1
|
Darwish D, Kumar P, Urs K, Dave S. Inhaled Anesthetics: Beyond the Operating Room. J Clin Med 2024; 13:7513. [PMID: 39768435 PMCID: PMC11679802 DOI: 10.3390/jcm13247513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The development of inhaled anesthetics (IAs) has a rich history dating back many centuries. In modern times they have played a pivotal role in anesthesia and critical care by allowing deep sedation during periods of critical illness and surgery. In addition to their sedating effects, they have many systemic effects allowing for therapy beyond surgical anesthesia. In this narrative review we chronicle the evolution of IAs, from early volatile agents such as ether to the contemporary use of halogenated hydrocarbons. This is followed by a discussion of the mechanisms of action of these agents which primarily involve the modulation of lipid membrane properties and ion channel activity. IAs' systemic effects are also examined, including their effects on the cardiovascular, respiratory, hepatic, renal and nervous systems. We discuss of the role of IAs in treating systemic disease processes including ischemic stroke, delayed cerebral ischemia, status epilepticus, status asthmaticus, myocardial ischemia, and intensive care sedation. We conclude with a review of the practical and logistical challenges of utilizing IAs outside the operating room as well as directions for future research. This review highlights the expanding clinical utility of IAs and their evolving role in the management of a diverse range of disease processes, offering new avenues for therapeutic exploration beyond anesthesia.
Collapse
Affiliation(s)
- Dana Darwish
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pooja Kumar
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khushi Urs
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siddharth Dave
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Wieruszewski ED, ElSaban M, Wieruszewski PM, Smischney NJ. Inhaled volatile anesthetics in the intensive care unit. World J Crit Care Med 2024; 13:90746. [PMID: 38633473 PMCID: PMC11019627 DOI: 10.5492/wjccm.v13.i1.90746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
The discovery and utilization of volatile anesthetics has significantly transformed surgical practices since their inception in the mid-19th century. Recently, a paradigm shift is observed as volatile anesthetics extend beyond traditional confines of the operating theatres, finding diverse applications in intensive care settings. In the dynamic landscape of intensive care, volatile anesthetics emerge as a promising avenue for addressing complex sedation requirements, managing refractory lung pathologies including acute respiratory distress syndrome and status asthmaticus, conditions of high sedative requirements including burns, high opioid or alcohol use and neurological conditions such as status epilepticus. Volatile anesthetics can be administered through either inhaled route via anesthetic machines/devices or through extracorporeal membrane oxygenation circuitry, providing intensivists with multiple options to tailor therapy. Furthermore, their unique pharmacokinetic profiles render them titratable and empower clinicians to individualize management with heightened accuracy, mitigating risks associated with conventional sedation modalities. Despite the amounting enthusiasm for the use of these therapies, barriers to widespread utilization include expanding equipment availability, staff familiarity and training of safe use. This article delves into the realm of applying inhaled volatile anesthetics in the intensive care unit through discussing their pharmacology, administration considerations in intensive care settings, complication considerations, and listing indications and evidence of the use of volatile anesthetics in the critically ill patient population.
Collapse
Affiliation(s)
| | - Mariam ElSaban
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | | | - Nathan J Smischney
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
3
|
Truglia B, Carbone N, Ghadre I, Vallero S, Zito M, Zizzi EA, Deriu MA, Tuszynski JA. An In Silico Investigation of the Molecular Interactions between Volatile Anesthetics and Actin. Pharmaceuticals (Basel) 2023; 17:37. [PMID: 38256871 PMCID: PMC10819646 DOI: 10.3390/ph17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Sara Vallero
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | | | | | | | - J. A. Tuszynski
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
4
|
Rózsa ZB, Hantal G, Szőri M, Fábián B, Jedlovszky P. Understanding the Molecular Mechanism of Anesthesia: Effect of General Anesthetics and Structurally Similar Non-Anesthetics on the Properties of Lipid Membranes. J Phys Chem B 2023; 127:6078-6090. [PMID: 37368412 PMCID: PMC11404830 DOI: 10.1021/acs.jpcb.3c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
General anesthesia can be caused by various, chemically very different molecules, while several other molecules, many of which are structurally rather similar to them, do not exhibit anesthetic effects at all. To understand the origin of this difference and shed some light on the molecular mechanism of general anesthesia, we report here molecular dynamics simulations of the neat dipalmitoylphosphatidylcholine (DPPC) membrane as well as DPPC membranes containing the anesthetics diethyl ether and chloroform and the structurally similar non-anesthetics n-pentane and carbon tetrachloride, respectively. To also account for the pressure reversal of anesthesia, these simulations are performed both at 1 bar and at 600 bar. Our results indicate that all solutes considered prefer to stay both in the middle of the membrane and close to the boundary of the hydrocarbon domain, at the vicinity of the crowded region of the polar headgroups. However, this latter preference is considerably stronger for the (weakly polar) anesthetics than for the (apolar) non-anesthetics. Anesthetics staying in this outer preferred position increase the lateral separation between the lipid molecules, giving rise to a decrease of the lateral density. The lower lateral density leads to an increased mobility of the DPPC molecules, a decreased order of their tails, an increase of the free volume around this outer preferred position, and a decrease of the lateral pressure at the hydrocarbon side of the apolar/polar interface, a change that might well be in a causal relation with the occurrence of the anesthetic effect. All these changes are clearly reverted by the increase of pressure. Furthermore, non-anesthetics occur in this outer preferred position in a considerably smaller concentration and hence either induce such changes in a much weaker form or do not induce them at all.
Collapse
Affiliation(s)
- Zsófia B Rózsa
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
5
|
Wurl A, M. Ferreira T. Atomistic MD Simulations of
n
‐Alkanes in a Phospholipid Bilayer: CHARMM36 versus Slipids. MACROMOL THEOR SIMUL 2023. [DOI: 10.1002/mats.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Anika Wurl
- NMR group ‐ Institute for Physics Martin Luther University Halle‐Wittenberg Betty‐Heimann‐Str. 7 06120 Halle (Saale) Germany
| | - Tiago M. Ferreira
- NMR group ‐ Institute for Physics Martin Luther University Halle‐Wittenberg Betty‐Heimann‐Str. 7 06120 Halle (Saale) Germany
| |
Collapse
|
6
|
Colmano N, Sánchez-Borzone ME, Turina AV. Effects of Fipronil and surface behavior of neuronal insect and mammalian membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183979. [PMID: 35654149 DOI: 10.1016/j.bbamem.2022.183979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Nicolás Colmano
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariela E Sánchez-Borzone
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Anahí V Turina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
7
|
Matsumoto A, Adachi H, Terashima I, Uesono Y. Escaping from the Cutoff Paradox by Accumulating Long-Chain Alcohols in the Cell Membrane. J Med Chem 2022; 65:10471-10480. [PMID: 35857416 DOI: 10.1021/acs.jmedchem.2c00629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism for the cutoff, an activity cliff at which long-chain alcohols lose their biological effects, has not been elucidated. Highly hydrophobic oleyl alcohol (C18:1) exists as a mixture of monomers and aggregated droplets in water. C18:1 did not inhibit the yeast growth but inhibited the growth of the slime mold without a cell wall. C18:1 exhibited toxicity to the yeast protoplast, which was enhanced by polyethylene glycol, a fusogen. Therefore, direct interactions of C18:1 with the membrane are crucial for the toxicity. The cutoff alcohols, C14 and C16, also exhibited strong toxicity obeying the Meyer-Overton correlation, in intact yeast cells whose membrane growth was suppressed in water. Taken together, the cutoff is avoidable by securing sufficient accumulation of the wall-permeable monomers in the membrane, which supports the lipid theory. It would be important to distinguish the effective drug structure localizing in the membrane and deal with the amount in the membrane.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Adachi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Steigenberger J, Verleysen Y, Geudens N, Martins JC, Heerklotz H. The Optimal Lipid Chain Length of a Membrane-Permeabilizing Lipopeptide Results From the Balance of Membrane Partitioning and Local Damage. Front Microbiol 2021; 12:669709. [PMID: 34594308 PMCID: PMC8476953 DOI: 10.3389/fmicb.2021.669709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudodesmin A (PSD) is a cyclic lipodepsipeptide produced by Pseudomonas that kills certain bacteria at MIC1/2 in the single micromolar range, probably by permeabilizing their cellular membranes. Synthetic PSD variants, where the native decanoic (C10) acyl chain is varied in length from C4 to C8 and C12 to C14 carbons, were described to be not or less active against a panel of gram-positive strains, as compared to native PSD-C10. Here, we test the membrane-permeabilizing activity of PSD-C4 through PSD-C14 in terms of calcein release from liposomes, which is characterized in detail by the fluorescence-lifetime based leakage assay. Antagonistic concentrations and their chain length dependence agree well for liposome leakage and antimicrobial activity. The optimal chain length is governed by a balance between membrane partitioning (favoring longer chains) and the local perturbation or “damage” inflicted by a membrane-bound molecule (weakening for longer chains). Local perturbation, in turn, may involve at least two modes of action. Asymmetry stress between outer and inner leaflet builds up as the lipopeptides enter the outer leaflet and when it reaches a system-specific stability threshold, it causes a transient membrane failure that allows for the flip of some molecules from the outer to the inner leaflet. This cracking-in may be accompanied by transient, incomplete leakage from the aqueous cores of the liposomes observed, typically, for some seconds or less. The mismatch of the lipopeptide with the lipid leaflet geometry, expressed for example in terms of a spontaneous curvature, has two effects. First, it affects the threshold for transient leakage as described. Second, it controls the rate of equilibrium leakage proceeding as the lipopeptide has reached sufficient local concentrations in both leaflets to form quasi-toroidal defects or pores. Both modes of action, transient and equilibrium leakage, synergize for intermediate chain lengths such as the native, i.e., for PSD-C10. These mechanisms may also account for the reported chain-length dependent specificities of antibiotic action against the target bacteria.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Freiburg, Germany
| | - Yentl Verleysen
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Freiburg, Germany.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Grage SL, Culetto A, Ulrich AS, Weinschenk S. Membrane-Mediated Activity of Local Anesthetics. Mol Pharmacol 2021; 100:502-512. [PMID: 34475108 DOI: 10.1124/molpharm.121.000252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023] Open
Abstract
The activity of local anesthetics (LAs) has been attributed to the inhibition of ion channels, causing anesthesia. However, there is a growing body of research showing that LAs act on a wide range of receptors and channel proteins far beyond simple analgesia. The current concept of ligand recognition may no longer explain the multitude of protein targets influenced by LAs. We hypothesize that LAs can cause anesthesia without directly binding to the receptor proteins just by changing the physical properties of the lipid bilayer surrounding these proteins and ion channels based on LAs' amphiphilicity. It is possible that LAs act in one of the following ways: They 1) dissolve raft-like membrane microdomains, 2) impede nerve impulse propagation by lowering the lipid phase transition temperature, or 3) modulate the lateral pressure profile of the lipid bilayer. This could also explain the numerous additional effects of LAs besides anesthesia. Furthermore, the concepts of membrane-mediated activity and binding to ion channels do not have to exclude each other. If we were to consider LA as the middle part of a continuum between unspecific membrane-mediated activity on one end and highly specific ligand binding on the other end, we could describe LA as the link between the unspecific action of general anesthetics and toxins with their highly specific receptor binding. This comprehensive membrane-mediated model offers a fresh perspective to clinical and pharmaceutical research and therapeutic applications of local anesthetics. SIGNIFICANCE STATEMENT: Local anesthetics, according to the World Health Organization, belong to the most important drugs available to mankind. Their rediscovery as therapeutics and not only anesthetics marks a milestone in global pain therapy. The membrane-mediated mechanism of action proposed in this review can explain their puzzling variety of target proteins and their thus far inexplicable therapeutic effects. The new concept presented here places LAs on a continuum of structures and molecular mechanisms in between small general anesthetics and the more complex molecular toxins.
Collapse
Affiliation(s)
- Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Anke Culetto
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Stefan Weinschenk
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| |
Collapse
|
10
|
Han K, Pastor RW, Fenollar–Ferrer C. PLD2-PI(4,5)P2 interactions in fluid phase membranes: Structural modeling and molecular dynamics simulations. PLoS One 2020; 15:e0236201. [PMID: 32687545 PMCID: PMC7371163 DOI: 10.1371/journal.pone.0236201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Interaction of phospholipase D2 (PLD2) with phosphatidylinositol (4,5)-bisphosphate (PIP2) is regarded as the critical step of numerous physiological processes. Here we build a full-length model of human PLD2 (hPLD2) combining template-based and ab initio modeling techniques and use microsecond all-atom molecular dynamics (MD) simulations of the protein in contact with a complex membrane to determine hPLD2-PIP2 interactions. MD simulations reveal that the intermolecular interactions preferentially occur between specific PIP2 phosphate groups and hPLD2 residues; the most strongly interacting residues are arginine at the pbox consensus sequence (PX) and pleckstrin homology (PH) domain. Interaction networks indicate formation of clusters at the protein-membrane interface consisting of amino acids, PIP2, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (POPA); the largest cluster was in the PH domain.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cristina Fenollar–Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Genetics, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, United States of America
- Molecular Biology and Genetics Section, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Usuda H, Hishida M, Kelley EG, Yamamura Y, Nagao M, Saito K. Interleaflet coupling of n-alkane incorporated bilayers. Phys Chem Chem Phys 2020; 22:5418-5426. [PMID: 31904060 DOI: 10.1039/c9cp06059f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationship between the membrane bending modulus (κ) and compressibility modulus (KA) depends on the extent of coupling between the two monolayers (leaflets). Using neutron spin echo (NSE) spectroscopy, we investigate the effects of n-alkanes on the interleaflet coupling of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. Structural studies with small-angle X-ray and neutron scattering (SAXS and SANS) showed that the bilayer thickness increased with increasing n-alkane length, while NSE suggested that the bilayers became softer. Additional measurements of the membrane thickness fluctuations with NSE suggested that the changes in elastic moduli were due to a decrease in coupling between the leaflets upon addition of the longer n-alkanes. The decreased coupling with elongating n-alkane length was explained based on the n-alkane distribution within the bilayers characterized by SANS measurement of bilayers composed of protiated DPPC and deuterated n-alkanes. A higher fraction of the incorporated long n-alkanes were concentrated at the central plane of the bilayers and decreased the physical interaction between the leaflets. Using NSE and SANS, we successfully correlated changes in the mesoscopic collective dynamics and microscopic membrane structure upon incorporation of n-alkanes.
Collapse
Affiliation(s)
- Hatsuho Usuda
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Patel J, Chowdhury EA, Noorani B, Bickel U, Huang J. Isoflurane increases cell membrane fluidity significantly at clinical concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183140. [PMID: 31790694 DOI: 10.1016/j.bbamem.2019.183140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 01/17/2023]
Abstract
There is an on-going debate whether anesthetic drugs, such as isoflurane, can cause meaningful structural changes in cell membranes at clinical concentrations. In this study, the effects of isoflurane on lipid membrane fluidity were investigated using fluorescence anisotropy and spectroscopy. In order to get a complete picture, four very different membrane systems (erythrocyte ghosts, a 5-lipid mixture that mimics brain endothelial cell membrane, POPC/Chol, and pure DPPC) were selected for the study. In all four systems, we found that fluorescence anisotropies of DPH-PC, nile-red, and TMA-DPH decrease significantly at the isoflurane concentrations of 1 mM and 5 mM. Furthermore, the excimer/monomer (E/M) ratio of dipyrene-PC jumps immediately after the addition of isoflurane. We found that isoflurane is quite effective to loosen up highly ordered lipid domains with saturated lipids. Interestingly, 1 mM isoflurane causes a larger decrease of nile-red fluorescence anisotropy in erythrocyte ghosts than 52.2 mM of ethanol, which is three times the legal limit of blood alcohol level. Our results paint a consistent picture that isoflurane at clinical concentrations causes significant and immediate increase of membrane fluidity in a wide range of membrane systems.
Collapse
Affiliation(s)
- Jigesh Patel
- Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Ekram A Chowdhury
- Department of Pharmaceutical Sciences, Texas Tech University Health Science Center, Amarillo, TX 79106, United States of America
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Texas Tech University Health Science Center, Amarillo, TX 79106, United States of America
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Science Center, Amarillo, TX 79106, United States of America
| | - Juyang Huang
- Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
13
|
Oakes V, Domene C. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods. Chem Rev 2018; 119:5998-6014. [DOI: 10.1021/acs.chemrev.8b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
14
|
Matsumoto A, Uesono Y. Physicochemical Solubility of and Biological Sensitivity to Long-Chain Alcohols Determine the Cutoff Chain Length in Biological Activity. Mol Pharmacol 2018; 94:1312-1320. [DOI: 10.1124/mol.118.112656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022] Open
|
15
|
Zhang M, Peyear T, Patmanidis I, Greathouse DV, Marrink SJ, Andersen OS, Ingólfsson HI. Fluorinated Alcohols' Effects on Lipid Bilayer Properties. Biophys J 2018; 115:679-689. [PMID: 30077334 PMCID: PMC6104562 DOI: 10.1016/j.bpj.2018.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Fluorinated alcohols (fluoroalcohols) have physicochemical properties that make them excellent solvents of peptides, proteins, and other compounds. Like other alcohols, fluoroalcohols also alter membrane protein function and lipid bilayer properties and stability. Thus, the questions arise: how potent are fluoroalcohols as lipid-bilayer-perturbing compounds, could small residual amounts that remain after adding compounds dissolved in fluoroalcohols alter lipid bilayer properties sufficiently to affect membranes and membrane protein function, and do they behave like other alcohols? To address these questions, we used a gramicidin-based fluorescence assay to determine the bilayer-modifying potency of selected fluoroalcohols: trifluoroethanol (TFE), HFIP, and perfluoro-tert-butanol (PFTB). These fluoroalcohols alter bilayer properties in the low (PFTB) to high (TFE) mM range. Using the same assay, we determined the bilayer partitioning of the alcohols. When referenced to the aqueous concentrations, the fluoroalcohols are more bilayer perturbing than their nonfluorinated counterparts, with the largest fluoroalcohol, PFTB, being the most potent and the smallest, TFE, the least. When referenced to the mole fractions in the membrane, however, the fluoroalcohols have equal or lesser bilayer-perturbing potency than their nonfluorinated counterparts, with TFE being more bilayer perturbing than PFTB. We compared the fluoroalcohols' molecular level bilayer interactions using atomistic molecular dynamics simulations and showed how, at higher concentrations, they can cause bilayer breakdown using absorbance measurements and 31P nuclear magnetic resonance.
Collapse
Affiliation(s)
- Mike Zhang
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York; The Bronx High School of Science, New York City, New York
| | - Thasin Peyear
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York
| | - Ilias Patmanidis
- Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Siewert J Marrink
- Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Olaf S Andersen
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York.
| | - Helgi I Ingólfsson
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York; Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California.
| |
Collapse
|
16
|
Muhammad U, Uzairu A, Ebuka Arthur D. Review on: quantitative structure activity relationship (QSAR) modeling. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/japlr.2018.07.00232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Shields ZPI, Seybold PG, Murray JS. Anesthetic activity and the electrostatic potential (revisited). J Mol Model 2017; 24:19. [DOI: 10.1007/s00894-017-3547-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
|
18
|
Kondela T, Gallová J, Hauß T, Barnoud J, Marrink SJ, Kučerka N. Alcohol Interactions with Lipid Bilayers. Molecules 2017; 22:E2078. [PMID: 29182554 PMCID: PMC6149720 DOI: 10.3390/molecules22122078] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
We investigate the structural changes to lipid membrane that ensue from the addition of aliphatic alcohols with various alkyl tail lengths. Small angle neutron diffraction from flat lipid bilayers that are hydrated through water vapor has been employed to eliminate possible artefacts of the membrane curvature and the alcohol's membrane-water partitioning. We have observed clear changes to membrane structure in both transversal and lateral directions. Most importantly, our results suggest the alteration of the membrane-water interface. The water encroachment has shifted in the way that alcohol loaded bilayers absorbed more water molecules when compared to the neat lipid bilayers. The experimental results have been corroborated by molecular dynamics simulations to reveal further details. Namely, the order parameter profiles have been fruitful in correlating the mechanical model of structural changes to the effect of anesthesia.
Collapse
Affiliation(s)
- Tomáš Kondela
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovakia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russian.
| | - Jana Gallová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovakia.
| | - Thomas Hauß
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, D-14109 Berlin, Germany.
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Siewert-J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Norbert Kučerka
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovakia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russian.
| |
Collapse
|
19
|
Cornell CE, McCarthy NLC, Levental KR, Levental I, Brooks NJ, Keller SL. n-Alcohol Length Governs Shift in L o-L d Mixing Temperatures in Synthetic and Cell-Derived Membranes. Biophys J 2017; 113:1200-1211. [PMID: 28801104 PMCID: PMC5607138 DOI: 10.1016/j.bpj.2017.06.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022] Open
Abstract
A persistent challenge in membrane biophysics has been to quantitatively predict how membrane physical properties change upon addition of new amphiphiles (e.g., lipids, alcohols, peptides, or proteins) in order to assess whether the changes are large enough to plausibly result in biological ramifications. Because of their roles as general anesthetics, n-alcohols are perhaps the best-studied amphiphiles of this class. When n-alcohols are added to model and cell membranes, changes in membrane parameters tend to be modest. One striking exception is found in the large decrease in liquid-liquid miscibility transition temperatures (Tmix) observed when short-chain n-alcohols are incorporated into giant plasma membrane vesicles (GPMVs). Coexisting liquid-ordered and liquid-disordered phases are observed at temperatures below Tmix in GPMVs as well as in giant unilamellar vesicles (GUVs) composed of ternary mixtures of a lipid with a low melting temperature, a lipid with a high melting temperature, and cholesterol. Here, we find that when GUVs of canonical ternary mixtures are formed in aqueous solutions of short-chain n-alcohols (n ≤ 10), Tmix increases relative to GUVs in water. This shift is in the opposite direction from that reported for cell-derived GPMVs. The increase in Tmix is robust across GUVs of several types of lipids, ratios of lipids, types of short-chain n-alcohols, and concentrations of n-alcohols. However, as chain lengths of n-alcohols increase, nonmonotonic shifts in Tmix are observed. Alcohols with chain lengths of 10-14 carbons decrease Tmix in ternary GUVs of dioleoyl-PC/dipalmitoyl-PC/cholesterol, whereas 16 carbons increase Tmix again. Gray et al. observed a similar influence of the length of n-alcohols on the direction of the shift in Tmix. These results are consistent with a scenario in which the relative partitioning of n-alcohols between liquid-ordered and liquid-disordered phases evolves as the chain length of the n-alcohol increases.
Collapse
Affiliation(s)
- Caitlin E Cornell
- University of Washington, Department of Chemistry, Seattle, Washington
| | | | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Medical Center, Houston, Texas
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Medical Center, Houston, Texas
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Sarah L Keller
- University of Washington, Department of Chemistry, Seattle, Washington.
| |
Collapse
|
20
|
Paxman J, Hunt B, Hallan D, Zarbock SR, Woodbury DJ. Drunken Membranes: Short-Chain Alcohols Alter Fusion of Liposomes to Planar Lipid Bilayers. Biophys J 2017; 112:121-132. [PMID: 28076803 PMCID: PMC5232861 DOI: 10.1016/j.bpj.2016.11.3205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
Although the effects of ethanol on protein receptors and lipid membranes have been studied extensively, ethanol's effect on vesicles fusing to lipid bilayers is not known. To determine the effect of alcohols on fusion rates, we utilized the nystatin/ergosterol fusion assay to measure fusion of liposomes to a planar lipid bilayer (BLM). The addition of ethanol excited fusion when applied on the cis (vesicle) side, and inhibited fusion on the trans side. Other short-chain alcohols followed a similar pattern. In general, the inhibitory effect of alcohols (trans) occurs at lower doses than the excitatory (cis) effect, with a decrease of 29% in fusion rates at the legal driving limit of 0.08% (w/v) ethanol (IC50 = 0.2% v/v, 34 mM). Similar inhibitory effects were observed with methanol, propanol, and butanol, with ethanol being the most potent. Significant variability was observed with different alcohols when applied to the cis side. Ethanol and propanol enhanced fusion, butanol also enhanced fusion but was less potent, and low doses of methanol mildly inhibited fusion. The inhibition by trans addition of alcohols implies that they alter the planar membrane structure and thereby increase the activation energy required for fusion, likely through an increase in membrane fluidity. The cis data are likely a combination of the above effect and a proportionally greater lowering of the vesicle lysis tension and hydration repulsive pressure that combine to enhance fusion. Alternate hypotheses are also discussed. The inhibitory effect of ethanol on liposome-membrane fusion is large enough to provide a possible biophysical explanation of compromised neuronal behavior.
Collapse
Affiliation(s)
- Jason Paxman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Brady Hunt
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - David Hallan
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Samuel R Zarbock
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Dixon J Woodbury
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah.
| |
Collapse
|
21
|
Effect of local anesthetics on serotonin1A receptor function. Chem Phys Lipids 2016; 201:41-49. [DOI: 10.1016/j.chemphyslip.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023]
|
22
|
Lee DK, Albershardt DJ, Cantor RS. Exploring the mechanism of general anesthesia: kinetic analysis of GABAA receptor electrophysiology. Biophys J 2016; 108:1081-93. [PMID: 25762320 DOI: 10.1016/j.bpj.2014.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 10/23/2022] Open
Abstract
A kinetic model of the effect of agonist and anesthetics on ligand-gated ion channels, developed in earlier work, is further refined and used to predict traces observed in fast-perfusion electrophysiological studies on recombinant GABAA receptors under a wide range of agonist and/or anesthetic concentrations. The model incorporates only three conformational states (resting, open, and desensitized) but allows for the modulation of the conformational free energy landscape connecting these states resulting from adsorption of agonist and/or anesthetic to the bilayer in which the protein is embedded. The model is shown to reproduce the diverse and complex features of experimental traces remarkably well, including both anesthetic-induced and agonist-induced traces, as well as the modulation of agonist-induced traces by anesthetic, either coapplied or continuously present. The solutions to the kinetic equations, which give the time-dependence of each of the nine protein states (three ligation states for each of the three conformations), describe the flow of probability among these states and thus reveal the kinetic underpinnings of the traces. Many of the parameters in the model, such as the desorption rate constants of anesthetic and agonist, are directly related to model-independent experimental measurements and thus can serve as a definitive test of its validity.
Collapse
Affiliation(s)
- Daniel K Lee
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire
| | | | - Robert S Cantor
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire; MEMPHYS Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
23
|
Moskovitz Y, Yang H. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers. SOFT MATTER 2015; 11:2125-2138. [PMID: 25612767 DOI: 10.1039/c4sm02667e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar and at a temperature of 310 K. Xenon and argon have been tested as model gases for general anaesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremors in hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of the gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor, while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar order parameter patterns for both DOPC acyl chains, which are opposite of the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the 'critical volume' hypothesis of anaesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1-100 bar could be associated with the possible manifestation of neurological tremors at the atomic scale. The non-immobiliser neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing the monolayer undulation rate, which indicates that enhanced diffusivity rather than atomic size is the key factor.
Collapse
Affiliation(s)
- Yevgeny Moskovitz
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37130, USA
| | | |
Collapse
|
24
|
Effect of methanol on the phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations: In quest of the biphasic effect. J Mol Graph Model 2015; 55:85-104. [DOI: 10.1016/j.jmgm.2014.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022]
|
25
|
Sacchi M, Balleza D, Vena G, Puia G, Facci P, Alessandrini A. Effect of neurosteroids on a model lipid bilayer including cholesterol: An Atomic Force Microscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1258-67. [PMID: 25620773 DOI: 10.1016/j.bbamem.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties.
Collapse
Affiliation(s)
- Mattia Sacchi
- Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Via Campi 213/A, 41125 Modena, Italy; CNR - Istituto Nanoscienze, S3, Via Campi 213/A, 41125 Modena, Italy
| | - Daniel Balleza
- CNR - Istituto Nanoscienze, S3, Via Campi 213/A, 41125 Modena, Italy
| | - Giulia Vena
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 287, Modena 287, Italy
| | - Giulia Puia
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 287, Modena 287, Italy
| | - Paolo Facci
- CNR - Istituto di Biofisica, Via De Marini 6, 16149 Genova, Italy
| | - Andrea Alessandrini
- Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Via Campi 213/A, 41125 Modena, Italy; CNR - Istituto Nanoscienze, S3, Via Campi 213/A, 41125 Modena, Italy.
| |
Collapse
|
26
|
Przybyło M, Drabik D, Łukawski M, Langner M. Effect of Monovalent Anions on Water Transmembrane Transport. J Phys Chem B 2014; 118:11470-9. [DOI: 10.1021/jp505687d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Magda Przybyło
- Laboratory for Biophysics of Macromolecular Aggregates,
Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Pl. Grunwaldzki 13, 50-370 Wroclaw, Poland
| | - Dominik Drabik
- Laboratory for Biophysics of Macromolecular Aggregates,
Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Pl. Grunwaldzki 13, 50-370 Wroclaw, Poland
| | - Maciej Łukawski
- Laboratory for Biophysics of Macromolecular Aggregates,
Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Pl. Grunwaldzki 13, 50-370 Wroclaw, Poland
| | - Marek Langner
- Laboratory for Biophysics of Macromolecular Aggregates,
Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Pl. Grunwaldzki 13, 50-370 Wroclaw, Poland
| |
Collapse
|
27
|
Effect of the cosolutes trehalose and methanol on the equilibrium and phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:517-44. [DOI: 10.1007/s00249-014-0982-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
28
|
Sevoflurane anesthesia deteriorates pulmonary surfactant promoting alveolar collapse in male Sprague–Dawley rats. Pulm Pharmacol Ther 2014; 28:122-9. [DOI: 10.1016/j.pupt.2013.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/06/2013] [Accepted: 12/24/2013] [Indexed: 01/01/2023]
|
29
|
Oz M, Al Kury L, Keun-Hang SY, Mahgoub M, Galadari S. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors. Eur J Pharmacol 2014; 731:100-5. [DOI: 10.1016/j.ejphar.2014.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 01/31/2023]
|
30
|
Sakakibara K, Fujisawa T, Hill JP, Ariga K. Conformational interchange of a carbohydrate by mechanical compression at the air–water interface. Phys Chem Chem Phys 2014; 16:10286-94. [DOI: 10.1039/c3cp55078h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Linking membrane physical properties and low temperature tolerance in arthropods. Cryobiology 2013; 67:383-5. [DOI: 10.1016/j.cryobiol.2013.09.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 01/06/2023]
|
32
|
Abstract
Volatile anesthetics serve as useful probes of a conserved biological process that is essential to the proper functioning of the central nervous system. A kinetic and thermodynamic analysis of their unusual pharmacological and physiological characteristics has led to a general, predictive theory in which small molecules that adsorb to membranes modulate ion channel function by altering physical properties of membrane bilayers. A kinetic model that is both parsimonious and falsifiable has been developed to test this mechanism. This theory leads to predictions about the structure, function, origin, and evolution of synapses, the etiology of several diseases and disease symptoms affecting the brain, and the mechanism of action of several drugs that are used therapeutically. Neuronal membranes may offer an appealing drug target, given the large number of compounds that adsorb to interfaces and hence membranes.
Collapse
Affiliation(s)
- James M Sonner
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0464, USA.
| | | |
Collapse
|
33
|
Hsu TT, Leiske DL, Rosenfeld L, Sonner JM, Fuller GG. 3-Hydroxybutyric acid interacts with lipid monolayers at concentrations that impair consciousness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1948-1955. [PMID: 23339286 DOI: 10.1021/la304712f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
3-Hydroxybutyric acid (also referred to as β-hydroxybutyric acid or BHB), a small molecule metabolite whose concentration is elevated in type I diabetes and diabetic coma, was found to modulate the properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers when added to the subphase at clinical concentrations. This is a key piece of evidence supporting the hypothesis that the anesthetic actions of BHB are due to the metabolite's abilities to alter physical properties of cell membranes, leading to indirect effects on membrane protein function. Pressure-area isotherms show that BHB changes the compressibility of the monolayer and decrease the size of the two-phase coexistence region. Epi-fluorescent microscopy further reveals that the reduction of the coexistence region is due to the significant reduction in morphology of the liquid condensed domains in the two-phase coexistence region. These changes in monolayer morphology are associated with the diminished interfacial viscosity of the monolayers (measured using an interfacial stress rheometer), which gives insight as to how changes in phase and structure may contribute to membrane function.
Collapse
Affiliation(s)
- Tienyi T Hsu
- The Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
34
|
Booker RD, Sum AK. Biophysical changes induced by xenon on phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1347-56. [PMID: 23376329 DOI: 10.1016/j.bbamem.2013.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/28/2012] [Accepted: 01/22/2013] [Indexed: 12/20/2022]
Abstract
Structural and dynamic changes in cell membrane properties induced by xenon, a volatile anesthetic molecule, may affect the function of membrane-mediated proteins, providing a hypothesis for the mechanism of general anesthetic action. Here, we use molecular dynamics simulation and differential scanning calorimetry to examine the biophysical and thermodynamic effects of xenon on model lipid membranes. Our results indicate that xenon atoms preferentially localize in the hydrophobic core of the lipid bilayer, inducing substantial increases in the area per lipid and bilayer thickness. Xenon depresses the membrane gel-liquid crystalline phase transition temperature, increasing membrane fluidity and lipid head group spacing, while inducing net local ordering effects in a small region of the lipid carbon tails and modulating the bilayer lateral pressure profile. Our results are consistent with a role for nonspecific, lipid bilayer-mediated mechanisms in producing xenon's general anesthetic action.
Collapse
Affiliation(s)
- Ryan D Booker
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | | |
Collapse
|
35
|
Abstract
Inhaled agents represent an important and useful class of drugs for equine anesthesia. This article reviews the ether-type anesthetics in contemporary use, their uptake and elimination, their mechanisms of action, and their desirable and undesirable effects in horses.
Collapse
Affiliation(s)
- Robert J Brosnan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
36
|
Abstract
Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and from, fusing with, and budding from, other membranes. A feature of vesicles that is crucial for this transport is their ability to fuse to target membranes and release their contents to the distal side. In industry, some personal care products contain vesicles to help transport reagents across the skin, and research on drug formulation shows that packaging active compounds inside vesicles delays their clearance from the blood stream. In this chapter, we survey the biological role and physicochemical properties of phospholipids, and describe progress in coarse-grained simulations of vesicles and vesicle fusion. Because coarse-grained simulations retain only those molecular details that are thought to influence the large-scale processes of interest, they act as a model embodying our current understanding. Comparing the predictions of these models with experiments reveals the importance of the retained microscopic details and also the deficiencies that can suggest missing details, thereby furthering our understanding of the complex dynamic world of vesicles.
Collapse
|
37
|
RVACHEV MARATM. ON AXOPLASMIC PRESSURE WAVES AND THEIR POSSIBLE ROLE IN NERVE IMPULSE PROPAGATION. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001147] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is suggested that the propagation of the action potential is accompanied by an axoplasmic pressure pulse propagating in the axoplasm along the axon length. The pressure pulse stretch-modulates voltage-gated Na+ (Nav) channels embedded in the axon membrane, causing their accelerated activation and inactivation and increasing peak channel conductance. As a result, the action potential propagates due to mechano-electrical activation of Nav channels by straggling ionic currents and the axoplasmic pressure pulse. The velocity of such propagation is higher than in the classical purely electrical Nav activation mechanism, and it may be close to the velocity of propagation of pressure pulses in the axoplasm. Extracellular Ca2+ ions influxing during the voltage spike, or Ca2+ ions released from intracellular stores, may trigger a mechanism that generates and augments the pressure pulse, thus opposing its viscous decay. The model can potentially explain a number of phenomena that are not contained within the purely electrical Hodgkin–Huxley-type framework: the Meyer–Overton rule for the effectiveness of anesthetics, as well as various mechanical, optical and thermodynamic phenomena accompanying the action potential. It is shown that the velocity of propagation of axoplasmic pressure pulses is close to the measured velocity of the nerve impulse, both in absolute magnitude and in dependence on axon diameter, degree of myelination and temperature.
Collapse
Affiliation(s)
- MARAT M. RVACHEV
- Physics Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Cascales JJL, Costa SDO, Porasso RD. Thermodynamic study of benzocaine insertion into different lipid bilayers. J Chem Phys 2011; 135:135103. [DOI: 10.1063/1.3643496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Klacsová M, Bulacu M, Kučerka N, Uhríková D, Teixeira J, Marrink S, Balgavý P. The effect of aliphatic alcohols on fluid bilayers in unilamellar DOPC vesicles — A small-angle neutron scattering and molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2136-46. [DOI: 10.1016/j.bbamem.2011.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/30/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
|
40
|
Willenbring D, Xu Y, Tang P. The role of structured water in mediating general anesthetic action on alpha4beta2 nAChR. Phys Chem Chem Phys 2010; 12:10263-9. [PMID: 20661501 PMCID: PMC3265171 DOI: 10.1039/c003573d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Water is an essential component for many biological processes. Pauling proposed that water might play a critical role in general anesthesia by forming water clathrates around anesthetic molecules. To examine potential involvement of water in general anesthesia, we analyzed water within alpha4beta2 nAChR, a putative protein target hypersensitive to volatile anesthetics. Experimental structure-derived closed- and open-channel nAChR systems in a fully hydrated lipid bilayer were examined using all-atom molecular dynamics simulations. At the majority of binding sites in alpha4beta2 nAChR, halothane replaced the slow-exchanging water molecules and caused a regional water population decrease. Only two binding sites had an increased quantity of water in the presence of halothane, where water arrangements resemble clathrate-like structures. The small number of such clathrate-like water clusters suggests that the formation of water clathrates is unlikely to be a primary cause for anesthesia. Despite the decrease in water population at most of the halothane binding sites, the number of sites that can be occupied transiently by water is actually increased in the presence of halothane. Many of these water sites were located between two subunits or in regions containing agonist binding sites or critical structural elements for transducing agonist binding to channel gating. Changes in water sites in the presence of halothane affected water-mediated protein-protein interactions and the protein dynamics, which can have direct impact on protein function. Collectively, water contributes to the action of anesthetics in proteins by mediating interactions between protein subunits and altering protein dynamics, instead of forming water clathrates around anesthetics.
Collapse
Affiliation(s)
- Dan Willenbring
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
41
|
Chau PL. New insights into the molecular mechanisms of general anaesthetics. Br J Pharmacol 2010; 161:288-307. [PMID: 20735416 PMCID: PMC2989583 DOI: 10.1111/j.1476-5381.2010.00891.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 01/22/2023] Open
Abstract
This paper provides new insights of how general anaesthetic research should be carried out in the future by an analysis of what we know, what we do not know and what we would like to know. I describe previous hypotheses on the mechanism of action of general anaesthetics (GAs) involving membranes and protein receptors. I provide the reasons why the GABA type A receptor, the NMDA receptor and the glycine receptor are strong candidates for the sites of action of GAs. I follow with a review on attempts to provide a mechanism of action, and how future research should be conducted with the help of physical and chemical methods.
Collapse
MESH Headings
- Anesthetics, General/adverse effects
- Anesthetics, General/chemistry
- Anesthetics, General/pharmacology
- Animals
- Biomedical Research/methods
- Biomedical Research/trends
- Brain/drug effects
- Brain/metabolism
- Humans
- Models, Molecular
- Molecular Structure
- Point Mutation
- Protein Binding
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Stereoisomerism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- P-L Chau
- Bioinformatique Structurale, CNRS URA 2185, Institut Pasteur, Paris, France.
| |
Collapse
|
42
|
Vanegas JM, Faller R, Longo ML. Influence of ethanol on lipid/sterol membranes: phase diagram construction from AFM imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10415-8. [PMID: 20518564 DOI: 10.1021/la1012268] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Herein we develop a sample preparation approach that enables the use of supported lipid bilayers for the quantitative study of the influence of ethanol (0-20 vol %) on the phase behavior of phospholipid (DPPC)/sterol (ergosterol, 0-20 mol %) bilayers. Three coexisting phases were observed with tapping-mode atomic force microscopy: gel (L(beta)'), liquid-ordered (L(o)), and interdigitated (L(beta)'I). High-resolution imaging permitted the construction of a refined phase diagram for DPPC/ergosterol/ethanol and the observation of L(o)-L(beta)' phase separation that has not been observed using optical techniques. Our results quantitatively show the concentration regime where ergosterol protects the membrane by reducing the membrane fraction that is interdigitated in the presence of ethanol.
Collapse
Affiliation(s)
- Juan M Vanegas
- Biophysics Graduate Group, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
43
|
Klacsová M, Westh P, Balgavý P. Molecular and component volumes of saturated n-alkanols in DOPC+DOPS bilayers. Chem Phys Lipids 2010; 163:498-505. [DOI: 10.1016/j.chemphyslip.2010.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
44
|
Lange Y, Ye J, Duban ME, Steck TL. Activation of membrane cholesterol by 63 amphipaths. Biochemistry 2009; 48:8505-15. [PMID: 19655814 DOI: 10.1021/bi900951r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A few membrane-intercalating amphipaths have been observed to stimulate the interaction of cholesterol with cholesterol oxidase, saponin and cyclodextrin, presumably by displacing cholesterol laterally from its phospholipid complexes. We now report that this effect, referred to as cholesterol activation, occurs with dozens of other amphipaths, including alkanols, saturated and cis- and trans-unsaturated fatty acids, fatty acid methyl esters, sphingosine derivatives, terpenes, alkyl ethers, ketones, aromatics and cyclic alkyl derivatives. The apparent potency of the agents tested ranged from 3 microM to 7 mM and generally paralleled their octanol/water partition coefficients, except that relative potency declined for compounds with >10 carbons. Some small amphipaths activated cholesterol at a membrane concentration of approximately 3 mol per 100 mol of bilayer lipids, about equimolar with the cholesterol they displaced. Lysophosphatidylserine countered the effects of all these agents, consistent with its ability to reduce the pool of active membrane cholesterol. Various amphipaths stabilized red cells against the hemolysis elicited by cholesterol depletion, presumably by substituting for the extracted sterol. The number and location of cis and trans fatty acid unsaturations and the absolute stereochemistry of enantiomer pairs had only small effects on amphipath potency. Nevertheless, potency varied approximately 7-fold within a group of diverse agents with similar partition coefficients. We infer that a wide variety of amphipaths can displace membrane cholesterol by competing stoichiometrically but with only limited specificity for weak association with phospholipids. Any number of other drugs and experimental agents might do the same.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
45
|
Effects of Halothane on Dimyristoylphosphatidylcholine Lipid Bilayer Structure: A Molecular Dynamics Simulation Study. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.9.2087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Weinrich M, Rostovtseva TK, Bezrukov SM. Lipid-dependent effects of halothane on gramicidin channel kinetics: a new role for lipid packing stress. Biochemistry 2009; 48:5501-3. [PMID: 19405539 DOI: 10.1021/bi900494y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We find that the sensitivity of gramicidin A channels to the anesthetic halothane is highly lipid dependent. Specifically, exposure of membranes made of lamellar DOPC to halothane in concentrations close to clinically relevant reduces channel lifetimes by 1 order of magnitude. At the same time, gramicidin channels in membranes of nonlamellar DOPE are affected little, if at all, by halothane. We attribute this difference in channel behavior to a difference in the stress of lipid packing into a planar lipid bilayer, wherein the higher stress of DOPE packing reduces the degree of halothane partitioning into the hydrophobic interior.
Collapse
Affiliation(s)
- Michael Weinrich
- National Center for Medical Rehabilitation Research, National Institutes of Health,Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
47
|
A comparative study on specific and nonspecific interactions in bovine serum albumin: thermal and volume effects of halothane and palmitic acid. Colloid Polym Sci 2009. [DOI: 10.1007/s00396-009-2054-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Weng Y, Hsu TT, Zhao J, Nishimura S, Fuller GG, Sonner JM. Isovaleric, methylmalonic, and propionic acid decrease anesthetic EC50 in tadpoles, modulate glycine receptor function, and interact with the lipid 1,2-dipalmitoyl-Sn-glycero-3-phosphocholine. Anesth Analg 2009; 108:1538-45. [PMID: 19372333 DOI: 10.1213/ane.0b013e31819cd964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Elevated concentrations of isovaleric (IVA), methylmalonic (MMA), and propionic acid are associated with impaired consciousness in genetic diseases (organic acidemias). We conjectured that part of the central nervous system depression observed in these disorders was due to anesthetic effects of these metabolites. We tested three hypotheses. First, that these metabolites would have anesthetic-sparing effects, possibly being anesthetics by themselves. Second, that these compounds would modulate glycine and gamma-aminobutyric acid (GABA(A)) receptor function, increasing chloride currents through these channels as potent clinical inhaled anesthetics do. Third, that these compounds would affect physical properties of lipids. METHODS Anesthetic EC(50)s were measured in Xenopus laevis tadpoles. Glycine and GABA(A) receptors were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. Pressure-area isotherms of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers were measured with and without added organic acids. RESULTS IVA acid was an anesthetic in tadpoles, whereas MMA and propionic acid decreased isoflurane's EC(50) by half. All three organic acids concentration-dependently increased current through alpha(1) glycine receptors. There were minimal effects on alpha(1)beta(2)gamma(2s) GABA(A) receptors. The organic acids increased total lateral pressure (surface pressure) of DPPC monolayers, including at mean molecular areas typical of bilayers. CONCLUSION IVA, MMA, and propionic acid have anesthetic effects in tadpoles, positively modulate glycine receptor function and affect physical properties of DPPC monolayers.
Collapse
Affiliation(s)
- Yun Weng
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0464, USA
| | | | | | | | | | | |
Collapse
|
49
|
Xu Y, Tillman TS, Tang P. Membranes and Drug Action. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Goksu EI, Vanegas JM, Blanchette CD, Lin WC, Longo ML. AFM for structure and dynamics of biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:254-66. [DOI: 10.1016/j.bbamem.2008.08.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/26/2008] [Accepted: 08/31/2008] [Indexed: 12/17/2022]
|