fe(2+) pairs. Cleavage first through the weak Fe(2+)-S bonds lowers the activation energy. Here, we propose a test of this mechanism: break the symmetry of the cluster by changing the ligands to promote spin localization, which should enhance reactivity. The cleavage reactions for the homoligand [Fe(4)S(4)L(4)](2-) (L = SCH(3), Cl, H) and heteroligand [Fe(4)S(4)(SCH(3))(2)L(2)](2-) (L = Cl, H) clusters in the gas phase were examined via broken-symmetry density functional theory calculations. In the heteroligand clusters, the minority spin localized on the iron coordinated by the weaker electron-donor ligand, and the reaction energy and activation barrier of the cleavage were lowered, which is in accord with our proposed mechanism and consistent with photoelectron spectroscopy and collision-induced dissociation experiments. These studies suggest that proteins requiring facile fission of their [4Fe-4S] cluster in their biological function might have spin-localized [4Fe-4S] clusters.
Collapse
Affiliation(s)
- Shuqiang Niu
- Department of Chemistry, Georgetown University, Washington, D.C. 20057-1227, USA
| | | |
Collapse
|
26
|
Zhou P, Tian F, Lv F, Shang Z. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins 2009; 76:151-63. [PMID: 19089987 DOI: 10.1002/prot.22327] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sulfur atoms have been known to participate in hydrogen bonds (H-bonds) and these sulfur-containing H-bonds (SCHBs) are suggested to play important roles in certain biological processes. This study aims to comprehensively characterize all the SCHBs in 500 high-resolution protein structures (< or =1.8 A). We categorized SCHBs into six types according to donor/acceptor behaviors and used explicit hydrogen approach to distinguish SCHBs from those of nonhydrogen bonding interactions. It is revealed that sulfur atom is a very poor H-bond acceptor, but a moderately good H-bond donor. In alpha-helix, considerable SCHBs were found between the sulphydryl group of cysteine residue i and the carbonyl oxygen of residue i-4, and these SCHBs exert effects in stabilizing helices. Although for other SCHBs, they possess no specific secondary structural preference, their geometric characteristics in proteins and in free small compounds are significantly distinct, indicating the protein SCHBs are geometrically distorted. Interestingly, sulfur atom in the disulfide bond tends to form bifurcated H-bond whereas in cysteine-cysteine pairs prefer to form dual H-bond. These special H-bonds remarkably boost the interaction between H-bond donor and acceptor. By oxidation/reduction manner, the mutual transformation between the dual H-bonds and disulfide bonds for cysteine-cysteine pairs can accurately adjust the structural stability and biological function of proteins in different environments. Furthermore, few loose H-bonds were observed to form between the sulphydryl groups and aromatic rings, and in these cases the donor H is almost over against the rim rather than the center of the aromatic ring.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
27
|
Lewinska A, Bilinski T, Bartosz G. Limited Effectiveness of Antioxidants in the Protection of Yeast Defective in Antioxidant Proteins. Free Radic Res 2009; 38:1159-65. [PMID: 15621692 DOI: 10.1080/10715760400009860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Efficacy of several antioxidants in the protection of the yeast Saccharomyces cerevisiae mutants deficient in CuZnSOD and deficient in glutaredoxin 5 to growth restriction induced by oxidants was studied. Ascorbate and glutathione protected the Deltasod1 and Deltagrx5 mutants against the effects of t-butyl hydroperoxide and cumene hydroperoxide, Deltasod1 mutants against oxytetracycline and Deltagrx5 mutants against menadione and 2,2'-azobis-(2-amidinopropane). However, Tempol, Trolox and melatonin were much less effective, showing prooxidative effects and, at high concentrations, hampering the growth of the mutants in the absence of exogenous oxidants. These results point to a complication of cellular effects of antioxidants by their prooxidative effects and to the usefulness of cellular tests to evaluate the biological effectiveness of antioxidants.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszów, ul. Cegielniana 12, PL 35-595 Rzeszów, Poland
| | | | | |
Collapse
|
28
|
Niu S, Ichiye T. Insight into environmental effects on bonding and redox properties of [4Fe-4S] clusters in proteins. J Am Chem Soc 2009; 131:5724-5. [PMID: 19341280 DOI: 10.1021/ja900406j] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The large differences in redox potentials between the HiPIPs and ferredoxins are generally attributed to hydrogen bonds and electrostatic effects from the protein and solvent. Recent ligand K-edge X-ray absorption studies by Solomon and co-workers show that the Fe-S covalencies of [4Fe-4S] clusters in the two proteins differ considerably apparently because of hydrogen bonds from water, indicating electronic effects may be important. However, combined density function theory (DFT) and photoelectron spectroscopy studies by our group and Wang and co-workers indicate that hydrogen bonds tune the potential of [4Fe-4S] clusters by mainly electrostatics. The DFT studies here rationalize both results, namely that the observed change in the Fe-S covalency is due to differences in ligand conformation between the two proteins rather than hydrogen bonds. Moreover, the ligand conformation affects the calculated potentials by approximately 100 mV and, thus, is a heretofore unconsidered means of tuning the potential.
Collapse
Affiliation(s)
- Shuqiang Niu
- Department of Chemistry, Georgetown University, Washington, DC 20057-1227, USA
| | | |
Collapse
|
29
|
Koay M, Antonkine M, Gärtner W, Lubitz W. Modelling Low-Potential [Fe4S4] Clusters in Proteins. Chem Biodivers 2008; 5:1571-1587. [DOI: 10.1002/cbdv.200890145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Ptushenko VV, Cherepanov DA, Krishtalik LI, Semenov AY. Semi-continuum electrostatic calculations of redox potentials in photosystem I. PHOTOSYNTHESIS RESEARCH 2008; 97:55-74. [PMID: 18483776 DOI: 10.1007/s11120-008-9309-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/24/2008] [Indexed: 05/19/2023]
Abstract
The midpoint redox potentials (E(m)) of all cofactors in photosystem I from Synechococcus elongatus as well as of the iron-sulfur (Fe(4)S(4)) clusters in two soluble ferredoxins from Azotobacter vinelandii and Clostridium acidiurici were calculated within the framework of a semi-continuum dielectric approach. The widely used treatment of proteins as uniform media with single dielectric permittivity is oversimplified, particularly, because permanent charges are considered both as a source for intraprotein electric field and as a part of dielectric polarizability. Our approach overcomes this inconsistency by using two dielectric constants: optical epsilon(o)=2.5 for permanent charges pre-existing in crystal structure, and static epsilon(s) for newly formed charges. We also take into account a substantial dielectric heterogeneity of photosystem I revealed by photoelectric measurements and a liquid junction potential correction for E(m) values of relevant redox cofactors measured in aprotic solvents. We show that calculations based on a single permittivity have the discrepancy with experimental data larger than 0.7 V, whereas E(m) values calculated within our approach fall in the range of experimental estimates. The electrostatic analysis combined with quantum chemistry calculations shows that (i) the energy decrease upon chlorophyll dimerization is essential for the downhill mode of primary charge separation between the special pair P(700) and the primary acceptor A(0); (ii) the primary donor is apparently P(700) but not a pair of accessory chlorophylls; (iii) the electron transfer from the A branch quinone Q(A) to the iron-sulfur cluster F(X) is most probably downhill, whereas that from the B branch quinone Q(B) to F(X) is essentially downhill.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N.Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
31
|
Sevrioukova IF. Redox-dependent Structural Reorganization in Putidaredoxin, a Vertebrate-type [2Fe-2S] Ferredoxin from Pseudomonas putida. J Mol Biol 2005; 347:607-21. [PMID: 15755454 DOI: 10.1016/j.jmb.2005.01.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 01/19/2005] [Accepted: 01/21/2005] [Indexed: 11/24/2022]
Abstract
Putidaredoxin (Pdx), a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida, transfers electrons from NADH-putidaredoxin reductase to cytochrome P450cam. Pdx exhibits redox-dependent binding affinities for P450cam and is thought to play an effector role in the monooxygenase reaction catalyzed by this hemoprotein. To understand how the reduced form of Pdx is stabilized and how reduction of the [2Fe-2S] cluster affects molecular properties of the iron-sulfur protein, crystal structures of reduced C73S and C73S/C85S Pdx were solved to 1.45 angstroms and 1.84 angstroms resolution, respectively, and compared to the corresponding 2.0 angstroms and 2.03 angstroms X-ray models of the oxidized mutants. To prevent photoreduction, the latter models were determined using in-house radiation source and the X-ray dose received by Pdx crystals was significantly decreased. Structural analysis showed that in reduced Pdx the Cys45-Ala46 peptide bond flip initiates readjustment of hydrogen bonding interactions between the [2Fe-2S] cluster, the Sgamma atoms of the cysteinyl ligands, and the backbone amide nitrogen atoms that results in tightening of the Cys39-Cys48 metal cluster binding loop around the prosthetic group and shifting of the metal center toward the Cys45-Thr47 peptide. From the metal center binding loop, the redox changes are transmitted to the linked Ile32-Asp38 peptide triggering structural rearrangement between the Tyr33-Asp34, Ser7-Asp9 and Pro102-Asp103 fragments of Pdx. The newly established hydrogen bonding interactions between Ser7, Asp9, Tyr33, Asp34, and Pro102, in turn, not only stabilize the tightened conformation of the [2Fe-2S] cluster binding loop but also assist in formation of a specific structural patch on the surface of Pdx that can be recognized by P450cam. This redox-linked change in surface properties is likely to be responsible for different binding affinity of oxidized and reduced Pdx to the hemoprotein.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92612-3900, USA.
| |
Collapse
|
32
|
Ergenekan CE, Thomas D, Fischer JT, Tan ML, Eidsness MK, Kang C, Ichiye T. Prediction of reduction potential changes in rubredoxin: a molecular mechanics approach. Biophys J 2004; 85:2818-29. [PMID: 14581187 PMCID: PMC1303563 DOI: 10.1016/s0006-3495(03)74705-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Predicting the effects of mutation on the reduction potential of proteins is crucial in understanding how reduction potentials are modulated by the protein environment. Previously, we proposed that an alanine vs. a valine at residue 44 leads to a 50-mV difference in reduction potential found in homologous rubredoxins because of a shift in the polar backbone relative to the iron site due to the different side-chain sizes. Here, the aim is to determine the effects of mutations to glycine, isoleucine, and leucine at residue 44 on the structure and reduction potential of rubredoxin, and if the effects are proportional to side-chain size. Crystal structure analysis, molecular mechanics simulations, and experimental reduction potentials of wild-type and mutant Clostridium pasteurianum rubredoxin, along with sequence analysis of homologous rubredoxins, indicate that the backbone position relative to the redox site as well as solvent penetration near the redox site are both structural determinants of the reduction potential, although not proportionally to side-chain size. Thus, protein interactions are too complex to be predicted by simple relationships, indicating the utility of molecular mechanics methods in understanding them.
Collapse
Affiliation(s)
- Can E Ergenekan
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | | | | | | | |
Collapse
|