1
|
Bryl K. Fluorescence Resonance Energy Transfer (FRET) as a Spectroscopic Ruler for the Investigation of Protein Induced Lipid Membrane Curvature: Bacteriorhodopsin and Bacteriorhodopsin Analogs in Model Lipid Membranes. APPLIED SPECTROSCOPY 2023; 77:187-199. [PMID: 36229916 DOI: 10.1177/00037028221135645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump existing in the purple membranes (PM) of Halobacterium salinarum. The effects associated with changes in proton distribution (proton gradient, membrane electric potential) play a key role in ATPase stimulation. However, how the bioenergetic modulus (bR-PM-ATPase) functions remains unclear. One can find indications that hydrophobic matching and the curvature of the lipid membrane may form a functional link between bR and ATPase. To verify whether an interaction between bR and lipids can lead to curvature of the lipid membrane, a spectroscopic ruler, that is, a fluorescence resonance energy transfer (FRET) tool, was used. The distances from fluorescent lipid probes [octadecyl rhodamine B chloride (RhB), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), 16-(9-anthroyloxy) palmitic acid (16AP), and hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH), to the retinal chromophore of bR incorporated into phospholipid vesicles, were measured. The incorporation of retinal analogues with changed shape and/or altered electronic properties into the binding site of a bR or bR mutant were used to strengthen the feedback between the protein surrounding and chromophore. The experiments were performed with wild-type and D96N-mutated bR carrying retinal or 14-(12-,10-, 13,14-bi-) fluororetinal. As far as it is known, this is the first time that results obtained by the FRET method show that bR can induce a change in lipid structure interpreted as hydrophobically induced curving of the lipid membrane. Evidence was provided that the chromophore contributed to this effect. The extent of contribution was dependent on the chromophore structure in close vicinity to the place of its link with opsin. The implications of these findings for bR-PM-ATPase module functioning are also discussed.
Collapse
Affiliation(s)
- Krzysztof Bryl
- Department of Physics and Biophysics, 49674University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
2
|
Yi A, Li H, Mamaeva N, Fernandez De Cordoba RE, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ. Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K. Biochemistry 2017; 56:2197-2208. [PMID: 28350445 DOI: 10.1021/acs.biochem.7b00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A recently discovered natural family of light-gated anion channelrhodopsins (ACRs) from cryptophyte algae provides an effective means of optogenetically silencing neurons. The most extensively studied ACR is from Guillardia theta (GtACR1). Earlier studies of GtACR1 have established a correlation between formation of a blue-shifted L-like intermediate and the anion channel "open" state. To study structural changes of GtACR1 in the K and L intermediates of the photocycle, a combination of low-temperature Fourier transform infrared (FTIR) and ultraviolet-visible absorption difference spectroscopy was used along with stable-isotope retinal labeling and site-directed mutagenesis. In contrast to bacteriorhodopsin (BR) and other microbial rhodopsins, which form only a stable red-shifted K intermediate at 80 K, GtACR1 forms both stable K and L-like intermediates. Evidence includes the appearance of positive ethylenic and fingerprint vibrational bands characteristic of the L intermediate as well as a positive visible absorption band near 485 nm. FTIR difference bands in the carboxylic acid C═O stretching region indicate that several Asp/Glu residues undergo hydrogen bonding changes at 80 K. The Glu68 → Gln and Ser97 → Glu substitutions, residues located close to the retinylidene Schiff base, altered the K:L ratio and several of the FTIR bands in the carboxylic acid region. In the case of the Ser97 → Glu substitution, a significant red-shift of the absorption wavelength of the K and L intermediates occurs. Sequence comparisons suggest that L formation in GtACR1 at 80 K is due in part to the substitution of the highly conserved Leu or Ile at position 93 in helix 3 (BR sequence) with the homologous Met105 in GtACR1.
Collapse
Affiliation(s)
- Adrian Yi
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School , Houston, Texas 77030, United States
| | - Natalia Mamaeva
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Roberto E Fernandez De Cordoba
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Johan Lugtenburg
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University , 2300 AR Leiden, The Netherlands
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University , 2300 AR Leiden, The Netherlands
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School , Houston, Texas 77030, United States
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Simón-Vázquez R, Domínguez M, Lórenz-Fonfría VA, Alvarez S, Bourdelande JL, de Lera AR, Padrós E, Perálvarez-Marín A. Probing a polar cluster in the retinal binding pocket of bacteriorhodopsin by a chemical design approach. PLoS One 2012; 7:e42447. [PMID: 22879987 PMCID: PMC3411786 DOI: 10.1371/journal.pone.0042447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/06/2012] [Indexed: 11/24/2022] Open
Abstract
Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C13 of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoproteins with all-trans-retinal and its 20-methyl derivative (hereafter, 13-ethyl retinal). Biophysical characterization indicates that recovering the steric interaction between the residue 90 and retinal, eases the accommodation of the chromophore, however it is not enough for a complete phenotype rescue. The characterization of these chemically engineered chromoproteins provides further insight into the role of the hydrogen bond network and the steric interactions involving the retinal binding pocket in bacteriorhodopsin and other microbial sensory rhodopsins.
Collapse
Affiliation(s)
- Rosana Simón-Vázquez
- Departament de Bioquímica i de Biologia Molecular and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Malmerberg E, Omran Z, Hub JS, Li X, Katona G, Westenhoff S, Johansson LC, Andersson M, Cammarata M, Wulff M, van der Spoel D, Davidsson J, Specht A, Neutze R. Time-resolved WAXS reveals accelerated conformational changes in iodoretinal-substituted proteorhodopsin. Biophys J 2011; 101:1345-53. [PMID: 21943415 DOI: 10.1016/j.bpj.2011.07.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/15/2011] [Accepted: 07/15/2011] [Indexed: 12/20/2022] Open
Abstract
Time-resolved wide-angle x-ray scattering (TR-WAXS) is an emerging biophysical method which probes protein conformational changes with time. Here we present a comparative TR-WAXS study of native green-absorbing proteorhodopsin (pR) from SAR86 and a halogenated derivative for which the retinal chromophore has been replaced with 13-desmethyl-13-iodoretinal (13-I-pR). Transient absorption spectroscopy differences show that the 13-I-pR photocycle is both accelerated and displays more complex kinetics than native pR. TR-WAXS difference data also reveal that protein structural changes rise and decay an order-of-magnitude more rapidly for 13-I-pR than native pR. Despite these differences, the amplitude and nature of the observed helical motions are not significantly affected by the substitution of the retinal's C-20 methyl group with an iodine atom. Molecular dynamics simulations indicate that a significant increase in free energy is associated with the 13-cis conformation of 13-I-pR, consistent with our observation that the transient 13-I-pR conformational state is reached more rapidly. We conclude that although the conformational trajectory is accelerated, the major transient conformation of pR is unaffected by the substitution of an iodinated retinal chromophore.
Collapse
Affiliation(s)
- Erik Malmerberg
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Andersson M, Vincent J, van der Spoel D, Davidsson J, Neutze R. A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins. Structure 2008; 16:21-8. [PMID: 18184580 DOI: 10.1016/j.str.2007.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 10/25/2007] [Accepted: 10/27/2007] [Indexed: 11/19/2022]
Abstract
Time-resolved X-ray scattering has emerged as a powerful technique for studying the rapid structural dynamics of small molecules in solution. Membrane-protein-catalyzed transport processes frequently couple large-scale conformational changes of the transporter with local structural changes perturbing the uptake and release of the transported substrate. Using light-driven halide ion transport catalyzed by halorhodopsin as a model system, we combine molecular dynamics simulations with X-ray scattering calculations to demonstrate how small-molecule time-resolved X-ray scattering can be extended to the study of membrane transport processes. In particular, by introducing strongly scattering atoms to label specific positions within the protein and substrate, the technique of time-resolved wide-angle X-ray scattering can reveal both local and global conformational changes. This approach simultaneously enables the direct visualization of global rearrangements and substrate movement, crucial concepts that underpin the alternating access paradigm for membrane transport proteins.
Collapse
Affiliation(s)
- Magnus Andersson
- Department of Chemical and Biological Engineering, Molecular Biotechnology, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
6
|
Kirillova TN, Kudryasheva NS. Effect of heavy atoms in bioluminescent reactions. Anal Bioanal Chem 2007; 387:2009-16. [PMID: 17237922 DOI: 10.1007/s00216-006-1085-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/27/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Bioluminescent reactions of luminous organisms are excellent models for studying the effects of heavy atoms on enzymatic processes. The effects of potassium halides with halide anions of different atomic weight were compared in bioluminescent reactions of the firefly (Luciola mingrelica), a marine coelenterate (Obelia longissima), and a marine bacterium (Photobacterium leiognathi). Two mechanisms of the effects of the halides were examined-the physicochemical effect of the external heavy atom, based on spin-orbit interactions in electron-excited structures, and the biochemical effect, i.e. interactions with the enzymes resulting in changes of enzymatic activity. The physicochemical effect was evaluated by using photoexcitation of model fluorescent compounds (flavin mononucleotide, firefly luciferin, and coelenteramide) of similar structure to the bioluminescence emitters. The bioluminescent and photoluminescent inhibition coefficients were calculated and compared for the luminous organisms to evaluate the relative contributions of the two mechanisms. The biochemical mechanism was found to be dominant. Hence, the bioluminescent reactions can be used as assays to monitor enzyme inhibition, in metabolic processes, by Br or I-containing compounds.
Collapse
Affiliation(s)
- Tamara N Kirillova
- Laboratory of Photobiology, Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 660036, Krasnoyarsk, Russia.
| | | |
Collapse
|
7
|
Gillespie NB, Ren L, Ramos L, Daniel H, Dews D, Utzat KA, Stuart JA, Buck CH, Birge RR. Characterization and Photochemistry of 13-Desmethyl Bacteriorhodopsin. J Phys Chem B 2005; 109:16142-52. [PMID: 16853051 PMCID: PMC1513633 DOI: 10.1021/jp052124+] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photochemistry of the 13-desmethyl (DM) analogue of bacteriorhodopsin (BR) is examined by using spectroscopy, molecular orbital theory, and chromophore extraction followed by conformational analysis. The removal of the 13-methyl group permits the direct photochemical formation of a thermally stable, photochemically reversible state, P1(DM) (lambda(max) = 525 nm), which can be generated efficiently by exciting the resting state, bR(DM) with yellow or red light (lambda > 590 nm). Chromophore extraction analysis reveals that the retinal configuration in P1(DM) is 9-cis, identical to that of the retinal configuration in the native BR P1 state. Fourier transform infrared and Raman experiments on P1(DM) indicate an anti configuration around the C15=N bond, as would be expected of an O-state photoproduct. However, low-temperature spectroscopy and ambient, time-resolved studies indicate that the P1(DM) state forms primarily via thermal relaxation from the L(D)(DM) state. Theoretical studies on the BR binding site show that 13-dm retinal is capable of isomerizing into a 9-cis configuration with minimal steric hindrance from surrounding residues, in contrast to the native chromophore in which surrounding residues significantly obstruct the corresponding motion. Analysis of the photokinetic experiments indicates that the Arrhenius activation energy of the bR(DM) --> P1(DM) transition in 13-dm-BR is less than 0.6 kcal/mol (vs 22 +/-5 kcal/mol measured for the bR --> P (P1 and P2) reaction in 85:15 glycerol:water suspensions of wild type). Consequently, the P1(DM) state in 13-dm-BR can form directly from all-trans, 15-anti intermediates (bR(DM) and O(DM)) or all-trans, 15-syn (K(D)(DM)/L(D)(DM)) intermediates. This study demonstrates that the 13-methyl group, and its interactions with nearby binding site residues, is primarily responsible for channeling one-photon photochemical and thermal reactions and is limited to the all-trans and 13-cis species interconversions in the native protein.
Collapse
Affiliation(s)
- Nathan B. Gillespie
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Lei Ren
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Lavoisier Ramos
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060
| | - Heather Daniel
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060
| | - Deborah Dews
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060
| | - Karissa A. Utzat
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060
| | - Jeffrey A. Stuart
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Charles H. Buck
- W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Robert R. Birge
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060
- *Address correspondence to this author (
) corresponding author: Robert R. Birge, Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060: 860-486-6720; Fax(860-486-2981);
| |
Collapse
|