1
|
Sakuma Y, Kayamori N, Tanaka J, Haga K, Imai M, Kawakatsu T. Effects of grafted polymers on the lipid membrane fluidity. Biophys J 2024; 123:489-501. [PMID: 38243595 PMCID: PMC10912922 DOI: 10.1016/j.bpj.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/27/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Since the membrane fluidity controls the cellular functions, it is important to identify the factors that determine the cell membrane viscosity. Cell membranes are composed of not only lipids and proteins but also polysaccharide chain-anchored molecules, such as glycolipids. To reveal the effects of grafted polymers on the membrane fluidity, in this study, we measured the membrane viscosity of polymer-grafted giant unilamellar vesicles (GUVs), which were prepared by introducing the poly (ethylene glycol) (PEG)-anchored lipids to the ternary GUVs composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol. The membrane viscosity was obtained from the velocity field on the GUV generated by applying a point force, based on the hydrodynamic model proposed by Henle and Levine. The velocity field was visualized by a motion of the circular liquid ordered (Lo) domains formed by a phase separation. With increasing PEG density, the membrane viscosity of PEG-grafted GUVs increased gradually in the mushroom region and significantly in the brush region. We propose a hydrodynamic model that includes the excluded volume effect of PEG chains to explain the increase in membrane viscosity in the mushroom region. This work provides a basic understanding of how grafted polymers affect the membrane fluidity.
Collapse
Affiliation(s)
- Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan.
| | - Nana Kayamori
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Julia Tanaka
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Kenya Haga
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Triantafyllopoulou E, Pippa N, Demetzos C. Protein-liposome interactions: the impact of surface charge and fluidisation effect on protein binding. J Liposome Res 2022; 33:77-88. [PMID: 35730463 DOI: 10.1080/08982104.2022.2071296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
At the dawn of a new nanotechnological era in the pharmaceutical field, it is very important to examine and understand all the aspects that influence in vivo behaviour of nanoparticles. In this point of view, the interactions between serum proteins and liposomes with incorporated anionic, cationic, and/or PEGylated lipids were investigated to elucidate the role of surface charge and bilayer fluidity in protein corona's formation. 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC), hydrogenated soybean phosphatidylcholine (HSPC), and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes with the presence or absence of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (chloride salt) (DOTAP), and/or 1,2-dipalmitoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (DPPE-PEG 5000) lipids were prepared by the thin-film hydration method. The evaluation of their biophysical characteristics was enabled by differential scanning calorimetry and dynamic and electrophoretic light scattering. The physicochemical characteristics of mixed liposomes were compared before and after exposure to foetal bovine serum (FBS) and were correlated to calorimetric data. Our results indicate protein binding to all liposomal formulations. However, it is highlighted the importance of surface charge and fluidisation effect to the extent of protein adsorption. Additionally, considering the extensive use of cationic lipids for innovative delivery platforms, we deem PEGylation a key parameter, because even in a small proportion can reduce protein binding, and thus fast clearance and extreme toxicity without affecting positive charge. This study is a continuation of our previous work about protein-liposome interactions and fraction of stealthiness (Fs) parameter, and hopefully a design road map for drug and gene delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
4
|
Kaizuka Y, Machida R, Ota Y. Mechanochemical Regulation of Cell Adhesion by Incorporation of Synthetic Polymers to Plasma Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:366-375. [PMID: 33370529 DOI: 10.1021/acs.langmuir.0c02955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical control of cell-cell interactions using synthetic materials is useful for a wide range of biomedical applications. Herein, we report a method to regulate cell adhesion and dispersion by introducing repulsive forces to live cell membranes. To induce repulsion, we tethered amphiphilic polymers, such as cholesterol-modified poly(ethylene glycol) (PEG-CLS), to cell membranes. We found that the repulsive forces introduced by these tethered polymers induced cell detachment from a substrate and allowed cell dispersion in a suspension, modulated the speed of cell migration, and improved the separation of cells from tissues. Our analyses showed that coating the cells with tethered polymers most likely generated two distinct repulsive forces, lateral tension and steric repulsion, on the surface, which were tuned by altering the polymer size and density. We modeled how these two forces are generated in kinetically distinctive manners to explain the various responses of cells to the coating. Collectively, our observations demonstrate mechanochemical regulation of cell adhesion and dispersion by simply adding polymers to cells without genetic manipulation or chemical synthesis in the cells, which may contribute to the optimization of chemical coating strategies to regulate various types of cell-cell interacting systems.
Collapse
Affiliation(s)
- Yoshihisa Kaizuka
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Rika Machida
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Yoshihiko Ota
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Sankyo Labo Service, 57-2 Sawabe, Tsuchiura, Ibaraki 300-4104, Japan
| |
Collapse
|
5
|
Microfluidic production of protein loaded chimeric stealth liposomes. Int J Pharm 2020; 590:119955. [PMID: 33035609 DOI: 10.1016/j.ijpharm.2020.119955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
The addition of polyethylene glycol (PEG) on the surface of liposomes increases their circulation time when administered intravenously. However, the inclusion of PEG using PEGylated phospholipids could result in a possible micelles formation. The development of chimeric systems mixing synthetic biocompatible and biodegradable PEG-containing copolymers with lipids is a strategy to obtain as well PEGylated liposomes. Microfluidics is an innovative manufacturing technology easy to scale up that presents high reproducibility, low batch-to-batch variation, and better control over particles characteristics. Taking advantage of this technique, in this research work, chimeric stealth liposomes were produced mixing five different synthesized methoxy-poly(ethylene glycol)-block-poly(δ-decalactone) (mPEG-PDL, varying in polymer length) with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol. The obtained chimeric formulations were around 150 nm in size with a narrow distribution and an almost neutral surface charge. Ovalbumin (OVA) was used as a model protein to evaluate the loading potential reaching an encapsulation efficiency of 41 ± 4%. The prepared systems showed no cytotoxicity in vitro on THP-1 cell with an uptake up to 89 ± 4% after 3 h. Finally, protein integrity after encapsulation was confirmed with DQ-OVA. In this work, we demonstrated that using microfluidics, it is possible to produce stable and highly protein-loaded chimeric stealth liposomes with good physicochemical characteristics, no toxicity, protein integrity, and effective uptake by endocytosis.
Collapse
|
6
|
Aloi E, Bartucci R. Cryogenically frozen PEGylated liposomes and micelles: Water penetration and polarity profiles. Biophys Chem 2020; 266:106463. [PMID: 32911450 DOI: 10.1016/j.bpc.2020.106463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
Poly(ethylene glycol) (PEG)-grafted lipid dispersions are widely investigated in fundamental and biotechnological research for their successful use in drug-delivery. Here, we consider mixtures of the bilayer-forming lipid dipalmitoylphosphatidylcholine (DPPC) with the micelle-forming lipid PEG:2000-phosphatidilethanolamine (PEG:2000-DPPE) fully hydrated in D2O and measured at 77 K. Electron Spin Echo Envelope Modulation and continuous wave Electron Paramagnetic Resonance of chain-labelled lipids are employed to detect the extent of solvent permeation and the environmental polarity, respectively, across the hydrocarbon regions of the lipid assemblies. Sigmoidal water penetration and polarity profiles are described in sterically stabilized liposomes (SSL) formed at submicellar content of PEG:2000-DPPE incorporated in DPPC. Compared to DPPC bilayers, SSL show increased hydrophobicity at both the polar/apolar interface and the chain termini, and a broader transition that is shifted toward the interface. Solvent exposure and polarity decrease on going down the chain in PEG:2000-DPPE micelles. However, compared to SSL, polymer-lipid micelles show higher solvent permeation at any chain segment and the chain termini are accessible to water. In any sample, heterogeneity is found in H-bond formation between the spin-label nitroxide groups and the solvent molecules. The results at cryogenic temperature add new insights into the biophysico-chemical characterization of PEGylated lipid dispersions.
Collapse
Affiliation(s)
- Erika Aloi
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Rosa Bartucci
- Molecular Biophysics Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
7
|
Mahendra A, James HP, Jadhav S. PEG-grafted phospholipids in vesicles: Effect of PEG chain length and concentration on mechanical properties. Chem Phys Lipids 2019; 218:47-56. [DOI: 10.1016/j.chemphyslip.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
|
8
|
Kenaan A, Cheng J, Qi D, Chen D, Cui D, Song J. Physicochemical Analysis of DPPC and Photopolymerizable Liposomal Binary Mixture for Spatiotemporal Drug Release. Anal Chem 2018; 90:9487-9494. [PMID: 30009597 DOI: 10.1021/acs.analchem.8b02144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a spatiotemporal drug delivery system with a long release profile, high loading efficiency, and robust therapeutic effects is still a challenge. Liposomal nanocarriers have secured a fortified position in the biomedical field over decades. Herein, liposomal binary mixtures of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and photopolymerizable 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9PC) phospholipids were prepared for drug delivery applications. The diacetylenic groups of DC8,9PC produce intermolecular cross-linking following UV irradiation. Exposure of the liposomal mixture to 254 nm radiation induces a pore within the lipid bilayer, expediting the release of its entrapped 5,6-carboxyfluorescein dye. The dosage and rate of the released content are highly dependent on the number and size of the induced pore. Photochemical cross-linking studies at different exposure times were reported through the analysis of UV-visible spectrophotometry, nano differential scanning calorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy. The optimal irradiation time was established after 8 min of exposure, inducing lipid cross-linking with minimal oxidative degradation, which plays an essential role in the pathogenesis of numerous diseases due to the formation of primary and secondary oxidation products, accordingly reducing the encapsulated drug therapeutic level.
Collapse
Affiliation(s)
- Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Daizong Qi
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Di Chen
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| |
Collapse
|
9
|
Membrane structural change of dimyristoylphosphatidylcholine liposome on the interaction with polyethyleneimine. Colloids Surf B Biointerfaces 2018; 167:509-515. [DOI: 10.1016/j.colsurfb.2018.04.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022]
|
10
|
Snead WT, Stachowiak JC. Structure Versus Stochasticity-The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission. J Mol Biol 2018; 430:2293-2308. [PMID: 29627460 DOI: 10.1016/j.jmb.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023]
Abstract
Cellular membranes must undergo remodeling to facilitate critical functions including membrane trafficking, organelle biogenesis, and cell division. An essential step in membrane remodeling is membrane fission, in which an initially continuous membrane surface is divided into multiple, separate compartments. The established view has been that membrane fission requires proteins with conserved structural features such as helical scaffolds, hydrophobic insertions, and polymerized assemblies. In this review, we discuss these structure-based fission mechanisms and highlight recent findings from several groups that support an alternative, structure-independent mechanism of membrane fission. This mechanism relies on lateral collisions among crowded, membrane-bound proteins to generate sufficient steric pressure to drive membrane vesiculation. As a stochastic process, this mechanism contrasts with the paradigm that deterministic protein structures are required to drive fission, raising the prospect that many more proteins may participate in fission than previously thought. Paradoxically, our recent work suggests that intrinsically disordered domains may be among the most potent drivers of membrane fission, owing to their large hydrodynamic radii and substantial chain entropy. This stochastic view of fission also suggests new roles for the structure-based fission proteins. Specifically, we hypothesize that in addition to driving fission directly, the canonical fission machines may facilitate the enrichment and organization of bulky disordered protein domains in order to promote membrane fission by locally amplifying protein crowding.
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Abstract
Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.
Collapse
|
12
|
Mohan K, Weiss GA. Engineering chemically modified viruses for prostate cancer cell recognition. MOLECULAR BIOSYSTEMS 2016; 11:3264-72. [PMID: 26463253 DOI: 10.1039/c5mb00511f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.
Collapse
Affiliation(s)
- K Mohan
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA
| | - G A Weiss
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA and Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA.
| |
Collapse
|
13
|
Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC. Intrinsically disordered proteins drive membrane curvature. Nat Commun 2015. [PMID: 26204806 PMCID: PMC4515776 DOI: 10.1038/ncomms8875] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. Proteins that bend membranes often contain curvature-promoting structural motifs such as wedges or crescent-shaped domains. Busch et al. report that intrinsically disordered domains can also drive membrane curvature and provide evidence that steric pressure driven by protein crowding mediates this effect.
Collapse
Affiliation(s)
- David J Busch
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA
| | - Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA
| | - Carl C Hayden
- 1] Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA [2] Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 1.224 Medical Research Building, Galveston, Texas 77555, USA
| | - Eileen M Lafer
- Department of Biochemistry and Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, UTHSCSA Biochemistry 415B, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Jeanne C Stachowiak
- 1] Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA [2] Institute for Cellular and Molecular Biology, The University of Texas at Austin, 107 W Dean, Keeton,Texas 78712, USA
| |
Collapse
|
14
|
Hood RR, Shao C, Omiatek DM, Vreeland WN, DeVoe DL. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res 2013; 30:1597-607. [PMID: 23386106 DOI: 10.1007/s11095-013-0998-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/28/2013] [Indexed: 12/01/2022]
Abstract
PURPOSE A microfluidic hydrodynamic flow focusing technique enabling the formation of small and nearly monodisperse liposomes is investigated for continuous-flow synthesis of poly(ethylene glycol) (PEG)-modified and PEG-folate-functionalized liposomes for targeted drug delivery. METHODS Controlled laminar flow in thermoplastic microfluidic devices facilitated liposome self-assembly from initial lipid compositions including lipid/cholesterol mixtures containing PEG-lipid and folate-PEG-lipid conjugates. Relationships among flow conditions, lipid composition, and liposome size were evaluated; their impact on PEG and folate incorporation were determined through a combination of UV-vis absorbance measurements and characterization of liposome zeta potential. RESULTS PEG and folate were successfully incorporated into microfluidic-synthesized liposomes over the full range of liposome sizes studied. Efficiency of PEG-lipid incorporation was inversely correlated with liposome diameter. Folate-lipid was effectively integrated into liposomes at various flow conditions. CONCLUSIONS Liposomes incorporating relatively large PEG-modified and folate-PEG-modified lipids were successfully synthesized using the microfluidic flow focusing platform, providing a simple, low cost, rapid method for preparing functionalized liposomes. Relationships between preparation conditions and PEG or folate-PEG functionalization have been elucidated, providing insight into the process and defining paths for optimization of the microfluidic method toward the formation of functionalized liposomes for pharmaceutical applications.
Collapse
Affiliation(s)
- Renee R Hood
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
15
|
Rao Z, Taguchi T. Spectroscopic studies on interactions between cholesterol-end capped polyethylene glycol and liposome. Colloids Surf B Biointerfaces 2012; 97:248-53. [PMID: 22608201 DOI: 10.1016/j.colsurfb.2012.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
In order to confirm that the cholesterol end groups of cholesterol-end capped polyethylene glycol really insert into the liposome bilayer and investigate how the incorporation affects the microenvironment of liposome bilayer, two kinds of molecular probes, namely Nile Red and pinacyanol chloride, were used. Their UV-visible and fluorescence spectrum were recorded before and after the addition of the polymer. Shifts of the maximum absorbance (λ(max)) of Nile Red show that the bilayer microenvironment around Nile Red is becoming more polar with increasing polymer concentration while shifts of λ(max) of pinacyanol chloride indicate that the surrounding environment of pinacyanol chloride is becoming more apolar with addition of polymer. Effect of composition of liposome was also studied. With high ratio of dimethyldioctadecylammonium bromide (DODAB) fraction in liposome, λ(max) of Nile Red is more easily affected by the addition of Chol-PEG-Chol while liposome with cholesterol shows relatively high stability to the addition of Chol-PEG-Chol.
Collapse
Affiliation(s)
- Zhi Rao
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
16
|
Holder JW. Physical and physicochemical factors effecting transport of chlorohydrocarbon gases from lung alveolar air to blood as measured by the causation of narcosis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:42-80. [PMID: 22458856 DOI: 10.1080/10590501.2012.653888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This systematic investigation examines gas transport in the lung for two sets of chlorohydrocarbons (CHCs): the chloromethanes (C1) and chloroethanes (C2). The C1 series includes chloromethane, methylene chloride, chloroform, and carbon tetrachloride, and the C2 series includes chloroethane, 1,2-dichloroethane, 1, 1, 2-trichloroethane, and 1, 1, 2, 2-tetrachloroethane. Most CHC gases cause narcosis. The comprehensive narcosis work of Lehmann and colleagues on CHCs was used as a basis for the narcosis endpoint in the present examination. The sites for narcosis are located in the brain (midline cortex and posterior parietal area), the spine, and at many peripheral nerve sites. Central nervous system (CNS) exposure executes a multisite, neural transmission set of inhibitions that promotes rapid loss of consciousness, sensory feeling, and current and stored memory while providing temporary amnesia. Absorption into the system requires dissolution into many lipid membranes and binding to lipoproteins. Lipophilicity is a CHC property shared with many anesthetics according to the Meyer-Overton Rule. Many structurally different lipid chemicals produce the narcosis response when the lipid concentration exceeds -67 mM. This suggests narcotic or anesthetic dissolution into CNS membranes until the lipid organization is disrupted or perturbed. This perturbation includes loading of Na(+)- and K(+)-channel transmembrane lipoprotein complexes and disrupting their respective channel functional organizations. The channel functions become attenuated or abrogated until the CHC exposure ceases and CHC loading reverses. This investigation demonstrates how the CHC physical and chemical properties influence the absorption of these CHCs via the lung and the alveolar system on route to the blood. Narcosis in test animals was used here as an objective biological endpoint to study the effects of the physical factors Bp, Vp, Kd (oil: gas) partition, Henry's constant (HK), and water solubility (S%) on gas transport. Narcosis is immediate after gas exposure and requires no chemical activation only absorption into the blood and circulation to CNS narcotic sites. The three physical factors Bp, K(d) (oil: air), and S% vary directly with unitary narcosis (UN) whereas Vp and HK vary inversely with UN in linear log-log relationships for the C2 series but not for the C1 series. Physicochemical properties of C1 series gases indicate why they depart from what is usually assumed to be an Ideal Gas. An essential discriminating process in the distal lung is the limiting alveolar film layer (AFL) and the membrane layer of the alveolar acini. The AFL step influences gas uptake by physically limiting the absorption process. Interaction with and dissolution into aqueous solvent of the AFL is required for transport and narcotic activity. Narcotics or anesthetics must engage the aqueous AFL with sufficient strength to allow transport and absorption for downstream CNS binding. CHCs that do not engage well with the AFL are not narcotic. Lipophilicity and amphipathicity are also essential solvency properties driving narcotics' transport through the alveolar layer, delivery to the blood fats and lipoproteins, and into critical CNS lipids, lipoproteins, and receptor sites that actuate narcosis. AFL disruption is thought to be strongly related to a number of serious pulmonary diseases such acute respiratory distress syndrome, infant respiratory distress syndrome, emphysema, chronic obstructive pulmonary disease, asthma, chronic bronchitis, pneumonia, pulmonary infections, and idiopathic pulmonary fibrosis. The physical factors (Bp, Vp, Kd [oil: gas] partition, Henry's constant, and water solubility [S%]) combine to affect a specific transport through the AFL if lung C > C(0) (threshold concentration for narcosis). The degree of blood CHC absorption depends on dose, lipophilicity, and lung residence time. AFL passage can be manipulated by physical factors of increased pressure (kPa) or increased gas exposure (moles). Molecular lipophilicity facilitates narcosis but lipophilicity alone does not explain narcosis. Vapor pressure is also required for narcosis. Narcotic activity apparently requires stereospecific processing in the AFL and/or down-stream inhibition at stereospecific lipoproteins at CNS inhibitory sites. It is proposed that CHCs likely cannot proceed through the AFL without perturbation or disruption of the integrity of the AFL at the alveoli. CHC physicochemical properties are not expected to allow their transport through the AFL as physiological CO(2) and O(2) naturally do in respiration. This work considers CHC inspiration and systemic absorption into the blood with special emphasis on the CHC potential perturbation effects on the lipid, protein liquid layer supra to the alveolar membrane (AFL). A heuristic gas transport model for the CHCs is presented as guidance for this examination. The gas transport model can be used to study absorption for other gas delivery endpoints of environmental concern such as carcinogens.
Collapse
|
17
|
Lee JS, Ankone M, Pieters E, Schiffelers RM, Hennink WE, Feijen J. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: Comparison with stealth liposomes. J Control Release 2011; 155:282-8. [DOI: 10.1016/j.jconrel.2011.07.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/22/2011] [Accepted: 07/18/2011] [Indexed: 12/18/2022]
|
18
|
Thakkar FM, Ayappa KG. Melting and mechanical properties of polymer grafted lipid bilayer membranes. J Chem Phys 2011; 135:104901. [DOI: 10.1063/1.3631940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
|
20
|
Thakkar FM, Ayappa KG. Investigations on the melting and bending modulus of polymer grafted bilayers using dissipative particle dynamics. BIOMICROFLUIDICS 2010; 4:32203. [PMID: 21045925 PMCID: PMC2967236 DOI: 10.1063/1.3473720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/07/2010] [Indexed: 05/30/2023]
Abstract
Understanding the influence of polymer grafted bilayers on the physicomechanical properties of lipid membranes is important while developing liposomal based drug delivery systems. The melting characteristics and bending moduli of polymer grafted bilayers are investigated using dissipative particle dynamics simulations as a function of the amount of grafted polymer and lipid tail length. Simulations are carried out using a modified Andersen barostat, whereby the membrane is maintained in a tensionless state. For lipids made up of four to six tail beads, the transition from the low temperature L(β) phase to the L(α) phase is lowered only above a grafting fraction of G(f)=0.12 for polymers made up of 20 beads. Below G(f)=0.12 small changes are observed only for the HT(4) bilayer. The bending modulus of the bilayers is obtained as a function of G(f) from a Fourier analysis of the height fluctuations. Using the theory developed by Marsh et al. [Biochim. Biophys. Acta 1615, 33 (2003)] for polymer grafted membranes, the contributions to the bending modulus due to changes arising from the grafted polymer and bilayer thinning are partitioned. The contributions to the changes in κ from bilayer thinning were found to lie within 11% for the lipids with four to six tail beads, increasing to 15% for the lipids containing nine tail beads. The changes in the area stretch modulus were also assessed and were found to have a small influence on the overall contribution from membrane thinning. The increase in the area per head group of the lipids was found to be consistent with the scalings predicted by self-consistent mean field results.
Collapse
|
21
|
Gjetting T, Arildsen NS, Christensen CL, Poulsen TT, Roth JA, Handlos VN, Poulsen HS. In vitro and in vivo effects of polyethylene glycol (PEG)-modified lipid in DOTAP/cholesterol-mediated gene transfection. Int J Nanomedicine 2010; 5:371-83. [PMID: 20957159 PMCID: PMC2950395 DOI: 10.2147/ijn.s10462] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Indexed: 11/23/2022] Open
Abstract
Background: DOTAP/cholesterol-based lipoplexes are successfully used for delivery of plasmid DNA in vivo especially to the lungs, although low systemic stability and circulation have been reported. To achieve the aim of discovering the best method for systemic delivery of DNA to disseminated tumors we evaluated the potential of formulating DOTAP/cholesterol lipoplexes with a polyethylene glycol (PEG)-modified lipid, giving the benefit of the shielding and stabilizing properties of PEG in the bloodstream. Method: A direct comparison of properties in vitro and in vivo of 4 different DOTAP/cholesterol-based lipoplexes containing 0%, 2%, 4%, and 10% PEG was performed using reporter gene activity and radioactive tracer lipid markers to monitor biodistribution. Results: We found that 10% PEGylation of lipoplexes caused reduced retention in lung and heart tissues of nude mice compared to nonPEGylated lipoplexes, however no significant delivery to xenograft flank tumors was observed. Although PEGylated and nonPEGylated lipoplexes were delivered to cells the ability to mediate successful transfection is hampered upon PEGylation, presumably due to a changed uptake mechanism and intracellular processing. Conclusion: The eminent in vivo transfection potency of DOTAP/cholesterol-based lipoplexes is well established for expression in lung tumors, but it is unsuitable for expression in non first pass organs such as xenograft flank tumors in mice even after addition of a PEG-lipid in the formulation.
Collapse
Affiliation(s)
- Torben Gjetting
- Department of Radiation Biology, Finsen Center, University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
22
|
Thakkar FM, Ayappa KG. Effect of polymer grafting on the bilayer gel to liquid-crystalline transition. J Phys Chem B 2010; 114:2738-48. [PMID: 20143803 DOI: 10.1021/jp9100762] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Grafted polymers on the surface of lipid membranes have potential applications in liposome-based drug delivery and supported membrane systems. The effect of polymer grafting on the phase behavior of bilayers made up of single-tail lipids is investigated using dissipative particle dynamics. The bilayer is maintained in a tensionless state using a barostat. Simulations are carried out by varying the grafting fraction, G(f), defined as the ratio of the number of polymer molecules to the number of lipid molecules, and the length of the lipid tails. At low G(f), the bilayer shows a sharp transition from the gel (L(beta)) to the liquid-crystalline (L(alpha)) phase. This main melting transition temperature is lowered as G(f) is increased, and above a critical value of G(f), the interdigitated L(betaI) phase is observed prior to the main transition. The temperature range over which the intermediate phases are observed is a function of the lipid tail length and G(f). At higher grafting fractions, the presence of the L(betaI) phase is attributed to the increase in the area per head group due to the lateral pressure exerted by the polymer brush. The areal expansion and decrease in the melting temperatures as a function of G(f) were found to follow the scalings predicted by the self-consistent mean field theories for grafted polymer membranes. Our study shows that the grafted polymer density can be used to effectively control the temperature range and occurrence of a given bilayer phase.
Collapse
Affiliation(s)
- Foram M Thakkar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
23
|
Park Y, Franses EI. Effect of a PEGylated lipid on the dispersion stability and dynamic surface tension of aqueous DPPC and on the interactions with albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6932-6942. [PMID: 20121171 DOI: 10.1021/la904183e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dispersions of dipalmitoylphosphatidylcholine (DPPC) vesicles at 0.1 wt % (1000 ppm) in aqueous isotonic buffer solutions produced by extensive sonication were found to be colloidally stable for hours and days. They also had very low (<10 mN/m) dynamic surface tension minima (DSTM) under pulsating area conditions at 37 degrees C at 20 rpm area pulsation rate. When a 1000 ppm DPPC dispersion was mixed with a stable solution of 1000 ppm bovine serum albumin (BSA), it became colloidally unstable, aggregating within minutes, implying that heterocoagulation between lipid vesicles and albumin takes place. The heterocoagulated dispersion produced high DSTM because the lipid transport rate to the interface became slower. Moreover, the protein may have been transported to the surface faster and adsorbed more than the lipid at the surface. DPPC lipid vesicles were modified for reducing aggregation with other vesicles or with the protein with the addition of a small weight fraction of a neutral "PEGylated" lipid, with a covalently bonded poly(ethylene glycol) (PEG) group. The mixed vesicles were found to be quite more stable than the DPPC vesicles, remaining stable for months, apparently stabilized by steric forces. The colloidal stability at the initial stages of coagulation was evaluated quantitatively from the Fuchs-Smoluchowski stability ratio W. When the modified lipid vesicle dispersion was mixed with the albumin, the vesicles showed no tendency to aggregate with the albumin molecules for days, also probably because of steric repulsion between the PEGylated lipid and the protein. Finally, the mixed lipid dispersions maintained their low DSTM as did the DPPC vesicles without the albumin, and also in the presence of albumin. The results have implications on the use of DPPC or DPPC-based lipids in treating alveolar respiratory diseases without albumin inhibition of their surface tension lowering ability.
Collapse
Affiliation(s)
- Yoonjee Park
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, USA
| | | |
Collapse
|
24
|
Pantusa M, Bartucci R. Kinetics of stearic acid transfer between human serum albumin and sterically stabilized liposomes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1351-7. [DOI: 10.1007/s00249-010-0589-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/18/2010] [Accepted: 02/28/2010] [Indexed: 11/30/2022]
|
25
|
Kastantin M, Ananthanarayanan B, Karmali P, Ruoslahti E, Tirrell M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7279-86. [PMID: 19358585 PMCID: PMC2756452 DOI: 10.1021/la900310k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Micellar nanoparticles are showing promise as carriers of diagnostic and therapeutic biofunctionality, leading to increased interest in their properties and behavior, particularly their size, shape, and stability. This work investigates the physical chemistry of micelles formed from DSPE-PEG(2000) monomers as it pertains to these properties. A melting transition in the lipid core of spheroidal DSPE-PEG(2000) micelles is observed as an endothermic peak at 12.8 degrees C upon heating in differential scanning calorimetry thermograms. Bulky PEG(2000) head groups prevent regular crystalline packing of lipids in both the low-temperature glassy and high-temperature fluid phases, as evidenced by wide-angle X-ray scattering. Equilibrium micelle geometry is spheroidal above and below the transition temperature, indicating that the entropic penalty to force the PEG brush into flat geometry is greater than the enthalpic benefit to the glassy core to pack in an extended configuration. Increased micelle stability is seen in the glassy phase with monomer desorption rates significantly lower than in the fluid phase. Activation energies for monomer desorption are 156+/-6.7 and 79+/-5.0 kJ/mol for the glassy and fluid phases, respectively. The observation of a glass transition that increases micelle stability but does not perturb micelle geometry is useful for the design of more effective biofunctional micelles.
Collapse
Affiliation(s)
- Mark Kastantin
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Spontaneous transfer of stearic acids between human serum albumin and PEG:2000-grafted DPPC membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:921-7. [DOI: 10.1007/s00249-009-0442-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
|
27
|
Ko YT, Kale A, Hartner WC, Papahadjopoulos-Sternberg B, Torchilin VP. Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery. J Control Release 2008; 133:132-8. [PMID: 18929605 DOI: 10.1016/j.jconrel.2008.09.079] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/02/2008] [Accepted: 09/24/2008] [Indexed: 01/19/2023]
Abstract
With few exceptions, where local administration is feasible, progress towards broad clinical application of gene therapies requires the development of effective delivery systems. Here we report a novel non-viral gene delivery vector, 'micelle-like nanoparticle' (MNP) suitable for systemic application. MNP were engineered by condensing plasmid DNA with a chemical conjugate of phospholipid with polyethylenimine (PLPEI) and then coating the complexes with an envelope of lipid monolayer additionally containing polyethylene glycol-phosphatidyl ethanolamine (PEG-PE), resulting in spherical 'hard-core' nanoparticles loaded with DNA. MNP allowed for complete protection of the loaded DNA from enzymatic degradation, resistance to salt-induced aggregation, and reduced cytotoxicity. MNP also demonstrated prolonged blood circulation and low RES accumulation. Intravenous injection of MNP loaded with plasmid DNA encoding for the Green Fluorescence Protein (GFP) resulted in an effective transfection of a distal tumor. Thus, MNP provide a promising tool for systemic gene therapy.
Collapse
Affiliation(s)
- Young Tag Ko
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
28
|
Leal C, Rögnvaldsson S, Fossheim S, Nilssen EA, Topgaard D. Dynamic and structural aspects of PEGylated liposomes monitored by NMR. J Colloid Interface Sci 2008; 325:485-93. [DOI: 10.1016/j.jcis.2008.05.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/23/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
|
29
|
Vakil R, Kwon GS. Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles. Mol Pharm 2007; 5:98-104. [PMID: 18159926 DOI: 10.1021/mp700081v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Micelles formed from PEG-DSPE solubilize high levels of the poorly water-soluble antifungal amphotericin B (AmB). AmB release from PEG-DSPE micelles is slow in buffer but remarkably rapid in the presence of bovine serum albumin (BSA). Sequential changes in the absorbance spectrum of AmB in PEG-DSPE micelles point to a rapid dissociation of incorporated drug in the presence of BSA. In this context, we have studied micelles formed from PEG-DSPE which coincorporate cholesterol (PEG-DSPE|cholesterol). (1)H NMR measurements point to a lower mobility of lipid in PEG-DSPE|cholesterol micelles compared to PEG-DSPE micelles. The absorbance spectrum of AmB incorporated in PEG-DSPE|cholesterol micelles is distinct from that in PEG-DSPE micelles, which may point to differences in the drug-micelle interaction. AmB release from PEG-DSPE|cholesterol micelles is slow in buffer and in the presence of BSA. The absorption spectrum of AmB in PEG-DSPE|cholesterol micelles remained unchanged in BSA, further supporting stable incorporation and the slow release from the carrier.
Collapse
Affiliation(s)
- Ronak Vakil
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
30
|
Velázquez MM, Valero M, Ortega F, Rodríguez González JB. Structure and size of spontaneously formed aggregates in Aerosol OT/PEG mixtures: Effects of polymer size and composition. J Colloid Interface Sci 2007; 316:762-70. [PMID: 17900606 DOI: 10.1016/j.jcis.2007.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/27/2007] [Accepted: 09/03/2007] [Indexed: 11/29/2022]
Abstract
Dynamic light scattering and Cryo-TEM measurements have allowed us to obtain the size and structure of spontaneous aggregates formed by mixtures of Aerosol OT, AOT, and ethylene glycol polymers of different molecular mass. The results presented in this work show that small unilamellar vesicles predominate in pure Aerosol OT solutions and in dilute polymer solutions mixed with AOT. In the latter case, elongated micelles coexist with unilamellar vesicles. When polymer concentration increases above a certain concentration, the small vesicles disappear and the size of the elongated micelles decreases to a radius compatible with spherical micelles. For PEG concentrations above the overlapping ones, spherical micelles coexist with very large aggregates probably formed by large rod like micelles or by superstructures of elongated micelles embedded in a polymer network. This behavior is consistent with theoretical models based in molecular mean-field theory [M. Rovira-Bru, D.H. Thompson, I. Szleifer, Biophys. J. 83 (2002) 2419]. The properties of the different types of aggregates are obtained by fluorescence spectroscopy and electrophoretic mobility measurements.
Collapse
Affiliation(s)
- M Mercedes Velázquez
- Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain.
| | | | | | | |
Collapse
|
31
|
Sandström MC, Johansson E, Edwards K. Influence of preparation path on the formation of discs and threadlike micelles in DSPE-PEG(2000)/lipid systems. Biophys Chem 2007; 132:97-103. [PMID: 18006210 DOI: 10.1016/j.bpc.2007.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 11/28/2022]
Abstract
In a recent study we showed that the surfactant 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG(2000)) induce mixed micelles of either threadlike or discoidal shape when mixed with different types of lipids. In certain lipid systems the discoidal micelles adapt sizes large enough to be characterized as bilayer discs. The discs hold great potential for use in various biotechnical applications and may e.g. be used as model membranes in drug/membrane partition studies. Depending on the application, discs with certain characteristics, such as a particular size or size homogeneity, may be required. These factors can in our experience be influenced by the preparation method. In this study we systematically investigated three different PEG-lipid/lipid mixtures prepared by four commonly used preparation techniques. The techniques used were simple hydration, freeze-thawing, sonication and detergent depletion, and the aggregate size and structure was analyzed by cryo transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). Our results show that the type and size of the micellar structure found, as well as the structure homogeneity of the preparation, can be modified by the choice of preparation path.
Collapse
Affiliation(s)
- Maria C Sandström
- Department of Physical and Analytical Chemistry, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
32
|
Georgiev GA, Sarker DK, Al-Hanbali O, Georgiev GD, Lalchev Z. Effects of poly (ethylene glycol) chains conformational transition on the properties of mixed DMPC/DMPE-PEG thin liquid films and monolayers. Colloids Surf B Biointerfaces 2007; 59:184-93. [PMID: 17587556 DOI: 10.1016/j.colsurfb.2007.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 05/06/2007] [Accepted: 05/09/2007] [Indexed: 11/24/2022]
Abstract
Foam thin liquid films (TLF) and monolayers at the air-water interface formed by DMPC mixed with DMPE-bonded poly (ethylene glycol)s (DMPE-PEG(550), DMPE-PEG(2000) and DMPE-PEG(5000)) were obtained. The influence of both (i) PEG chain size (evaluated in terms of Mw) and mushroom-to-brush conformational transition and (ii) of the liposome/micelle ratio in the film-forming dispersions, on the interfacial properties of mixed DMPC/DMPE-PEG films was compared. Foam film studies demonstrated that DMPE-PEG addition to foam TLFs caused (i) delayed kinetics of film thinning and black spot expansion and (ii) film stabilization. At the mushroom-to-brush transition, due to steric repulsion increased DMPE-PEG films thickness reached 25 nm while pure DMPC films were only 8 nm thick Newton black films. It was possible to differentiate DMPE-PEG(2000/5000) from DMPE-PEG(550) by the ability to change foam TLF formation mechanism, which could be of great importance for "stealth" liposome design. Monolayer studies showed improved formation kinetics and equilibrium surface tension decrease for DMPE-PEG monolayers compared with DMPC pure films. SEM observations revealed "smoothing" and "sealing" of the defects in the solid-supported layer surface by DMPE-PEGs adsorption, which could explain DMPE-PEGs ability to stabilize TLFs and to decrease monolayer surface tension. All effects in monolayers, foam TLFs and solid-supported layers increased with the increase of PEG Mw and DMPE-PEG concentration. However, at the critical DMPE-PEG concentration (where mushroom-to-brush conformational transition occurred) maximal magnitude of the effects was reached, which only slightly changed at further DMPE-PEG content and micelle/liposome ratio increase.
Collapse
Affiliation(s)
- Georgi As Georgiev
- University of Sofia "St. Kliment Ohridski", Faculty of Biology, Department of Biochemistry, 8 Dragan Tsankov Str., 1164 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
33
|
Rieber K, Sýkora J, Olzyńska A, Jelinek R, Cevc G, Hof M. The use of solvent relaxation technique to investigate headgroup hydration and protein binding of simple and mixed phosphatidylcholine/surfactant bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1050-8. [PMID: 17300743 DOI: 10.1016/j.bbamem.2006.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 12/19/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
The subject of this report was to investigate headgroup hydration and mobility of two types of mixed lipid vesicles, containing nonionic surfactants; straight chain Brij 98, and polysorbat Tween 80, with the same number of oxyethylene units as Brij, but attached via a sorbitan ring to oleic acid. We used the fluorescence solvent relaxation (SR) approach for the purpose and revealed differences between the two systems. Fluorescent solvent relaxation probes (Prodan, Laurdan, Patman) were found to be localized in mixed lipid vesicles similarly as in pure phospholipid bilayers. The SR parameters (i.e. dynamic Stokes shift, Deltanu, and the time course of the correlation function, C(t)) of such labels are in the same range in both kinds of systems. Each type of the tested surfactants has its own impact on water organization in the bilayer headgroup region probed by Patman. Brij 98 does not modify the solvation characteristics of the dye. In contrast, Tween 80 apparently dehydrates the headgroup and decreases its mobility. The SR data measured in lipid bilayers in presence of Interferon alfa-2b reveal that this protein, a candidate for non-invasive delivery, affects the bilayer in a different way than the peptide melittin. Interferon alfa-2b binds to mixed lipid bilayers peripherally, whereas melittin is deeply inserted into lipid membranes and affects their headgroup hydration and mobility measurably.
Collapse
Affiliation(s)
- K Rieber
- IDEA AG, Frankfurter Ring 193 a, 80807 Munich, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Soong R, Macdonald PM. PEG molecular weight and lateral diffusion of PEG-ylated lipids in magnetically aligned bicelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1805-14. [PMID: 17524353 DOI: 10.1016/j.bbamem.2007.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/07/2007] [Accepted: 03/27/2007] [Indexed: 11/30/2022]
Abstract
Lateral diffusion coefficients of PEG-ylated lipids with three different molecular weight PEG groups (1000, 2000 and 5000) were measured in magnetically-aligned bicelles using the stimulated echo (STE) pulsed field gradient (PEG) (1)H nuclear magnetic resonance (NMR) method. At concentrations below the PEG "mushroom-to-brush" transition, all three PEG-ylated lipids exhibited unrestricted lateral diffusion, with lateral diffusion coefficients comparable to those of corresponding non-PEG-ylated lipids and independent of PEG molecular weight. At concentrations above this transition, lateral diffusion slowed progressively with increasing concentration of PEG-ylated lipid as a result of surface crowding. As well, the lateral diffusion coefficients exhibited a pronounced decrease with increasing PEG group molecular weight and a diffusion-time dependence indicative of obstructed diffusion. We conclude that, while lateral diffusion of PEG-ylated lipids within lipid bilayers is determined primarily by the hydrophobic anchoring group, when crowding at the lipid bilayer surface becomes significant, the size of the extra-membranous domain, in this case the PEG group, can influence lateral diffusion, leading to decreased diffusivity with increasing size and producing obstructed diffusion at high crowding. These findings imply that similar considerations will pertain to lateral diffusion of membrane proteins with large extra-membranous domains.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Toronto, 3359 Mississauga Road North, Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
35
|
Sandström MC, Johansson E, Edwards K. Structure of mixed micelles formed in PEG-lipid/lipid dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4192-8. [PMID: 17343401 DOI: 10.1021/la063501s] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polyethylene glycol (PEG)-conjugated lipids are commonly employed for steric stabilization of liposomes. When added in high concentrations PEG-lipids induce formation of mixed micelles, and depending on the lipid composition of the sample, these may adapt either a discoidal or a long threadlike shape. The factors governing the type of micellar aggregate formed have so far not been investigated in detail. In this study we have systematically varied the lipid composition in lipid/PEG-lipid mixtures and characterized the aggregate structure by means of cryo-transmission electron microscopy (cryo-TEM). The effects caused by adding sterols, phosphatidylethanolamines, and phospholipids with saturated acyl chains to egg phosphatidylcholine/1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000 (EPC/DSPE-PEG2000) mixtures with a fixed amount (25 mol %) of DSPE-PEG2000 was studied. Further, the aggregate structure in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine/1,2-dimyristoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000] (DMPC/DMPE-PEG2000) samples above and below the gel to liquid crystalline phase transition temperature (TC) was investigated. Our results revealed that lipid components, as well as environmental conditions, that reduce the lipid spontaneous curvature and increase the monolayer bending modulus tend to promote formation of discoidal micelles. At temperatures below the gel-to-liquid crystalline phase transition temperature reduced lipid/PEG-lipid miscibility, furthermore, likely contribute to the observed formation of discoidal rather than threadlike micelles.
Collapse
Affiliation(s)
- Maria C Sandström
- Department of Physical and Analytical Chemistry, Uppsala University, Box 579, 751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
36
|
Photos PJ, Bermudez H, Aranda-Espinoza H, Shillcock J, Discher DE. Nuclear pores and membrane holes: generic models for confined chains and entropic barriers in pore stabilization. SOFT MATTER 2007; 3:364-371. [PMID: 32900153 DOI: 10.1039/b611412c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The lumen of the nuclear pore complex is increasingly understood to be lined by a polymer brush that entropically regulates transport in and out of the nucleus-and it seems likely that similar effects probably arise with glycocalyx-lined holes in cell membranes. Here we mimic such pore-confined brushes with self-assembled polymer membranes imbued with nano-holes. Experiment and theory help elucidate the entropic origin and stabilization of the pores, which appear to have a similar basis as steric stabilization of colloids bearing polymer brushes. Free energies of interacting brushes reveal stable minima at pore sizes smaller than the classical metastable point, with little effect of the particular pore geometry. Such entropic forces have potential implications for lock and key mechanisms of nuclear pore assembly as well as transient poration of cells and synthetic nano-pores with regulatory mechanisms for transport.
Collapse
Affiliation(s)
- Peter J Photos
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Harry Bermudez
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Helim Aranda-Espinoza
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Julian Shillcock
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Dennis E Discher
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
37
|
Georgiev GA, Georgiev GD, Lalchev Z. Thin liquid films and monolayers of DMPC mixed with PEG and phospholipid linked PEG. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:352-62. [PMID: 16447038 DOI: 10.1007/s00249-006-0043-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/30/2005] [Accepted: 01/06/2006] [Indexed: 11/26/2022]
Abstract
In this work thin liquid films (TLFs) and monolayers at the air/water interface formed by dimyristoylphosphatidylcholine (DMPC) and by DMPC mixed with poly ethylene glycols (PEGs) and dimyristoylphosphatidylethanolamine (DMPE) linked PEGs were studied. Film forming dispersions were composed of two types of particles: liposomes and micelles. TLFs stability, threshold concentration C(t) (i.e., the minimum one for stable film formation), and hydrodynamic behavior were measured. At equivalent conditions, DMPC films were Newton black films (real bilayers), while DMPE-PEGs films were much thicker with free water between the monolayers. DMPE-PEG addition to DMPC films caused both C(t) decrease (depending on PEG moiety length and Mw) and change of TLF formation mechanism. TLFs' hydrodynamic behavior also strongly depended on DMPE-PEG content and Mw. It was observed that thinning of the DMPC and DMPE-PEGs films continued to different film types and thickness, being much thicker for the latter films. Addition of free PEGs (PEG-200/6000) did not alter TLF type or stability, but changed TLF thinning time, confirming that free PEGs with Mw<8000 could not penetrate in the membrane and alter "near-membrane" water layer viscosity. Monolayer studies showed improved formation kinetics of both adsorbed and spread films, decrease of surface tension (equilibrium and dynamic), and of film compression/decompression histeresis area in DMPE-PEGs monolayers compared with DMPC pure films. Our study shows that combining the models of phospholipid TLFs and monolayers provide the opportunity to investigate the properties of membrane surface and to clarify some mechanisms of its interactions with membrane-active agents.
Collapse
Affiliation(s)
- Georgi As Georgiev
- Faculty of Biology, Department of Biochemistry, University of Sofia "St. Kliment Ohridski", 8 Dragan Tsankov Street, 1164 Sofia, Bulgaria
| | | | | |
Collapse
|
38
|
Soong R, Macdonald PM. Influence of the long-chain/short-chain amphiphile ratio on lateral diffusion of PEG-lipid in magnetically aligned lipid bilayers as measured via pulsed-field-gradient NMR. Biophys J 2005; 89:1850-60. [PMID: 15994903 PMCID: PMC1366688 DOI: 10.1529/biophysj.105.064725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lateral diffusion measurements of polyethylene glycol(PEG)-lipid incorporated into magnetically aligned lipid bilayers, composed of dimyristoyl phosphatidylcholine (DMPC) plus dihexanoyl phosphatidylcholine (DHPC) plus 1 mol % (relative to DMPC) dimyristoyl phosphatidylethanolamine-n-[methoxy(polyethylene glycol)-2000] (DMPE-PEG 2000), were performed using stimulated-echo pulsed-field-gradient proton ((1)H) nuclear magnetic resonance spectroscopy. The DMPE-PEG 2000 (1 mol %, 35 degrees C) lateral diffusion coefficient D varied directly with the mole fraction of DMPC, X(DMPC) = q/(1+q) where q = DMPC/DHPC molar ratio, decreasing progressively from D = 1.65 x 10(-11) m(2) s(-1) at q approximately 4.7 to D = 0.65 x 10(-11) m(2) s(-1) at q approximately 2.5. Possible sources of this dependence, including orientational disorder, obstruction, and PEG-lipid sequestration, were simulated using, respectively, a diffusion-in-a-cone model, percolation theory, and a two-phase PEG distribution model. Orientational disorder alone was not capable of reproducing the observations, but in combination with either obstruction or PEG-lipid two-phase distribution models did so satisfactorily. A combination of all three models yielded the most reasonable fit to the observed dependence of lateral diffusion on q. These same effects would be expected to influence lateral diffusion of any bilayer-associating species in such systems.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Toronto, and Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Canada
| | | |
Collapse
|
39
|
Johansson E, Engvall C, Arfvidsson M, Lundahl P, Edwards K. Development and initial evaluation of PEG-stabilized bilayer disks as novel model membranes. Biophys Chem 2005; 113:183-92. [PMID: 15617826 DOI: 10.1016/j.bpc.2004.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/13/2004] [Accepted: 09/13/2004] [Indexed: 11/22/2022]
Abstract
We show in this study that stable dispersions dominated by flat bilayer disks may be prepared from a carefully optimized mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-5000] [PEG-DSPE(5000)]. By varying the content of the latter component, the average diameter of the disks can be changed in the interval from about 15 to 60 nm. The disks show excellent long-term stability, and their size and structure remain unaltered in the temperature range between 25 and 37 degrees C. The utility of the disks as artificial model membranes was confirmed and compared to uni- and multilamellar liposomes in a series of drug partition studies. Data obtained by isothermal titration calorimetry and drug partition chromatography (also referred to as immobilized liposome chromatography) indicate that the bilayer disks may serve as an attractive and sometimes superior alternative to liposomes in studies aiming at the investigation of drug-membrane interactions. The disks may, in addition, hold great potential for structure/function studies of membrane-bound proteins. Furthermore, we suggest that the sterically stabilized bilayer disks may prove interesting as carriers for in vivo delivery of protein/peptide, as well as conventional amphiphilic and/or hydrophobic, drugs.
Collapse
Affiliation(s)
- Emma Johansson
- Department of Physical Chemistry, Biomedical Center, Uppsala University, Box 579, SE-75123 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Johnsson M, Edwards K. Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys J 2004; 85:3839-47. [PMID: 14645073 PMCID: PMC1303685 DOI: 10.1016/s0006-3495(03)74798-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Poly(ethylene glycol) (PEG) decorated lipid bilayers are widely used in biomembrane and pharmaceutical research. The success of PEG-lipid stabilized liposomes in drug delivery is one of the key factors for the interest in these polymer/lipid systems. From a more fundamental point of view, it is essential to understand the effect of the surface grafted polymers on the physical-chemical properties of the lipid bilayer. Herein we have used cryo-transmission electron microscopy and dynamic light scattering to characterize the aggregate structure and phase behavior of mixtures of PEG-lipids and distearoylphosphatidylcholine or dipalmitoylphosphatidylcholine. The PEG-lipids contain PEG of molecular weight 2000 or 5000. We show that the transition from a dispersed lamellar phase (liposomes) to a micellar phase consisting of small spherical micelles occurs via the formation of small discoidal micelles. The onset of disk formation already takes place at low PEG-lipid concentrations (<5 mol %) and the size of the disks decreases as more PEG-lipid is added to the lipid mixture. We show that the results from cryo-transmission electron microscopy correlate well with those obtained from dynamic light scattering and that the disks are well described by an ideal disk model. Increasing the temperature, from 25 degrees C to above the gel-to-liquid crystalline phase transition temperature for the respective lipid mixtures, has a relatively small effect on the aggregate structure.
Collapse
Affiliation(s)
- Markus Johnsson
- Department of Physical Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
42
|
Morandi S, Ristori S, Berti D, Panza L, Becciolini A, Martini G. Association of sugar-based carboranes with cationic liposomes: an electron spin resonance and light scattering study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:53-63. [PMID: 15238258 DOI: 10.1016/j.bbamem.2004.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 04/07/2004] [Accepted: 04/08/2004] [Indexed: 11/23/2022]
Abstract
The possibility of cationic (di-oleoyltrimethylammonium propane, DOTAP)/(L-alpha-dioleoylphosphatidyl-ethanolamine, DOPE) liposomes to act as carriers of boronated compounds such as 1,2-dicarba-closo-dodecaboran(12)-1-ylmethyl](beta-D-galactopyranosyl)-(1-->4)-beta-D-glucopyranoside and 1,2-di-(beta-D-gluco-pyranosyl-ox)methyl-1,2-dicarba-closo-dodeca-borane(12) has been investigated by Electron Spin Resonance (ESR) of n-doxyl stearic acids (n-DSA) and Quasi-Elastic Light Scattering (QELS). Both these carboranes have potential use in Boron Neutron Capture Therapy (BNCT), which is a targeted therapy for the treatment of radiation resistant tumors. They were shown to give aggregation both in plain water and in saline solution. Carborane aggregates were, however, disrupted when DOTAP/DOPE liposome solutions were used as dispersing agents. The computer analysis of the ESR spectra from carborane-loaded liposomes allowed to establish an increase of the order degree in the liposome bilayer with increasing carborane concentration, together with a decreased mobility. The same discontinuities of both correlation time and order parameter with respect to temperature variations were observed in carborane-containing and carborane-free liposomes. This suggested that a homogeneous dispersion of nitroxides and carboranes occurred in the liposome bilayer. The ESR line shape analysis proved that no dramatic changes were induced in the liposome environment by carborane insertion. QELS data showed that the overall liposome structure was preserved, with a slight decrease in the mean hydrodynamic radius and increase in polydispersity caused by the guest molecules.
Collapse
Affiliation(s)
- Sara Morandi
- Dipartimento di Chimica, Laboratorio di Chimica Fisica delle Interfasi, Università di Firenze, 50019, Sesto Fiorentino no, Florence, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Pata V, Dan N. The effect of chain length on protein solubilization in polymer-based vesicles (polymersomes). Biophys J 2004; 85:2111-8. [PMID: 14507679 PMCID: PMC1303440 DOI: 10.1016/s0006-3495(03)74639-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using a mean-field analysis we derive a consistent model for the perturbation of a symmetric polymeric bilayer due to the incorporation of transmembrane proteins, as a function of the polymer molecular weight and the protein dimensions. We find that the mechanism for the inhibition of protein incorporation in polymeric bilayers differs from that of their inclusion in polymer-carrying lipid vesicles; in polymersomes, the equilibrium concentration of transmembrane proteins decreases as a function of the thickness mismatch between the protein and the bilayer core, whereas in liposomes the presence of polymer chains affects the protein adsorption kinetics. Despite the increased stiffness of polymer bilayers (when compared to lipid ones), their perturbation decay length and range of protein-protein interaction is found to be relatively long. The energetic penalty due to protein adsorption increases relatively slowly as a function of the polymer chain length due to the self-assembled nature of the polymer bilayer. As a result, we predict that transmembrane proteins may be incorporated in significant numbers even in bilayers where the thickness mismatch is large.
Collapse
Affiliation(s)
- Veena Pata
- Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
44
|
Marsh D, Bartucci R, Sportelli L. Lipid membranes with grafted polymers: physicochemical aspects. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:33-59. [PMID: 12948586 DOI: 10.1016/s0005-2736(03)00197-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Membranes grafted with water-soluble polymers resist protein adsorption and adhesion to cellular surfaces. Liposomes with surface-grafted polymers therefore find applications in drug delivery. The physicochemical properties of polymer-grafted lipid membranes are reviewed with mean-field and scaling theories from polymer physics. Topics covered are: mushroom-brush transitions, membrane expansion and elasticity, bilayer-micelle transitions, membrane-membrane interactions and protein-membrane interactions.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Spektroskopie, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
45
|
Pantusa M, Bartucci R, Marsh D, Sportelli L. Shifts in chain-melting transition temperature of liposomal membranes by polymer-grafted lipids. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:165-70. [PMID: 12896809 DOI: 10.1016/s0005-2736(03)00171-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chain-melting transition temperature of dipalmitoyl phosphatidylcholine (DPPC) bilayer membranes containing poly(ethylene glycol)-grafted dipalmitoyl phosphatidylethanolamine (PEG-DPPE) was determined by optical turbidity measurements. The dependence on content, Xp, of PEG-DPPE lipid was studied for different polar headgroup sizes, np, of the polymer lipid, throughout the lamellar phase of the mixtures with DPPC. Mean-field theory for the polymer brush regime predicts that the downward shift in transition temperature should vary with polymer size and content as npXp(5/3) (approximately npXp(11/6) for scaling theory). Any shift induced by the charge on PEG-lipids is independent of polymer size. These predictions are reasonably borne out for the longer polymer lipids (PEG molecular masses 750, 2000 and 5000 Da). Transition temperature shifts in the lamellar phase, before the onset of micellisation, are in the region of -1 to -2 degrees C (+/-0.1-0.2 degrees C) in reasonable accord with theoretical estimates of the lateral pressure exerted by the polymer brush. Shifts of this size are significant to the design of liposomes for controlled release of contents by mild hyperthermia.
Collapse
Affiliation(s)
- Manuela Pantusa
- Dipartimento di Fisica and Unità INFM, Università della Calabria, Ponte P. Bucci, Cubo 31 C, I-87036, Arcavacata di Rende (CS), Italy
| | | | | | | |
Collapse
|
46
|
Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 2003; 90:323-34. [PMID: 12880699 DOI: 10.1016/s0168-3659(03)00201-3] [Citation(s) in RCA: 381] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PEG-modified lipid vesicles have already shown considerable utility in delaying vesicle clearance from the circulation. They are, however, limited in their ability to stably integrate high molar ratios of PEG-lipid due to the high curvature and micellar preference of the very large hydrophilic PEG chain. Polymersomes, by contrast, are vesicles composed entirely of PEG-based block copolymer amphiphiles that are not only more proportionately designed, but also have already been shown to considerably broaden the range of vesicle properties (e.g. stability). Here, polymersomes composed of varying length copolymer chains were injected into rats and found to have in vivo circulation times, tau(1/2), up to about two-fold longer than PEGylated, or Stealth, liposomes. The dependence of tau(1/2) on PEG molecular weight is nonetheless limited by uptake into the liver and spleen-as with liposomes. In vitro incubations of polymersomes in plasma indicate gradual opsonization through plasma protein adsorption, such that, when vesicles are held in an optical trap and presented to a phagocyte, rapid engulfment occurs only after incubation times of similar magnitude to tau(1/2). The stealthiness introduced to liposomes through PEGylation is thus extended here with completely synthetic polymersomes.
Collapse
Affiliation(s)
- Peter J Photos
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104-6393, USA
| | | | | | | | | |
Collapse
|
47
|
Bartucci R, Belsito S, Sportelli L. Spin-label electron spin resonance studies of micellar dispersions of PEGs-PEs polymer-lipids. Chem Phys Lipids 2003; 124:111-22. [PMID: 12818737 DOI: 10.1016/s0009-3084(03)00047-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conventional electron spin resonance (ESR) spectroscopy of different positional isomers of phosphatidylcholine spin labels (n-PCSL; n=5, 7, 10, 12, 14, and 16) has been used to study micellar dispersions made of poly(ethylene glycol)s-phosphatidylethanolamines (PEGs-PEs) polymer-lipids. Such aggregates are currently used as long circulating drug delivery systems "in vivo." We varied both the hydrocarbon chain length and the polymer size of the polymer-lipids. The dependence of the lipid-chain packing density on temperature and on label position as well as the flexibility and polarity profiles with position of chain labeling have been established for the PEGs-PEs micellar dispersions. The results show both similarity and differences either with common micellar dispersions of single chained lyso-palmitoylphosphatidylcholine (C(16)Lyso-PC) or with lamellar dispersions of double chained dipalmitoylphosphatidylcholine (DPPC). Well defined chain flexibility gradients of the same overall shape are obtained in the considered dispersions. However, the mobility of the first acyl chain segments is appreciable higher in micelles of polymer-lipids than in bilayers of DPPC and it becomes indistinguishable at the chain termini. A trend of decreasing polarity on moving toward the bilayer interior is seen in DPPC bilayers, whereas biphasic polarity profiles are obtained in micelles of polymer-lipids and C(16)Lyso-PC. Moreover, the properties of the PEGs-PEs micelles do not depend on the length of the hydrocarbon chain of the polymer-lipids but are slightly influenced by the size of the polymer.
Collapse
Affiliation(s)
- Rosa Bartucci
- Dipartimento di Fisica and Unità INFM, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 (CS), Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
48
|
Hansen PL, Cohen JA, Podgornik R, Parsegian VA. Osmotic properties of poly(ethylene glycols): quantitative features of brush and bulk scaling laws. Biophys J 2003; 84:350-5. [PMID: 12524288 PMCID: PMC1302616 DOI: 10.1016/s0006-3495(03)74855-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
From glycosylated cell surfaces to sterically stabilized liposomes, polymers attached to membranes attract biological and therapeutic interest. Can the scaling laws of polymer "brushes" describe the physical properties of these coats? We delineate conditions where the Alexander-de Gennes theory of polymer brushes successfully fits the intermembrane distance versus applied osmotic stress data of Kenworthy et al. for poly(ethylene glycol)-grafted multilamellar liposomes. We establish that the polymer density and size in the brush must be high enough that, in a bulk solution of equivalent monomer density, the polymer osmotic pressure is independent of polymer molecular weight (the des Cloizeaux semidilute regime of bulk polymer solutions). The condition that attached polymers behave as semidilute bulk solutions offers a rigorous criterion for brush scaling-law behavior. There is a deep connection between the behaviors of semidilute polymer solutions in bulk and polymers grafted to a surface at a density such that neighbors pack to form a uniform brush. In this regime, two-parameter unconstrained fits of the Alexander-de Gennes brush scaling laws to the Kenworthy et al. data yield effective monomer lengths of 3.3-3.6 A, which agree with structural predictions. The fitted distances between grafting sites are larger than expected from the nominal mole fraction of poly(ethylene glycol)-lipids; the chains apparently saturate the surface. Osmotic stress measurements can be used to estimate the actual densities of membrane-grafted polymers.
Collapse
Affiliation(s)
- Per Lyngs Hansen
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5626, USA
| | | | | | | |
Collapse
|
49
|
Bartucci R, Pantusa M, Marsh D, Sportelli L. Interaction of human serum albumin with membranes containing polymer-grafted lipids: spin-label ESR studies in the mushroom and brush regimes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:237-42. [PMID: 12101018 DOI: 10.1016/s0005-2736(02)00458-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adsorption of human serum albumin (HSA) to dipalmitoyl phosphatidylcholine (DPPC) bilayer membranes containing poly(ethylene glycol)-grafted dipalmitoyl phosphatidylethanolamine (PEG-DPPE) was studied as a function of content and headgroup size of the polymer lipid. In the absence of protein, conversion from the low-density mushroom regime to the high-density brush regime of polymer-lipid content is detected by the change in ESR outer hyperfine splitting, 2A(max), of chain spin-labelled phosphatidylcholine in gel-phase membranes. The values of 2A(max) remain constant in the mushroom regime, but decrease on entering the brush regime. Conversion between the two regimes occurs at mole fractions X(PEG)(m-->b) approximately 0.04, 0.01-0.02 and 0.005-0.01 for PEG-DPPE with mean PEG molecular masses of 350, 2000 and 5000 Da, respectively, as expected theoretically. Adsorption of HSA to DPPC membranes is detected as a decrease of the spin label 2A(max) hyperfine splitting in the gel phase. Saturation is obtained at a protein/lipid ratio of ca. 1:1 w/w. In the presence of polymer-grafted lipids, HSA adsorbs to DPPC membranes only in the mushroom regime, irrespective of polymer length. In the brush regime, the spin-label values of 2A(max) are unchanged in the presence of protein. Even in the mushroom regime, protein adsorption progressively becomes strongly attenuated as a result of the steric stabilization exerted by the polymer lipid. These results are in agreement with theoretical estimates of the lateral pressure exerted by the grafted polymer in the brush and mushroom regimes, respectively.
Collapse
Affiliation(s)
- Rosa Bartucci
- Lab. di Biofisica Molecolare, Dipartimento di Fisica and Unità INFM, Università della Calabria, Ponte P. Bucci, Cubo 31 C, I-87036 Arcavacata di Rende (CS), Italy
| | | | | | | |
Collapse
|
50
|
Belsito S, Bartucci R, Sportelli L. Lipid chain length effect on the phase behaviour of PCs/PEG:2000-PEs mixtures. A spin label electron spin resonance and spectrophotometric study. Biophys Chem 2001; 93:11-22. [PMID: 11604213 DOI: 10.1016/s0301-4622(01)00201-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spin-label electron spin resonance (ESR) spectroscopy and spectrophotometry at fixed wavelength are used to study fully hydrated aqueous dispersions of phosphatidylcholines (PCs) with poly(ethylene glycol:2000)-phosphatidylethanolamines (PEG:2000-PEs). PEG:2000-PE is a micelle-forming polymer-lipid that is extensively used for increasing the lifetime of PC liposomes in the blood circulation through a steric stabilisation effect. The PC lipids and the PEG:2000-PE polymer-lipids have the same acyl chain length of either dimiristoyl (DM) or distearoyl (DS) chains. DMPC/PEG:2000-DMPE and DSPC/PEG:2000-DSPE mixtures were investigated over the entire range of relative compositions (0-100 mol%). In both dispersions, the low-temperature conventional spin label ESR spectra and the temperature dependence of the absorbance at 400 nm give an indication of the conversion from lamellae to micelles with increasing PEG:2000-PEs content. The physical state of the lipid assemblies, lamellar or micellar, is dependent not only on PEG:2000-PEs content, but also on the length of hydrocarbon chain of the lipid matrix. Micellisation is attained more readily in dispersions with longer hydrocarbon chains (i.e. in DSPC/PEG:2000-DSPE mixtures) than in those with shorter acyl chains (i.e. in DMPC/PEG:2000-DMPE mixtures). Saturation transfer ESR (ST-ESR) and absorbance measurements reflect the disaggregation of the bilayers and a reduction in the size of the lipid aggregates by PEG:2000-PEs at low content.
Collapse
Affiliation(s)
- S Belsito
- Dipartimento di Fisica and Unità INFM, Università della Calabria, Ponte P. Bucci, Cubo 31 C, I-87030 Arcavacata di (CS), Rende, Italy
| | | | | |
Collapse
|