1
|
Lakic B, Beh C, Sarkar S, Yap SL, Cardoso P, Valery C, Hung A, Jones NC, Hoffmann SV, Blanch EW, Dyett B, Conn CE. Cubosome lipid nanocarriers for delivery of ultra-short antimicrobial peptides. J Colloid Interface Sci 2025; 677:1080-1097. [PMID: 39137610 DOI: 10.1016/j.jcis.2024.07.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
HYPOTHESIS Although antimicrobial peptides (AMPs) are a promising class of new antibiotics, their inherent susceptibility to degradation requires nanocarrier-mediated delivery. While cubosome nanocarriers have been extensively studied for delivery of AMPs, we do not currently understand why cubosome encapsulation improves antimicrobial efficacy for some compounds but not others. This study therefore aims to investigate the link between the mechanism of action and permeation efficiency of the peptides, their encapsulation efficacy, and the antimicrobial activity of these systems. EXPERIMENTS Encapsulation and delivery of Indolicidin, and its ultra-short derivative, Priscilicidin, were investigated using SAXS, cryo-TEM and circular dichroism. Molecular dynamics simulations were used to understand the loading of these peptides within cubosomes. The antimicrobial efficacy was assessed against gram-negative (E. coli) and gram-positive (MRSA) bacteria. FINDINGS A high ionic strength solution was required to facilitate high loading of the cationic AMPs, with bilayer encapsulation driven by tryptophan and Fmoc moieties. Cubosome encapsulation did not improve the antimicrobial efficacy of the AMPs consistent with their high permeation, as explained by a recent 'diffusion to capture model'. This suggests that cubosome encapsulation may not be an effective strategy for all antimicrobial compounds, paving the way for improved selection of nanocarriers for AMPs, and other antimicrobial compounds.
Collapse
Affiliation(s)
- Biserka Lakic
- School of Science, STEM College, RMIT University, Victoria, 3001 Australia
| | - Chia Beh
- School of Science, STEM College, RMIT University, Victoria, 3001 Australia
| | - Sampa Sarkar
- School of Science, STEM College, RMIT University, Victoria, 3001 Australia
| | - Sue-Lyn Yap
- School of Science, STEM College, RMIT University, Victoria, 3001 Australia
| | - Priscila Cardoso
- School of Health and Biomedical Science, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia
| | - Celine Valery
- School of Health and Biomedical Science, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Victoria, 3001 Australia
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Ewan W Blanch
- School of Science, STEM College, RMIT University, Victoria, 3001 Australia.
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Victoria, 3001 Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Victoria, 3001 Australia.
| |
Collapse
|
2
|
Giraldo-Lorza JM, Leidy C, Manrique-Moreno M. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. MEMBRANES 2024; 14:220. [PMID: 39452832 PMCID: PMC11509253 DOI: 10.3390/membranes14100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Cholesterol is a biological molecule that is essential for cellular life. It has unique features in terms of molecular structure and function, and plays an important role in determining the structure and properties of cell membranes. One of the most recognized functions of cholesterol is its ability to increase the level of lipid packing and rigidity of biological membranes while maintaining high levels of lateral mobility of the bulk lipids, which is necessary to sustain biochemical signaling events. There is increased interest in designing bioactive peptides that can act as effective antimicrobial agents without causing harm to human cells. For this reason, it becomes relevant to understand how cholesterol can affect the interaction between bioactive peptides and lipid membranes, in particular by modulating the peptides' ability to penetrate and disrupt the membranes through these changes in membrane rigidity. Here we discuss cholesterol and its role in modulating lipid bilayer properties and discuss recent evidence showing how cholesterol modulates bioactive peptides to different degrees.
Collapse
Affiliation(s)
- Juan M. Giraldo-Lorza
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
3
|
Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-thermal technologies allow for the nutritional and sensory properties of foods to be preserved, something that consumers demand. Combining their use with antimicrobial peptides (AMPs) provides potential methods for food preservation that could have advantages over the use of chemical preservatives and thermal technologies. The aim of this review was to discuss the advances in the application of non-thermal technologies in combination with AMPs as a method for microbial inactivation. Published papers reporting studies on the combined use of power ultrasound (US), pulsed electrical fields (PEF), and high hydrostatic pressure (HHP) with AMPs were reviewed. All three technologies show a possibility of being combined with AMPs, generally demonstrating higher efficiency than the application of US, PEF, HHP, and AMPs separately. The most studied AMP used in combination with the three technologies was nisin, probably due to the fact that it is already officially regulated. However, the combination of these non-thermal technologies with other AMPs also shows promising results for microbial inactivation, as does the combination of AMPs with other novel non-thermal technologies. The effectiveness of the combined treatment depends on several factors; in particular, the characteristics of the food matrix, the conditions of the non-thermal treatment, and the conditions of AMP application.
Collapse
|
4
|
Walker LR, Marty MT. Lipid tails modulate antimicrobial peptide membrane incorporation and activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183870. [PMID: 35077676 PMCID: PMC8818043 DOI: 10.1016/j.bbamem.2022.183870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
Abstract
Membrane disrupting antimicrobial peptides (AMPs) are often amphipathic peptides that interact directly with lipid bilayers. AMPs are generally thought to interact mostly with lipid head groups, but it is less clear how the lipid alkyl chain length and saturation modulate interactions with membranes. Here, we used native mass spectrometry to measure the stoichiometry of three different AMPs-LL-37, indolicidin, and magainin-2-in lipid nanodiscs. We also measured the activity of these AMPs in unilamellar vesicle leakage assays. We found that LL-37 formed specific hexamer complexes but with different intermediates and affinities that depended on the bilayer thickness. LL-37 was also most active in lipid bilayers containing longer, unsaturated lipids. In contrast, indolicidin incorporated to a higher degree into more fluid lipid bilayers but was more active with bilayers with thinner, less fluid lipids. Finally, magainin-2 incorporated to a higher degree into bilayers with longer, unsaturated alkyl chains and showed more activity in these same conditions. Together, these data show that higher amounts of peptide incorporation generally led to higher activity and that AMPs tend to incorporate more into longer unsaturated lipid bilayers. However, the activity of AMPs was not always directly related to amount of peptide incorporated.
Collapse
Affiliation(s)
- Lawrence R Walker
- Department of Chemistry and Biochemistry, Tucson, AZ 85721, United States.
| | - Michael T Marty
- Department of Chemistry and Biochemistry, Tucson, AZ 85721, United States; Bio5 Institute, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
5
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Williams ES, Gneid H, Marshall SR, González MJ, Mandelbaum JA, Busschaert N. A supramolecular host for phosphatidylglycerol (PG) lipids with antibacterial activity. Org Biomol Chem 2021; 20:5958-5966. [PMID: 34935024 DOI: 10.1039/d1ob02298a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids fulfill a variety of important physiological functions, such as energy storage, providing a hydrophobic barrier, and signal transduction. Despite this plethora of biological roles, lipids are rarely considered a potential target for medical applications. Here, we report a set of neutral small molecules that contain boronic acid and urea functionalities to selectively recognize the bacterial lipid phosphatidylglycerol (PG). The affinity and selectivity was determined using 1H NMR titrations and a liposome-based Alizarin Red S assay. Minimum inhibitory concentrations (MIC) were determined to assess antibacterial activity. The most potent compounds display an association constant with PG in liposomes of at least 5 × 103 M-1, function as antibacterial agents against Gram-positive bacteria (MIC = 12.5-25 μM), and show little hemolytic activity. Mode of action studies suggest that the boronic acids bind to the headgroup of the PG lipids, which leads to a change in membrane fluidity and ultimately causes membrane depolarization and cell death.
Collapse
Affiliation(s)
- Elliot S Williams
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Hassan Gneid
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Sarah R Marshall
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Mario J González
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Jorgi A Mandelbaum
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Nathalie Busschaert
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| |
Collapse
|
7
|
Molotkovsky RJ, Galimzyanov TR, Ermakov YA. Heterogeneity in Lateral Distribution of Polycations at the Surface of Lipid Membrane: From the Experimental Data to the Theoretical Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6623. [PMID: 34772149 PMCID: PMC8585412 DOI: 10.3390/ma14216623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Natural and synthetic polycations of different kinds attract substantial attention due to an increasing number of their applications in the biomedical industry and in pharmacology. The key characteristic determining the effectiveness of the majority of these applications is the number of macromolecules adsorbed on the surface of biological cells or their lipid models. Their study is complicated by a possible heterogeneity of polymer layer adsorbed on the membrane. Experimental methods reflecting the structure of the layer include the electrokinetic measurements in liposome suspension and the boundary potential of planar bilayer lipid membranes (BLM) and lipid monolayers with a mixed composition of lipids and the ionic media. In the review, we systematically analyze the methods of experimental registration and theoretical description of the laterally heterogeneous structures in the polymer layer published in the literature and in our previous studies. In particular, we consider a model based on classical theory of the electrical double layer, used to analyze the available data of the electrokinetic measurements in liposome suspension with polylysines of varying molecular mass. This model suggests a few parameters related to the heterogeneity of the polymer layer and allows determining the conditions for its appearance at the membrane surface. A further development of this theoretical approach is discussed.
Collapse
Affiliation(s)
- Rodion J. Molotkovsky
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Yury A. Ermakov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
8
|
Dai M, Li Y, Xu L, Wu D, Zhou Q, Li P, Gu Q. A Novel Bacteriocin From Lactobacillus Pentosus ZFM94 and Its Antibacterial Mode of Action. Front Nutr 2021; 8:710862. [PMID: 34368212 PMCID: PMC8342802 DOI: 10.3389/fnut.2021.710862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Bacteriocins are bioactive antimicrobial peptides synthesized in the ribosome of numerous bacteria and released extracellularly. Pentocin ZFM94 produced by Lactobacillus pentosus (L. pentosus) ZFM94, isolated from infant feces with strong antibacterial activity, was purified by ammonium sulfate precipitation, dextran gel chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of the purified bacteriocin was 3,547.74 Da determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pentocin ZFM94 exhibited broad-spectrum antimicrobial activity against tested Gram-positive and Gram-negative bacteria, and the minimal inhibitory concentrations (MICs) of Micrococcus luteus (M. luteus) 10,209, Staphylococcus aureus (S. aureus) D48, and Escherichia coli (E. coli) DH5α were 1.75, 2.00, and 2.50 μm, respectively. Pentocin ZFM94 was heat-stable (30 min at 80°C) and showed inhibitory activity over a wide pH range (5.00–7.00). It could be degraded by trypsin and pepsin, but not by amylase, lysozyme, lipase, and ribonuclease A. Fluorescence leakage assay showed that pentocin ZFM94 induced disruption of the cell membrane and caused leakage of cellular content. Furthermore, lipid II was not an antibacterial target of pentocin ZFM94. This study laid the foundation for further development and utilization of L. pentosus ZFM94 and its bacteriocin.
Collapse
Affiliation(s)
- Mengdi Dai
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanran Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Luyao Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Danli Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
9
|
Casciaro B, Cappiello F, Verrusio W, Cacciafesta M, Mangoni ML. Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations. Curr Top Med Chem 2021; 20:1264-1273. [PMID: 32338221 DOI: 10.2174/1568026620666200427090912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023]
Abstract
The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center For Life Nano Science @ Sapienza, Italian Institute of Technology, Rome 00161, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Walter Verrusio
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Mauro Cacciafesta
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
10
|
Azmi S, Verma NK, Tripathi JK, Srivastava S, Verma DP, Ghosh JK. Introduction of cell‐selectivity in bovine cathelicidin
BMAP
‐28 by exchanging heptadic isoleucine with the adjacent proline at a non‐heptadic position. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sarfuddin Azmi
- Molecular and Structural Biology Division CSIR‐CDRI Lucknow India
- Scientific Research Centre Prince Sultan Military Medical City, Sulaimaniyah Riyadh Saudi Arabia
| | | | | | | | | | | |
Collapse
|
11
|
Hu WW, Huang SC, Jin SLC. A novel antimicrobial peptide-derived vehicle for oligodeoxynucleotide delivery to inhibit TNF-α expression. Int J Pharm 2019; 558:63-71. [PMID: 30639220 DOI: 10.1016/j.ijpharm.2018.12.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 11/19/2022]
Abstract
Indolicidin (IL), an antimicrobial peptide, was investigated as a vehicle to promote oligodeoxynucleotides (ODNs) delivery. To increase charge density, IL was dimerized by adding a cysteine to its C or N terminus, which was denoted as ILC or CIL, respectively. In contrast to IL, cytotoxicity of ILC and CIL was significantly reduced because these dimeric peptides were longer than IL, which restricted their insertions to cell membrane. In contrast to ILC, CIL displayed well loading efficiency. These peptides were applied to deliver ODNs against tumor necrosis factor-α (TNF-α) because TNF-α is a pro-inflammatory cytokine which plays an important role in immunological diseases. Although IL/ODN slightly reduced TNF-α expression, the high cytotoxicity restricted its application window. Furthermore, ILC/ODN was incapable of inducing gene silence due to its low encapsulation efficiency and poor endosomal escape. In contrast, CIL exhibited excellent ODN transportation and the internalized CIL/ODN complexes may escape from endosomes. Therefore, TNF-α expression can be specifically reduced by CIL/ODN complexes, and the silence effect was maintained longer than 14 h. This study provides a useful strategy of peptide vehicle design, which may facilitate the delivery of not only ODN but also other oligonucleotides, including siRNA and miRNA, to promote gene silence application.
Collapse
Affiliation(s)
- Wei-Wen Hu
- Department of Chemical and Materials Engineering, National Central University, Zhongli District, Taoyuan City, Taiwan; Center for Biocellular Engineering, National Central University, Zhongli District, Taoyuan City, Taiwan.
| | - Shih-Chun Huang
- Department of Chemical and Materials Engineering, National Central University, Zhongli District, Taoyuan City, Taiwan
| | - Shiow-Lian Catherine Jin
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, Taiwan
| |
Collapse
|
12
|
Musin KG. ANTIMICROBIAL PEPTIDES — A POTENTIAL REPLACEMENT FOR TRADITIONAL ANTIBIOTICS. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018. [DOI: 10.15789/2220-7619-2018-3-295-308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antimicrobial peptides are a heterogeneous group of molecules involved in the innate and acquired immune response of various organisms, ranging from prokaryotes to mammals, including humans. They consist of 12–50 amino acid residues; have different physico-chemical and biological properties. The most common feature is their ability to destroy the prokaryotic cell membrane, which causes cell death. In the action, the molecules of antimicrobial peptides are embedded in the target bacteriological cells and change their conformation, forming structures in some cases resembling channels. Some other molecules of antimicrobial peptides can cover the surface of a bacteriological cell and form a carpet, when they reach a critical mass they act like detergents. In addition, being positively charged molecules of such peptides, penetrating through the membranes of parasitic and bacteriological cells, bind to polyanionic RNA and DNA molecules. Among the benefits of antimicrobial peptides is their high metabolic activity, low probability of occurrence of addictions and side effects. In addition, bacteriological pathogens that previously did not have resistance to any antimicrobial peptide are difficult to develop a strategy to control them. In this connection, these peptides are the most promising moleculessubstitutes for traditional antibiotics. The article discusses the approaches and strategies of therapeutic use, the studies of antimicrobial peptides identified in recent years; The most frequently encountered mechanisms of interaction of antimicrobial peptides and a bacteriological membrane are described, the physicochemical properties of peptide molecules are described; the results of studies on the detection of resistance of some strains of bacteria to antimicrobial peptides and antibiotics in general are summarized.
Collapse
|
13
|
Vasilchenko AS, Vasilchenko AV, Pashkova TM, Smirnova MP, Kolodkin NI, Manukhov IV, Zavilgelsky GB, Sizova EA, Kartashova OL, Simbirtsev AS, Rogozhin EA, Duskaev GK, Sycheva MV. Antimicrobial activity of the indolicidin-derived novel synthetic peptide In-58. J Pept Sci 2018; 23:855-863. [PMID: 29193518 DOI: 10.1002/psc.3049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/26/2022]
Abstract
Natural peptides with antimicrobial activity are extremely diverse, and peptide synthesis technologies make it possible to significantly improve their properties for specific tasks. Here, we investigate the biological properties of the natural peptide indolicidin and the indolicidin-derived novel synthetic peptide In-58. In-58 was generated by replacing all tryptophan residues on phenylalanine in D-configuration; the α-amino group in the main chain also was modified by unsaturated fatty acid. Compared with indolicidin, In-58 is more bactericidal, more resistant to proteinase K, and less toxic to mammalian cells. Using molecular physics approaches, we characterized the action of In-58 on bacterial cells at the cellular level. Also, we have found that studied peptides damage bacterial membranes. Using the Escherichia coli luminescent biosensor strain MG1655 (pcolD'::lux), we investigated the action of indolicidin and In-58 at the subcellular level. At subinhibitory concentrations, indolicidin and In-58 induced an SOS response. Our data suggest that indolicidin damages the DNA, but bacterial membrane perturbation is its principal mode of action. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A S Vasilchenko
- Tyumen State University, ul. Volodarsky, 6, Tyumen, 625003, Russia
| | - A V Vasilchenko
- Tyumen State University, ul. Volodarsky, 6, Tyumen, 625003, Russia
| | - T M Pashkova
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia
| | - M P Smirnova
- Research Institute of Highly Pure Biopreparations, Pudozhsakya str., St. Petersburg, 197110, Russia
| | - N I Kolodkin
- Research Institute of Highly Pure Biopreparations, Pudozhsakya str., St. Petersburg, 197110, Russia
| | - I V Manukhov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1, 1st Dorozhny pr., Moscow, 113545, Russia.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudnyi, 141701, Russia
| | - G B Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1, 1st Dorozhny pr., Moscow, 113545, Russia
| | - E A Sizova
- All-Russia Research Institute of Beef Cattle Breeding, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia.,Orenburg State University, Pobedy str., Orenburg, 13, Russia
| | - O L Kartashova
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia
| | - A S Simbirtsev
- Research Institute of Highly Pure Biopreparations, Pudozhsakya str., St. Petersburg, 197110, Russia
| | - E A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, ul. Miklukho-Maklaya, 16, Orenburg, /10, Russia.,Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, Moscow, 11, Russia
| | - G K Duskaev
- All-Russia Research Institute of Beef Cattle Breeding, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia
| | - M V Sycheva
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, ul. Pionerskaya, Orenburg, 11, Russia.,Orenburg State Agrarian University, ul. Chelyuskintsev, Orenburg, 18, Russia
| |
Collapse
|
14
|
Tsai CW, Lin ZW, Chang WF, Chen YF, Hu WW. Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids Surf B Biointerfaces 2018; 165:18-27. [DOI: 10.1016/j.colsurfb.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 11/28/2022]
|
15
|
Ahmed TAE, Hammami R. Recent insights into structure-function relationships of antimicrobial peptides. J Food Biochem 2018; 43:e12546. [PMID: 31353490 DOI: 10.1111/jfbc.12546] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
The application of antimicrobial peptides (AMPs) in food preservation presents a promising alternative and offers many benefits, such as reducing the use of chemical preservatives, reducing food losses due to spoilage, and development of health-promoting food supplements. The biological activity of AMPs largely dependent on several physicochemical features including charge, the degree of helicity, hydrophobicity, and sequence. The present review provides an overview of the structural classification of AMPs emphasizing the importance of their structural features for biological activity, followed by the description of some antimicrobial mechanism of action. Despite the several hurdles that must be overcome for the exploitation of food-derived AMPs in drug discovery and food systems, the developments discussed in this review offer a taste of future trends in food and pharmaceutical applications of these intriguing molecules. PRACTICAL APPLICATIONS: Numerous AMPs have been reported in recent years as naturally present or released from food proteins upon enzymatic digestion during food processing, fermentation, or gastrointestinal transit. Particularly, food-released AMPs is a promising alternative to satisfy consumer demands for safe, ready-to-eat, extended shelf-life, fresh-tasting, and minimally processed foods, without chemical additives. The potential of several AMPs to inhibit foodborne pathogens is increasingly studied in various food matrices including dairy products, meat, fruits, and beverages. Although extensive progress has been made with respect to our understanding of AMPs structure/function, additional thorough investigation of the factors influencing peptide activity is required. The time has now come for the development of nutraceuticals and pharmaceutical products containing food-derived AMPs. Despite the several hurdles that must be overcome for the exploitation of AMPs, the features and developments discussed in this review offer a taste of future trends in food and pharmaceutical applications of these intriguing molecules.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), Alexandria, Egypt
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Karmakar S, Maity P, Halder A. Charge-Driven Interaction of Antimicrobial Peptide NK-2 with Phospholipid Membranes. ACS OMEGA 2017; 2:8859-8867. [PMID: 30023594 PMCID: PMC6044622 DOI: 10.1021/acsomega.7b01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/28/2017] [Indexed: 05/24/2023]
Abstract
NK-2, derived from a cationic core region of NK-lysin, displays antimicrobial activity toward negatively charged bacterial membranes. We have studied the interaction of NK-2 with various phospholipid membranes, using a variety of experimental techniques, such as, isothermal titration calorimetry (ITC), ζ potential, and dynamic light scattering. As bacteria mimicking membranes, we have chosen large unilamellar vesicles (LUVs) composed of negatively charged phospholipid and neutral phospholipids. ITC and ζ potential results show the stronger binding affinity of NK-2 to negatively charged membranes than to neutral membranes. Saturation of the isotherm, obtained from ITC, at a given lipid to NK-2 ratio, was found to be consistent with the charge compensation, determined from ζ potential. A surface partition model with electrostatic contribution was used to estimate the intrinsic binding constant and other thermodynamical parameters of binding kinetics of NK-2. The size distribution of negatively charged LUV in the presence of NK-2 was found to increase drastically, indicating the presence of large aggregates. Such a large aggregate has not been observed in neutral membranes, which supports the ITC and ζ potential results.
Collapse
|
17
|
Fojan P, Gurevich L. Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA. Methods Mol Biol 2017; 1548:201-215. [PMID: 28013506 DOI: 10.1007/978-1-4939-6737-7_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The cell membrane is the first barrier and quite often the primary target that antimicrobial peptides (AMPs) have to destroy or penetrate to fulfill their mission. Upon penetrating through the membrane, the peptides can further attack intracellular targets, in particular DNA. Studying the interaction of an antimicrobial peptide with a cell membrane and DNA holds keys to understanding its killing mechanisms. Commonly, these interactions are studied by using optical or scanning electron microscopy and appropriately labeled peptides. However, labeling can significantly affect the hydrophobicity, conformation, and size of the peptide, hence altering the interaction significantly. Here, we describe the use of atomic force microscopy (AFM) for a label-free study of the interactions of peptides with model membranes under physiological conditions and DNA as a possible intracellular target.
Collapse
Affiliation(s)
- Peter Fojan
- Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg, 9220, Denmark.
| | - Leonid Gurevich
- Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg, 9220, Denmark
| |
Collapse
|
18
|
Oh KI, Smith-Dupont KB, Markiewicz BN, Gai F. Kinetics of peptide folding in lipid membranes. Biopolymers 2016; 104:281-90. [PMID: 25808575 DOI: 10.1002/bip.22640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022]
Abstract
Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn B Smith-Dupont
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
19
|
Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol Res 2016; 192:130-141. [PMID: 27664731 DOI: 10.1016/j.micres.2016.06.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/07/2016] [Accepted: 06/19/2016] [Indexed: 12/20/2022]
Abstract
Royal Jelly (RJ), a honeybee hypopharyngeal gland secretion of young nurse and an exclusive nourishment for bee queen, has been used since ancient times for care and human health and it is still very important in traditional and folkloristic medicine, especially in Asia within the apitherapy. Recently, RJ and its protein and lipid components have been subjected to several investigations on their antimicrobial activity due to extensive traditional uses and for a future application in medicine. Antimicrobial activities of crude Royal Jelly, Royalisin, 10-hydroxy-2-decenoic acid, Jelleines, Major Royal Jelly Proteins against different bacteria have been reported. All these beehive products showed antimicrobial activities that lead their potential employment in several fields as natural additives. RJ and its derived compounds show a highest activity especially against Gram positive bacteria. The purpose of this Review is to summarize the results of antimicrobial studies of Royal Jelly following the timescale of the researches. From the first scientific applications to the isolation of the single components in order to better understand its application in the past years and propose an employment in future studies as a natural antimicrobial agent.
Collapse
|
20
|
Lashua LP, Melvin JA, Deslouches B, Pilewski JM, Montelaro RC, Bomberger JM. Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells. J Antimicrob Chemother 2016; 71:2200-7. [PMID: 27231279 DOI: 10.1093/jac/dkw143] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/24/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Chronic infections with the opportunistic pathogen Pseudomonas aeruginosa are responsible for the majority of the morbidity and mortality in patients with cystic fibrosis (CF). While P. aeruginosa infections may initially be treated successfully with standard antibiotics, chronic infections typically arise as bacteria transition to a biofilm mode of growth and acquire remarkable antimicrobial resistance. To address the critical need for novel antimicrobial therapeutics that can effectively suppress chronic bacterial infections in challenging physiological environments, such as the CF lung, we have rationally designed a de novo engineered cationic antimicrobial peptide, the 24-residue WLBU2, with broad-spectrum antibacterial activity for pan-drug-resistant P. aeruginosa in liquid culture. In the current study, we tested the hypothesis that WLBU2 also prevents P. aeruginosa biofilm growth. METHODS Using abiotic and biotic biofilm assays, co-culturing P. aeruginosa with polarized human airway epithelial cells, we examined the ability of WLBU2 to prevent biofilm biogenesis alone and in combination with currently used antibiotics. RESULTS We observed a dose-dependent reduction in biofilm growth on an abiotic surface and in association with CF airway epithelial cells. WLBU2 prevented P. aeruginosa biofilm formation when co-cultured with mucus-producing primary human CF airway epithelial cells and using CF clinical isolates of P. aeruginosa, even at low pH and high salt conditions that mimic the CF airway. When used in combination, WLBU2 significantly increases killing by the commonly used antibiotics tobramycin, ciprofloxacin, ceftazidime and meropenem. CONCLUSIONS While other studies have demonstrated the ability of natural and synthetic antimicrobial peptides to prevent abiotic bacterial biofilm formation, the current studies for the first time demonstrate the effective peptide treatment of a biotic bacterial biofilm in a setting similar to the CF airway, and without negative effects on human airway epithelial cells, thus highlighting the unique potential of this engineered cationic antimicrobial peptide for treatment of human respiratory infections.
Collapse
Affiliation(s)
- Lauren P Lashua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Berthony Deslouches
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald C Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Strategies for Exploring Electrostatic and Nonelectrostatic Contributions to the Interaction of Helical Antimicrobial Peptides with Model Membranes. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2016. [DOI: 10.1016/bs.abl.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Tsai CW, Hu WW, Liu CI, Ruaan RC, Tsai BC, Jin SLC, Chang Y, Chen WY. The consideration of indolicidin modification to balance its hemocompatibility and delivery efficiency. Int J Pharm 2015; 494:498-505. [DOI: 10.1016/j.ijpharm.2015.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/24/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023]
|
23
|
Li C, Blencke HM, Haug T, Stensvåg K. Antimicrobial peptides in echinoderm host defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:190-197. [PMID: 25445901 DOI: 10.1016/j.dci.2014.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads.
Collapse
Affiliation(s)
- Chun Li
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway.
| | - Hans-Matti Blencke
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; Centre for Research-based Innovation on Marine Bioactives and Drug Discovery (MabCent-SFI), UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Tor Haug
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; Centre for Research-based Innovation on Marine Bioactives and Drug Discovery (MabCent-SFI), UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Klara Stensvåg
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; Centre for Research-based Innovation on Marine Bioactives and Drug Discovery (MabCent-SFI), UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
24
|
Holley AC, Ray JG, Wan W, Savin DA, McCormick CL. Endolytic, pH-responsive HPMA-b-(L-Glu) copolymers synthesized via sequential aqueous RAFT and ring-opening polymerizations. Biomacromolecules 2013; 14:3793-9. [PMID: 24044682 DOI: 10.1021/bm401205y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A facile synthetic pathway for preparing block copolymers with pH-responsive L-glutamic acid segments for membrane disruption is reported. Aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization was first used to prepare biocompatible, nonimmunogenic poly[N-(2-hydroxypropyl)methacrylamide]. This macro chain transfer agent (CTA) was then converted into a macroinitiator via simultaneous aminolysis and thiol-ene Michael addition using the primary amine substituted N-(3-aminopropyl)methacrylamide. This macroinitiator was subsequently utilized in the ring-opening polymerization of the N-carboxyanhydride monomer of γ-benzyl-L-glutamate. After deprotection, the pH-dependent coil-to-helix transformations of the resulting HPMA-b-(L-Glu) copolymers were monitored via circular dichroism spectroscopy. HPMA segments confer water solubility and biocompatibility while the L-glutamic acid repeats provide reversible coil-to-helix transitions at endosomal pH values (~5-6). The endolytic properties of these novel [HPMA-b-(L-Glu)] copolymers and their potential as modular components in drug carrier constructs was demonstrated utilizing red blood cell hemolysis and fluorescein release from POPC vesicles.
Collapse
Affiliation(s)
- Andrew C Holley
- The Department of Polymer Science and Engineering and §The Department of Chemistry and Biochemistry, The University of Southern Mississippi , Hattiesburg, Mississippi 39406, United States
| | | | | | | | | |
Collapse
|
25
|
Horvath R, Kobzi B, Keul H, Moeller M, Kiss É. Molecular interaction of a new antibacterial polymer with a supported lipid bilayer measured by an in situ label-free optical technique. Int J Mol Sci 2013; 14:9722-36. [PMID: 23648479 PMCID: PMC3676808 DOI: 10.3390/ijms14059722] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/21/2013] [Accepted: 05/02/2013] [Indexed: 11/29/2022] Open
Abstract
The interaction of the antibacterial polymer-branched poly(ethylene imine) substituted with quaternary ammonium groups, PEO and alkyl chains, PEI25QI5J5A815-with a solid supported lipid bilayer was investigated using surface sensitive optical waveguide spectroscopy. The analysis of the optogeometrical parameters was extended developing a new composite layer model in which the structural and optical anisotropy of the molecular layers was taken into consideration. Following in situ the change of optical birefringence we were able to determine the composition of the lipid/polymer surface layer as well as the displacement of lipid bilayer by the antibacterial polymer without using additional labeling. Comparative assessment of the data of layer thickness and optical anisotropy helps to reveal the molecular mechanism of antibacterial effect of the polymer investigated.
Collapse
Affiliation(s)
- Robert Horvath
- MTA TTK MFA Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Budapest, Konkoly Thege u. 29-33 H-1121, Hungary; E-Mail:
| | - Balázs Kobzi
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, Budapest 112 H-1518, Hungary; E-Mails: (B.K.); (É.K.)
| | - Helmut Keul
- DWI an der RWTH Aachen e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Forckenbeckstr. 50, Aachen D-52056, Germany; E-Mail:
| | - Martin Moeller
- DWI an der RWTH Aachen e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Forckenbeckstr. 50, Aachen D-52056, Germany; E-Mail:
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, Budapest 112 H-1518, Hungary; E-Mails: (B.K.); (É.K.)
| |
Collapse
|
26
|
Salay LC, Ferreira M, Oliveira ON, Nakaie CR, Schreier S. Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids Surf B Biointerfaces 2012; 100:95-102. [DOI: 10.1016/j.colsurfb.2012.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/23/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
|
27
|
Okorochenkov SA, Zheltukhina GA, Nebol'sin VE. [Antimicrobial peptides: mode of action and perspectives of practical application]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:131-43. [PMID: 22724354 DOI: 10.18097/pbmc20125802131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to antimicrobial peptides (AMP's) that demonstrate activity against bacteria, viruses and fungi. It considers structure and mechanism of AMP interaction with lipid membrane and intracellular targets of pathogens. Special attention is paid to modem state and perspectives of AMP practical application and also to approaches that increase efficacy and reduce toxicity of AMP by chemical modification of their structure.
Collapse
|
28
|
da Silva BR, de Freitas VAA, Nascimento-Neto LG, Carneiro VA, Arruda FVS, de Aguiar ASW, Cavada BS, Teixeira EH. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature. Peptides 2012; 36:315-21. [PMID: 22664320 DOI: 10.1016/j.peptides.2012.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides, molecules produced in many different organisms, have high biocidal activity against several microorganisms. However, several questions about these molecules remain unclear. Therefore, this report details a systematic survey of the literature on the use of antimicrobial peptides against oral pathogens and indicates which peptides and microorganisms are most extensively studied. Articles were located using the PubMed and Science Direct databases with the following inclusion criteria: publication date between 2002 and 2011; keywords "biofilm OR biological film OR biological layer OR bacterial growth" AND "peptide" AND "oral cavity OR mouth OR buccal mucosa OR oral mucosa OR mouth mucosa"; and abstract in English. A total of 73 articles were selected after refinement of the data. An increase in publications focusing on the use of antimicrobial peptides against oral microorganisms was observed. In addition, the peptides produced by cells of the oral mucosa (defensins, LL-37 and histatins) as well as Streptococcus mutans (among cariogenic bacteria) and Porphyromonas gingivalis (among periodontal bacteria) were the most studied subjects. It was concluded that the use of antimicrobial peptides as a tool for microbial control is of increasing importance, likely due to its widespread use, mechanism of action, and low rates of bacterial resistance.
Collapse
|
29
|
Alam JM, Kobayashi T, Yamazaki M. The Single-Giant Unilamellar Vesicle Method Reveals Lysenin-Induced Pore Formation in Lipid Membranes Containing Sphingomyelin. Biochemistry 2012; 51:5160-72. [DOI: 10.1021/bi300448g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jahangir Md. Alam
- Integrated Bioscience Section,
Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | | | - Masahito Yamazaki
- Integrated Bioscience Section,
Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Department
of Physics, Faculty
of Science, Shizuoka University, Shizuoka
422-8529, Japan
| |
Collapse
|
30
|
dos Santos Cabrera MP, Arcisio-Miranda M, Gorjão R, Leite NB, de Souza BM, Curi R, Procopio J, Ruggiero Neto J, Palma MS. Influence of the Bilayer Composition on the Binding and Membrane Disrupting Effect of Polybia-MP1, an Antimicrobial Mastoparan Peptide with Leukemic T-Lymphocyte Cell Selectivity. Biochemistry 2012; 51:4898-908. [DOI: 10.1021/bi201608d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marcia Perez dos Santos Cabrera
- UNESP-São Paulo State University, Center of Studies of Social
Insects, Institute of Biosciences, 13506-900 Rio Claro, SP, Brazil
| | - Manoel Arcisio-Miranda
- UNIFESP-Universidade Federal de São Paulo, Department of Biophysics,
04923-062 São Paulo, SP, Brazil
| | - Renata Gorjão
- Cruzeiro do Sul University,
Institute of Sciences of Physical Education and Sports, Post-Graduate
Program in Human Movement Science, 01506-000 São Paulo, SP,
Brazil
| | - Natália Bueno Leite
- UNESP-São Paulo State University, Department of Physics, IBILCE,
15054-000 São José do Rio Preto, SP, Brazil
| | - Bibiana Monson de Souza
- UNESP-São Paulo State University, Center of Studies of Social
Insects, Institute of Biosciences, 13506-900 Rio Claro, SP, Brazil
| | - Rui Curi
- USP-University of São Paulo, Department of Physiology and Biophysics,
Biomedical Sciences Institute, 05508-900 São Paulo, SP, Brazil
| | - Joaquim Procopio
- USP-University of São Paulo, Department of Physiology and Biophysics,
Biomedical Sciences Institute, 05508-900 São Paulo, SP, Brazil
| | - João Ruggiero Neto
- UNESP-São Paulo State University, Department of Physics, IBILCE,
15054-000 São José do Rio Preto, SP, Brazil
| | - Mario Sérgio Palma
- UNESP-São Paulo State University, Center of Studies of Social
Insects, Institute of Biosciences, 13506-900 Rio Claro, SP, Brazil
| |
Collapse
|
31
|
Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 2012; 51:149-77. [DOI: 10.1016/j.plipres.2011.12.005] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
The oligo-acyl lysyl antimicrobial peptide C₁₂K-2β₁₂ exhibits a dual mechanism of action and demonstrates strong in vivo efficacy against Helicobacter pylori. Antimicrob Agents Chemother 2011; 56:378-90. [PMID: 22064541 DOI: 10.1128/aac.00689-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori has developed antimicrobial resistance to virtually all current antibiotics. Thus, there is a pressing need to develop new anti-H. pylori therapies. We recently described a novel oligo-acyl-lysyl (OAK) antimicrobial peptidomimetic, C(12)K-2β(12), that shows potent in vitro bactericidal activity against H. pylori. Herein, we define the mechanism of action and evaluate the in vivo efficacy of C(12)K-2β(12) against H. pylori after experimental infection of Mongolian gerbils. We demonstrate using a 1-N-phenylnaphthylamine (fluorescent probe) uptake assay and electron microscopy that C(12)K-2β(12) rapidly permeabilizes the bacterial membrane and creates pores that cause bacterial cell lysis. Furthermore, using nucleic acid binding assays, Western blots, and confocal microscopy, we show that C(12)K-2β(12) can cross the bacterial membranes into the cytoplasm and tightly bind to bacterial DNA, RNA, and proteins, a property that may result in inhibition of enzymatic activities and macromolecule synthesis. To define the in vivo efficacy of C(12)K-2β(12), H. pylori-infected gerbils were orogastrically treated with increasing doses and concentrations of C(12)K-2β(12) 1 day or 1 week postinfection. The efficacy of C(12)K-2β(12) was strongest in animals that received the largest number of doses at the highest concentration, indicating dose-dependent activity of the peptide (P < 0.001 by analysis of variance [ANOVA]) regardless of the timing of the treatment with C(12)K-2β(12). Overall, our results demonstrate a dual mode of action of C(12)K-2β(12) against the H. pylori membrane and cytoplasmic components. Moreover, and consistent with the previously reported in vitro efficacy, C(12)K-2β(12) shows significant in vivo efficacy against H. pylori when used as monotherapy. Therefore, OAK peptides may be a valuable resource for therapeutic treatment of H. pylori infection.
Collapse
|
33
|
Salay LC, Nobre TM, Colhone MC, Zaniquelli MED, Ciancaglini P, Stabeli RG, Leite JRSA, Zucolotto V. Dermaseptin 01 as antimicrobial peptide with rich biotechnological potential: study of peptide interaction with membranes containing Leishmania amazonensis lipid-rich extract and membrane models. J Pept Sci 2011; 17:700-7. [PMID: 21805539 DOI: 10.1002/psc.1392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/27/2011] [Accepted: 06/10/2011] [Indexed: 01/26/2023]
Abstract
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA- KAAGQAALGAL-NH(2) , DS 01) with phospholipid (PL) monolayers comprising (i) a lipid-rich extract of Leishmania amazonensis (LRE-La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid-air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE-La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 µg/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE-La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis.
Collapse
Affiliation(s)
- Luiz C Salay
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, 13560-970 São Carlos, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Okorochenkov SA, Zheltukhina GA, Nebol’sin VE. Antimicrobial peptides: the mode of action and perspectives of practical application. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Mahalka AK, Maury CPJ, Kinnunen PKJ. 1-Palmitoyl-2-(9′-oxononanoyl)-sn-glycero-3-phosphocholine, an Oxidized Phospholipid, Accelerates Finnish Type Familial Gelsolin Amyloidosis in Vitro. Biochemistry 2011; 50:4877-89. [DOI: 10.1021/bi200195s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ajay K. Mahalka
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | | | - Paavo K. J. Kinnunen
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| |
Collapse
|
36
|
Interaction of the cationic peptide bactenecin with mixed phospholipid monolayers at the air-water interface. J Colloid Interface Sci 2011; 359:279-88. [PMID: 21501845 DOI: 10.1016/j.jcis.2011.03.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/26/2011] [Accepted: 03/29/2011] [Indexed: 01/02/2023]
Abstract
The initial mechanism by which antimicrobial peptides target microbes occurs via electrostatic interactions; however, the mechanism is not well understood. We investigate the interaction of the antimicrobial peptide bactenecin with a 50:50 w:w% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) phospholipid mixture at the air-water interface with different NaCl concentrations (0.01, 0.05, 0.1, 0.5 M) in the subphase. A larger shift of DPPC:DMPG isotherms was obtained for 0.1 M salt concentration at lower and higher pressures, demonstrating the influence of the negative charge of DMPG molecules and the screening of the electrostatic interaction by the salt concentration. Raman spectroscopy of monolayers demonstrated the presence of cysteine-cysteine bridges in bactenecin loops. The peptide adsorption in DPPC:DMPG monolayers observed by AFM images suggests a self-assembled aggregation process, starting with filament-like networks. Domains similar to carpets were formed and pore structures were obtained after a critical peptide concentration, according to the carpet model.
Collapse
|
37
|
Park NG, Silphaduang U, Moon HS, Seo JK, Corrales J, Noga EJ. Structure−Activity Relationships of Piscidin 4, a Piscine Antimicrobial Peptide. Biochemistry 2011; 50:3288-99. [DOI: 10.1021/bi101395j] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. G. Park
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, United States
| | - U. Silphaduang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, United States
| | - H. S. Moon
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, United States
| | - J.-K. Seo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, United States
| | - J. Corrales
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, United States
| | - E. J. Noga
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, United States
| |
Collapse
|
38
|
Joly D, Govindachary S, Fragata M. Photosystem II reconstitution into proteoliposomes and methodologies for structure-function characterization. Methods Mol Biol 2011; 684:217-45. [PMID: 20960133 DOI: 10.1007/978-1-60761-925-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the photosystem II (PSII) reconstitution into proteoliposomes. In the first part of the chapter, protocols are outlined for the preparation of lipid bilayer vesicles (liposomes) constituted of individual thylakoid lipids or their mixtures, for the preparation of PSII particles, and for the incorporation of the PSII particles into the liposomes. In the second part of the chapter, methodologies are described for the structure-function characterization of the PSII-lipid complexes (proteoliposomes). This includes the sodium dodecylsulfate-polyacrylamide gel electrophoresis determination of the PSII proteins, the measurement of oxygen-evolving activity of PSII in the proteoliposomes, the study of structural changes of the PSII proteins upon their incorporation into the lipid bilayers by Fourier transform infrared (FT-IR) spectroscopy, and the characterization of the PSII activity by fluorescence induction.
Collapse
Affiliation(s)
- David Joly
- Département de chimie biologie (GRBV), Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | |
Collapse
|
39
|
Indolicidin action on membrane permeability: Carrier mechanism versus pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:91-7. [DOI: 10.1016/j.bbamem.2010.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/15/2022]
|
40
|
Lomash S, Nagpal S, Salunke DM. An antibody as surrogate receptor reveals determinants of activity of an innate immune peptide antibiotic. J Biol Chem 2010; 285:35750-8. [PMID: 20837490 PMCID: PMC2975199 DOI: 10.1074/jbc.m110.150516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/15/2010] [Indexed: 11/06/2022] Open
Abstract
Drug discovery initiatives often depend critically on knowledge of ligand-receptor interactions. However, the identity or structure of the target receptor may not be known in every instance. The concept of receptor surrogate, a molecular environment mimic of natural receptor, may prove beneficial under such circumstances. Here, we demonstrate the potential of monoclonal antibodies (mAbs) to act as surrogate receptors for a class of innate immune peptide antibiotics, a strategy that can help comprehend their action mechanism and identify chemical entities crucial for activity. A panel of antibody surrogates was raised against indolicidin, a tryptophan-rich cationic broad spectrum antimicrobial peptide of innate immune origin. Employing an elegant combination of thermodynamics, crystallography, and molecular modeling, interactions of the peptide with a high affinity anti-indolicidin monoclonal antibody were analyzed and were used to identify a motif that contained almost the entire antibiotic activity of native indolicidin. The analysis clarified the interaction of the peptide with previously proposed targets such as bacterial cell membrane and DNA and could further be correlated with antimicrobial compounds whose actions involve varied other mechanisms. These features suggest a multipronged assault pathway for indolicidin. Remarkably, the anti-indolicidin mAb surrogate was able to isolate additional independent bactericidal sequences from a random peptide library, providing compelling evidence as to the physiological relevance of surrogate receptor concept and suggesting applications in receptor-based pharmacophore research.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Anti-Infective Agents/immunology
- Anti-Infective Agents/metabolism
- Anti-Infective Agents/pharmacology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antimicrobial Cationic Peptides/immunology
- Antimicrobial Cationic Peptides/metabolism
- Antimicrobial Cationic Peptides/pharmacology
- Crystallography, X-Ray
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Immunity, Innate/immunology
- Immunoglobulin Fragments/chemistry
- Immunoglobulin Fragments/immunology
- Immunoglobulin Fragments/metabolism
- Kinetics
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Peptide Library
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/growth & development
- Thermodynamics
Collapse
Affiliation(s)
- Suvendu Lomash
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Sushma Nagpal
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Dinakar M. Salunke
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
- the Regional Centre for Biotechnology, Gurgaon 122016, India
| |
Collapse
|
41
|
Smith-Dupont KB, Guo L, Gai F. Diffusion as a probe of the heterogeneity of antimicrobial peptide-membrane interactions. Biochemistry 2010; 49:4672-8. [PMID: 20455545 DOI: 10.1021/bi100426p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many antimicrobial peptides (AMPs) function by forming various oligomeric structures and/or pores upon binding to bacterial membranes. Because such peptide aggregates are capable of inducing membrane thinning and membrane permeabilization, we expected that AMP binding would also affect the diffusivity or mobility of the lipid molecules in the membrane. Herein, we show that measurements of the diffusion times of individual lipids through a confocal volume via fluorescence correlation spectroscopy (FCS) provide a sensitive means of probing the underlying AMP-membrane interactions. In particular, results obtained with two well-studied AMPs, magainin 2 and mastoparan X, and two model membranes indicate that this method is capable of revealing structural information, especially the heterogeneity of the peptide-membrane system, that is otherwise difficult to obtain using common ensemble methods. Moreover, because of the high sensitivity of FCS, this method allows examination of the effect of AMPs on the membrane structure at very low peptide/lipid ratios.
Collapse
Affiliation(s)
- Kathryn B Smith-Dupont
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
42
|
Gössler-Schöfberger R, Hesser G, Muik M, Wechselberger C, Jilek A. An orphan dermaseptin from frog skin reversibly assembles to amyloid-like aggregates in a pH-dependent fashion. FEBS J 2009; 276:5849-59. [PMID: 19765079 DOI: 10.1111/j.1742-4658.2009.07266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dermaseptin PD-3-7 (aDrs) from frog skin contains three aspartic acid residues resulting in a negative net charge at neutral pH, as opposed to numerous other dermaseptins which are cationic helical antimicrobial peptides. Still, this peptide can be fitted into an amphipathic alpha helix by an Edmundson wheel projection. However, folding to the proposed helix was induced to only a low extent by zwitterionic vesicles or even detergents. Furthermore, no evidence of antibacterial or cytotoxic activity from soluble aDrs could be obtained. The peptide has an inherent propensity to an extended conformation in aqueous solution and self-assembles into amyloid fibrils in a reversible pH-controlled fashion, which was studied in some detail; above pH 5, the amyloid fibrils disassemble in a cooperative manner. This is probably caused by deprotonation of both side chain and terminal carboxyl groups, which results in intermolecular electrostatic repulsion. At neutral pH, this process proceeds instantaneously to the soluble form. Within the transition interval (pH 5-6.5), however, 'backward' granular aggregates, 10-500 nm in size, are formed. Such metastable amorphous aggregates, which are quickly released from an amyloid depot by a shift in pH, can mediate a strong cytotoxic effect. This activity does not involve lysis or interference with the cellular redox status, but apparently acts via an as yet unidentified mechanism. In this study, we present a new member of an emerging class of self-assembling frog skin peptides with extraordinary self-aggregation properties, which may potentially be relevant for biological processes. Structured digital abstract: * MINT-7256467: Dermaseptin (uniprotkb:O93455) and Dermaseptin (uniprotkb:O93455) bind (MI:0407) by circular dichroism (MI:0016) * MINT-7255686: Dermaseptin (uniprotkb:O93455) and Dermaseptin (uniprotkb:O93455) bind (MI:0407) by biophysical (MI:0013) * MINT-7256439: Dermaseptin (uniprotkb:O93455) and Dermaseptin (uniprotkb:O93455) bind (MI:0407) by fluorescence microscopy (MI:0416) * MINT-7256449: Dermaseptin (uniprotkb:O93455) and Dermaseptin (uniprotkb:O93455) bind (MI:0407) by electron microscopy (MI:0040) * MINT-7256430: Dermaseptin (uniprotkb:O93455) and Dermaseptin (uniprotkb:O93455) bind (MI:0407) by fluorescence technologies (MI:0051).
Collapse
|
43
|
Mahalka AK, Kinnunen PK. Binding of amphipathic α-helical antimicrobial peptides to lipid membranes: Lessons from temporins B and L. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1600-9. [DOI: 10.1016/j.bbamem.2009.04.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 11/17/2022]
|
44
|
Activation of phospholipase A2 by temporin B: formation of antimicrobial peptide-enzyme amyloid-type cofibrils. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1064-72. [PMID: 19285031 DOI: 10.1016/j.bbamem.2009.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 11/21/2022]
Abstract
Phospholipases A2 have been shown to be activated in a concentration dependent manner by a number of antimicrobial peptides, including melittin, magainin 2, indolicidin, and temporins B and L. Here we used fluorescently labelled bee venom PLA2 (PLA2D) and the saturated phospholipid substrate 1,2-dipalmitoyl-glycero-sn-3-phosphocholine (L-DPPC), exhibiting a lag-burst behaviour upon the initiation of the hydrolytic reaction by PLA2. Increasing concentrations of Cys-temporin B and its fluorescent Texas red derivative (TRC-temB) caused progressive shortening of the lag period. TRC-temB/PLA2D interaction was observed by Förster resonance energy transfer (FRET), with maximum efficiency coinciding with the burst in hydrolysis. Subsequently, supramolecular structures became visible by microscopy, revealing amyloid-like fibrils composed of both the activating peptide and PLA2. Reaction products, palmitic acid and 1-palmitoyl-2-lyso-glycero-sn-3-phosphocholine (lysoPC, both at >8 mol%) were required for FRET when using the non-hydrolysable substrate enantiomer 2,3-dipalmitoyl-glycero-sn-1-phosphocholine (D-DPPC). A novel mechanism of PLA2 activation by co-fibril formation and associated conformational changes is suggested.
Collapse
|
45
|
Biosensors based on release of compounds upon disruption of lipid bilayers supported on porous microspheres. Biointerphases 2008; 3:38. [DOI: 10.1116/1.2918743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Mattila JP, Sabatini K, Kinnunen PKJ. Oxidized phospholipids as potential molecular targets for antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2041-50. [PMID: 18440299 DOI: 10.1016/j.bbamem.2008.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/03/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
The effects of oxidatively modified phospholipids on the association with model biomembranes of four antimicrobial peptides (AMPs), temporin B and L, indolicidin, and LL-37(F27W) were studied by Langmuir balance and fluorescence spectroscopy. In keeping with previous reports the negatively charged phospholipid phosphatidylglycerol (PG) enhanced the intercalation of all four peptides into lipid monolayers and liposomal bilayers under low ionic strength conditions. Interestingly, similar effect was observed for 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), a zwitterionic oxidized phospholipid bearing an aldehyde function at the end of its truncated sn-2 acyl chain. Instead, the structurally similar 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) containing a carboxylic moiety was less efficient in promoting the membrane association of these peptides. Physiological saline reduced the binding of the above peptides to membranes containing PG, whereas interactions with PoxnoPC were found to be insensitive to ionic strength. Notably, membrane intercalation of temporin L, the most surface active of the above peptides could be into PoxnoPC containing monolayers was strongly attenuated by methoxyamine, suggesting the importance of Schiff base formation between peptide amino groups and the lipid aldehyde function. PoxnoPC and similar aldehyde bearing oxidatively modified phospholipids could represent novel molecular targets for AMPs.
Collapse
Affiliation(s)
- Juha-Pekka Mattila
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine/Medical Biochemistry, P.O. Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
47
|
Som A, Tew GN. Influence of lipid composition on membrane activity of antimicrobial phenylene ethynylene oligomers. J Phys Chem B 2008; 112:3495-502. [PMID: 18293958 DOI: 10.1021/jp077487j] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Host defense peptides (HDPs), part of the innate immune system, selectively target the membranes of bacterial cells over that of host cells. As a result, their antimicrobial properties have been under intense study. Their selectivity strongly depends on the chemical and mostly structural properties of the lipids that make up different cell membranes. The ability to synthesize HDP mimics has recently been demonstrated. To better understand how these HDP mimics interact with bilayer membranes, three homologous antimicrobial oligomers (AMOs) 1-3 with an m-phenylene ethynylene backbone and alkyl amine side chains were studied. Among them, AMO 1 is nonactive, AMO 2 is specifically active, and AMO 3 is nonspecifically active against bacteria over human red blood cells, a standard model for mammalian cells. The interactions of these three AMOs with liposomes having different lipid compositions are characterized in detail using a fluorescent dye leakage assay. AMO 2 and AMO 3 caused more leakage than AMO 1 from bacteria membrane mimic liposomes composed of PE/PG lipids. The use of E. coli lipid vesicles gave the same results. Further changes of the lipid compositions revealed that AMO 2 has selectively higher affinity toward PE/PG and E. coli lipids than PC, PC/PG or PC/PS lipids, the major components of mammalian cell membranes. In contrast, AMO 3 is devoid of this lipid selectivity and interacts with all liposomes with equal ease; AMO 1 remains inactive. These observations suggest that lipid type and structure are more important in determining membrane selectivity than lipid headgroup charges for this series of HDP mimics.
Collapse
Affiliation(s)
- Abhigyan Som
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
48
|
Binding of LL-37 to model biomembranes: insight into target vs host cell recognition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:983-96. [PMID: 18166145 DOI: 10.1016/j.bbamem.2007.11.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 01/08/2023]
Abstract
Pursuing the molecular mechanisms of the concentration dependent cytotoxic and hemolytic effects of the human antimicrobial peptide LL-37 on cells, we investigated the interactions of this peptide with lipids using different model membranes, together with fluorescence spectroscopy for the Trp-containing mutant LL-37(F27W). Minimum concentrations inhibiting bacterial growth and lipid interactions assessed by dynamic light scattering and monolayer penetration revealed the mutant to retain the characteristics of native LL-37. Although both LL-37 and the mutant intercalated effectively into zwitterionic phosphatidylcholine membranes the presence of acidic phospholipids caused augmented membrane binding. Interestingly, strongly attenuated intercalation of LL-37 into membranes containing both cholesterol and sphingomyelin (both at X=0.3) was observed. Accordingly, the distinction between target and host cells by LL-37 is likely to derive from i) acidic phospholipids causing enhanced association with the former cells as well as ii) from attenuated interactions with the outer surface of the plasma membrane of the peptide secreting host, imposed by its high content of cholesterol and sphingomyelin. Our results further suggest that LL-37 may exert its antimicrobial effects by compromising the membrane barrier properties of the target microbes by a mechanism involving cytotoxic oligomers, similarly to other peptides forming amyloid-like fibers in the presence of acidic phospholipids.
Collapse
|
49
|
Aerts AM, François IEJA, Meert EMK, Li QT, Cammue BPA, Thevissen K. The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 2007; 13:243-7. [PMID: 17827975 DOI: 10.1159/000104753] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RsAFP2 (Raphanus sativus antifungal peptide 2), an antifungal plant defensin isolated from seed of R. sativus, interacts with glucosylceramides (GlcCer) in membranes of susceptible yeast and fungi and induces membrane permeabilization and fungal cell death. However, using carboxyfluorescein-containing small unilamellar vesicles containing purified GlcCer, we could not observe permeabilization as a consequence of insertion of RsAFP2 in such vesicles. Therefore, we focused on a putative RsAFP2-induced signaling cascade downstream of RsAFP2-binding to GlcCer in fungal membranes. We show that RsAFP2 induces reactive oxygen species (ROS) in Candida albicans wild type in a dose-dependent manner, but not at all in an RsAFP2-resistant DeltagcsC. albicans mutant that lacks the RsAFP2-binding site in its membranes. These findings indicate that upstream binding of RsAFP2 to GlcCer is needed for ROS production leading to yeast cell death. Moreover, the antioxidant ascorbic acid blocks RsAFP2-induced ROS generation, as well as RsAFP2 antifungal activity. These data point to the presence of an intracellular plant defensin-induced signaling cascade, which involves ROS generation and leads to fungal cell growth arrest.
Collapse
Affiliation(s)
- An M Aerts
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
van den Bogaart G, Mika JT, Krasnikov V, Poolman B. The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis. Biophys J 2007; 93:154-63. [PMID: 17434946 PMCID: PMC1914432 DOI: 10.1529/biophysj.107.106005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dual-color fluorescence-burst analysis was used to study melittin-induced leakage of macromolecules from liposomes of various lipid compositions. To perform dual-color fluorescence-burst analysis, fluorescently labeled size-marker molecules were encapsulated into liposomes, labeled with a second lipid-attached fluorophore. By correlating the fluorescence bursts, resulting from the liposomes diffusing through the detection volume of a dual-color confocal microscope, the distribution of size-marker molecules over the liposomes was determined. It was found that melittin causes leakage via two different mechanisms: 1), For liposomes composed of neutral bilayer-forming lipids, low melittin concentrations induced pore formation with the pore size depending on the melittin concentration. 2), For liposomes containing anionic and/or nonbilayer forming lipids, melittin induced fusion or aggregation of liposomes accompanied by a-specific leakage. Experiments with liposomes prepared from Escherichia coli lipid extracts and intact cells of Lactococcus lactis indicate that both mechanisms are physiologically relevant.
Collapse
Affiliation(s)
- Geert van den Bogaart
- Biochemistry Department, Groningen Biomolecular Science and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|