1
|
Skruzny M, Pohl E, Abella M. FRET Microscopy in Yeast. BIOSENSORS 2019; 9:E122. [PMID: 31614546 PMCID: PMC6956097 DOI: 10.3390/bios9040122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is a powerful fluorescence microscopy method to study the nanoscale organization of multiprotein assemblies in vivo. Moreover, many biochemical and biophysical processes can be followed by employing sophisticated FRET biosensors directly in living cells. Here, we summarize existing FRET experiments and biosensors applied in yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, two important models of fundamental biomedical research and efficient platforms for analyses of bioactive molecules. We aim to provide a practical guide on suitable FRET techniques, fluorescent proteins, and experimental setups available for successful FRET experiments in yeasts.
Collapse
Affiliation(s)
- Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany.
| | - Emma Pohl
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
2
|
Vallotton P, Rajoo S, Wojtynek M, Onischenko E, Kralt A, Derrer CP, Weis K. Mapping the native organization of the yeast nuclear pore complex using nuclear radial intensity measurements. Proc Natl Acad Sci U S A 2019; 116:14606-14613. [PMID: 31262825 PMCID: PMC6642398 DOI: 10.1073/pnas.1903764116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective transport across the nuclear envelope (NE) is mediated by the nuclear pore complex (NPC), a massive ∼100-MDa assembly composed of multiple copies of ∼30 nuclear pore proteins (Nups). Recent advances have shed light on the composition and structure of NPCs, but approaches that could map their organization in live cells are still lacking. Here, we introduce an in vivo method to perform nuclear radial intensity measurements (NuRIM) using fluorescence microscopy to determine the average position of NE-localized proteins along the nucleocytoplasmic transport axis. We apply NuRIM to study the organization of the NPC and the mobile transport machinery in budding yeast. This reveals a unique snapshot of the intact yeast NPC and identifies distinct steady-state localizations for various NE-associated proteins and nuclear transport factors. We find that the NPC architecture is robust against compositional changes and could also confirm that in contrast to Chlamydomonas reinhardtii, the scaffold Y complex is arranged symmetrically in the yeast NPC. Furthermore, NuRIM was applied to probe the orientation of intrinsically disordered FG-repeat segments, providing insight into their roles in selective NPC permeability and structure.
Collapse
Affiliation(s)
- Pascal Vallotton
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland;
| | - Sasikumar Rajoo
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Evgeny Onischenko
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
| | - Annemarie Kralt
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
| | - Carina Patrizia Derrer
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland;
| |
Collapse
|
3
|
Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 2016; 18:73-89. [PMID: 27999437 DOI: 10.1038/nrm.2016.147] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, INF328, Heidelberg D-69120, Germany
| |
Collapse
|
4
|
In situ structural analysis of the human nuclear pore complex. Nature 2015; 526:140-143. [PMID: 26416747 PMCID: PMC4886846 DOI: 10.1038/nature15381] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022]
Abstract
Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.
Collapse
|
5
|
Tian W, Zhang LV, Taşan M, Gibbons FD, King OD, Park J, Wunderlich Z, Cherry JM, Roth FP. Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biol 2008; 9 Suppl 1:S7. [PMID: 18613951 PMCID: PMC2447541 DOI: 10.1186/gb-2008-9-s1-s7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Learning the function of genes is a major goal of computational genomics. Methods for inferring gene function have typically fallen into two categories: 'guilt-by-profiling', which exploits correlation between function and other gene characteristics; and 'guilt-by-association', which transfers function from one gene to another via biological relationships. Results: We have developed a strategy ('Funckenstein') that performs guilt-by-profiling and guilt-by-association and combines the results. Using a benchmark set of functional categories and input data for protein-coding genes in Saccharomyces cerevisiae, Funckenstein was compared with a previous combined strategy. Subsequently, we applied Funckenstein to 2,455 Gene Ontology terms. In the process, we developed 2,455 guilt-by-profiling classifiers based on 8,848 gene characteristics and 12 functional linkage graphs based on 23 biological relationships. Conclusion: Funckenstein outperforms a previous combined strategy using a common benchmark dataset. The combination of 'guilt-by-profiling' and 'guilt-by-association' gave significant improvement over the component classifiers, showing the greatest synergy for the most specific functions. Performance was evaluated by cross-validation and by literature examination of the top-scoring novel predictions. These quantitative predictions should help prioritize experimental study of yeast gene functions.
Collapse
Affiliation(s)
- Weidong Tian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW. An in vivo map of the yeast protein interactome. Science 2008; 320:1465-70. [PMID: 18467557 DOI: 10.1126/science.1153878] [Citation(s) in RCA: 565] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein interactions regulate the systems-level behavior of cells; thus, deciphering the structure and dynamics of protein interaction networks in their cellular context is a central goal in biology. We have performed a genome-wide in vivo screen for protein-protein interactions in Saccharomyces cerevisiae by means of a protein-fragment complementation assay (PCA). We identified 2770 interactions among 1124 endogenously expressed proteins. Comparison with previous studies confirmed known interactions, but most were not known, revealing a previously unexplored subspace of the yeast protein interactome. The PCA detected structural and topological relationships between proteins, providing an 8-nanometer-resolution map of dynamically interacting complexes in vivo and extended networks that provide insights into fundamental cellular processes, including cell polarization and autophagy, pathways that are evolutionarily conserved and central to both development and human health.
Collapse
Affiliation(s)
- Kirill Tarassov
- Département de Biochimie, Université de Montréal Casier postal 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export. Mol Cell Biol 2008; 28:1755-69. [PMID: 18172010 DOI: 10.1128/mcb.01697-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Centrins in vertebrates have traditionally been associated with microtubule-nucleating centers such as the centrosome. Unexpectedly, we found centrin 2 to associate biochemically with nucleoporins, including the Xenopus laevis Nup107-160 complex, a critical subunit of the vertebrate nuclear pore in interphase and of the kinetochores and spindle poles in mitosis. Immunofluorescence of Xenopus cells and in vitro reconstituted nuclei indeed revealed centrin 2 localized at the nuclear pores. Use of the mild detergent digitonin in immunofluorescence also allowed centrin 2 to be clearly visualized at the nuclear pores of human cells. Disruption of nuclear pores using RNA interference of the pore assembly protein ELYS/MEL-28 resulted in a specific decrease of centrin 2 at the nuclear rim of HeLa cells. Functionally, excess expression of either the N- or C-terminal calcium-binding domains of human centrin 2 caused a dominant-negative effect on both mRNA and protein export, leaving protein import intact. The mRNA effect mirrors that found for the Saccharomyes cerevisiae centrin Cdc31p at the yeast nuclear pore, a role until now thought to be unique to yeast. We conclude that in vertebrates, centrin 2 interacts with major subunits of the nuclear pore, exhibits nuclear pore localization, and plays a functional role in multiple nuclear export pathways.
Collapse
|
8
|
Trinkle-Mulcahy L, Lamond AI. Toward a high-resolution view of nuclear dynamics. Science 2007; 318:1402-7. [PMID: 18048679 DOI: 10.1126/science.1142033] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleus is the defining feature of eukaryotic cells. It is a highly dynamic, membrane-bound organelle that encloses chromatin and thereby partitions gene transcription from sites of protein translation in the cytoplasm. Major cellular events, including DNA replication, messenger RNA synthesis and processing, and ribosome subunit biogenesis, take place within the nucleus, resulting in a continuous flux of macromolecules into and out of the nucleus through dedicated nuclear pore complexes in the nuclear envelope. Here, we review the impact of new technologies, especially in areas of fluorescence microscopy and proteomics, which are providing major insights into dynamic processes affecting both structure and function within the nucleus.
Collapse
Affiliation(s)
- Laura Trinkle-Mulcahy
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
9
|
Deng M, Hochstrasser M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 2006; 443:827-31. [PMID: 17051211 DOI: 10.1038/nature05170] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 08/15/2006] [Indexed: 11/09/2022]
Abstract
The ubiquitin system targets many cellular proteins. Doa10 (also known as Ssm4), a yeast transmembrane ubiquitin ligase (E3), resides in the endoplasmic reticulum (ER), but it attaches ubiquitin to soluble proteins that concentrate in the nucleus. A central question is how nuclear substrates gain access to an enzyme in the ER. Here we show that Doa10 reaches the inner nuclear membrane. A subcomplex of nuclear pore subunits is important for this transport. Notably, another ER transmembrane E3, Hrd1 (also known as Der3), cannot localize efficiently to the inner nuclear membrane. Tethering Doa10 at the cell periphery inhibits degradation of soluble nuclear substrates but not cytoplasmic ones. If Doa10 is released from these peripheral sites, localization of Doa10 to the nuclear envelope and degradation of its nuclear substrates are restored in parallel. Thus, localization of Doa10 to the inner nuclear membrane is necessary for nuclear substrate degradation. These data indicate that different membrane ubiquitin ligases are spatially sorted within the ER-nuclear envelope membrane system and that this differential localization contributes to their specificity.
Collapse
Affiliation(s)
- Min Deng
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, P.O. Box 208114, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
10
|
Damelin M, Silver P. Experimental Design for In Vivo FRET Analysis. Cold Spring Harb Protoc 2006; 2006:2006/5/pdb.ip10. [PMID: 22485930 DOI: 10.1101/pdb.ip10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
11
|
Bhat RA, Lahaye T, Panstruga R. The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. PLANT METHODS 2006; 2:12. [PMID: 16800872 PMCID: PMC1523328 DOI: 10.1186/1746-4811-2-12] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/26/2006] [Indexed: 05/10/2023]
Abstract
Non-invasive fluorophore-based protein interaction assays like fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC, also referred to as "split YFP") have been proven invaluable tools to study protein-protein interactions in living cells. Both methods are now frequently used in the plant sciences and are likely to develop into standard techniques for the identification, verification and in-depth analysis of polypeptide interactions. In this review, we address the individual strengths and weaknesses of both approaches and provide an outlook about new directions and possible future developments for both techniques.
Collapse
Affiliation(s)
- Riyaz A Bhat
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany.
| | | | | |
Collapse
|
12
|
Bapteste E, Charlebois RL, MacLeod D, Brochier C. The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biol 2005; 6:R85. [PMID: 16207356 PMCID: PMC1257468 DOI: 10.1186/gb-2005-6-10-r85] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 07/15/2005] [Accepted: 09/01/2005] [Indexed: 11/24/2022] Open
Abstract
An analysis of the taxonomic distribution, evolutionary rates and phylogenies of 65 proteins related to the nuclear pore complex shows high heterogeneity of evolutionary rates between these proteins. Background The origin of the nuclear compartment has been extensively debated, leading to several alternative views on the evolution of the eukaryotic nucleus. Until recently, too little phylogenetic information was available to address this issue by using multiple characters for many lineages. Results We analyzed 65 proteins integral to or associated with the nuclear pore complex (NPC), including all the identified nucleoporins, the components of their anchoring system and some of their main partners. We used reconstruction of ancestral sequences of these proteins to expand the detection of homologs, and showed that the majority of them, present all over the nuclear pore structure, share homologs in all extant eukaryotic lineages. The anchoring system, by contrast, is analogous between the different eukaryotic lineages and is thus a relatively recent innovation. We also showed the existence of high heterogeneity of evolutionary rates between these proteins, as well as between and within lineages. We show that the ubiquitous genes of the nuclear pore structure are not strongly conserved at the sequence level, and that only their domains are relatively well preserved. Conclusion We propose that an NPC very similar to the extant one was already present in at least the last common ancestor of all extant eukaryotes and it would not have undergone major changes since its early origin. Importantly, we observe that sequences and structures obey two very different tempos of evolution. We suggest that, despite strong constraints that froze the structural evolution of the nuclear pore, the NPC is still highly adaptive, modern, and flexible at the sequence level.
Collapse
Affiliation(s)
- Eric Bapteste
- Canadian Institute for Advanced Research Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, College Street, Halifax, Nova Scotia, B3H 1X5 Canada
| | - Robert L Charlebois
- Canadian Institute for Advanced Research Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, College Street, Halifax, Nova Scotia, B3H 1X5 Canada
- Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Dave MacLeod
- Canadian Institute for Advanced Research Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, College Street, Halifax, Nova Scotia, B3H 1X5 Canada
| | - Céline Brochier
- EA EGEE (Evolution, Génome, Environnement), Centre Saint-Charles, Université Aix-Marseille I, place Victor Hugo, 13331 Marseille Cedex 3, France
| |
Collapse
|
13
|
Beggs JD, Tollervey D. Crosstalk between RNA metabolic pathways: an RNOMICS approach. Nat Rev Mol Cell Biol 2005; 6:423-9. [PMID: 15956981 DOI: 10.1038/nrm1648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eukaryotic cells contain many different RNA species. Nuclear pre-mRNAs and cytoplasmic mRNAs carry genomic information to the protein synthesis machinery, whereas many stable RNA species have important functional roles. The mature, functional forms of these RNA species are generated by post-transcriptional processing, and evidence has been accumulating that there are functional links between the various processing pathways. This indicates that there are regulatory networks that coordinate different stages of RNA metabolism. This article describes the aims and results, to date, of the European RNOMICS project as an example of an integrated approach to investigate these links.
Collapse
Affiliation(s)
- Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
14
|
Irwin B, Aye M, Baldi P, Beliakova-Bethell N, Cheng H, Dou Y, Liou W, Sandmeyer S. Retroviruses and yeast retrotransposons use overlapping sets of host genes. Genome Res 2005; 15:641-54. [PMID: 15837808 PMCID: PMC1088292 DOI: 10.1101/gr.3739005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A collection of 4457 Saccharomyces cerevisiae mutants deleted for nonessential genes was screened for mutants with increased or decreased mobilization of the gypsylike retroelement Ty3. Of these, 64 exhibited increased and 66 decreased Ty3 transposition compared with the parental strain. Genes identified in this screen were grouped according to function by using GOnet software developed as part of this study. Gene clusters were related to chromatin and transcript elongation, translation and cytoplasmic RNA processing, vesicular trafficking, nuclear transport, and DNA maintenance. Sixty-six of the mutants were tested for Ty3 proteins and cDNA. Ty3 cDNA and transposition were increased in mutants affected in nuclear pore biogenesis and in a subset of mutants lacking proteins that interact physically or genetically with a replication clamp loader. Our results suggest that nuclear entry is linked mechanistically to Ty3 cDNA synthesis but that host replication factors antagonize Ty3 replication. Some of the factors we identified have been previously shown to affect Ty1 transposition and others to affect retroviral budding. Host factors, such as these, shared by distantly related Ty retroelements and retroviruses are novel candidates for antiviral targets.
Collapse
Affiliation(s)
- Becky Irwin
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Snippe M, Borst JW, Goldbach R, Kormelink R. The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells. J Virol Methods 2005; 125:15-22. [PMID: 15737412 DOI: 10.1016/j.jviromet.2004.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/16/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
Fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) were employed to study homotypic protein-protein interactions in living cells. To this end, the nucleocapsid (N) protein of tomato spotted wilt virus (TSWV) was expressed as a fusion protein with either cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP). Co-expression experiments of the two fusion proteins were carried out in baby hamster kidney (BHK21) cells. Both the wild type and the fusion proteins showed a peri-nuclear localisation pattern and were observed to form aggregates. In sensitised emission experiments, energy transfer was observed to take place from CFP to YFP when the two fluorophores were fused to TSWV N protein, indicating strongly homotypic interaction of the N proteins. This was confirmed by acceptor photobleaching studies as well as by FLIM experiments. All three methods showed interactions taking place, not only in the aggregates in the peri-nuclear region, but also throughout the cytoplasm. These experiments clearly demonstrated the potential of these fluorescence methods for studying the interactions of viral proteins in living cells.
Collapse
Affiliation(s)
- Marjolein Snippe
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
16
|
Medintz IL, Konnert JH, Clapp AR, Stanish I, Twigg ME, Mattoussi H, Mauro JM, Deschamps JR. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc Natl Acad Sci U S A 2004; 101:9612-7. [PMID: 15210939 PMCID: PMC470723 DOI: 10.1073/pnas.0403343101] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Indexed: 11/18/2022] Open
Abstract
The first generation of luminescent semiconductor quantum dot (QD)-based hybrid inorganic biomaterials and sensors is now being developed. It is crucial to understand how bioreceptors, especially proteins, interact with these inorganic nanomaterials. As a model system for study, we use Rhodamine red-labeled engineered variants of Escherichia coli maltose-binding protein (MBP) coordinated to the surface of 555-nm emitting CdSe-ZnS core-shell QDs. Fluorescence resonance energy transfer studies were performed to determine the distance from each of six unique MBP-Rhodamine red dye-acceptor locations to the center of the energy-donating QD. In a strategy analogous to a nanoscale global positioning system determination, we use the intraassembly distances determined from the fluorescence resonance energy transfer measurements, the MBP crystallographic coordinates, and a least-squares approach to determine the orientation of the MBP relative to the QD surface. Results indicate that MBP has a preferred orientation on the QD surface. The refined model is in agreement with other evidence, which indicates coordination of the protein to the QD occurs by means of its C-terminal pentahistidine tail, and the size of the QD estimated from the model is in good agreement with physical measurements of QD size. The approach detailed here may be useful in determining the orientation of proteins in other hybrid protein-nanoparticle materials. To our knowledge, this is the first structural model of a hybrid luminescent QD-protein receptor assembly elucidated by using spectroscopic measurements in conjunction with crystallographic and other data.
Collapse
Affiliation(s)
- I L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Nuclear pore complexes (NPCs) are large proteinaceous assemblies that provide the only known portals for exchanging macromolecules between the nucleus and cytoplasm. This includes the movement of small molecules and the selective, facilitated transport of large proteins and RNAs. Faithful, continuous NPC assembly is key for maintaining normal physiological function and is closely tied to proper cell division. This review focuses on the most outstanding issues involving NPC structure, assembly, and function.
Collapse
Affiliation(s)
- Mythili Suntharalingam
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 3120A MRBIII, 465 21st Avenue South, Nashville, TN 37232, USA
| | | |
Collapse
|
18
|
Lei EP, Stern CA, Fahrenkrog B, Krebber H, Moy TI, Aebi U, Silver PA. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol Biol Cell 2003; 14:836-47. [PMID: 12631707 PMCID: PMC151563 DOI: 10.1091/mbc.e02-08-0520] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In eukaryotes, mRNAs are transcribed in the nucleus and exported to the cytoplasm for translation to occur. Messenger RNAs complexed with proteins referred to as ribonucleoparticles are recognized for nuclear export in part by association with Mex67, a key Saccharomyces cerevisiae mRNA export factor and homolog of human TAP/NXF1. Mex67, along with its cofactor Mtr2, is thought to promote ribonucleoparticle translocation by interacting directly with components of the nuclear pore complex (NPC). Herein, we show that the nuclear pore-associated protein Sac3 functions in mRNA export. Using a mutant allele of MTR2 as a starting point, we have identified a mutation in SAC3 in a screen for synthetic lethal interactors. Loss of function of SAC3 causes a strong nuclear accumulation of mRNA and synthetic lethality with a number of mRNA export mutants. Furthermore, Sac3 can be coimmunoprecipitated with Mex67, Mtr2, and other factors involved in mRNA export. Immunoelectron microscopy analysis shows that Sac3 localizes exclusively to cytoplasmic fibrils of the NPC. Finally, Mex67 accumulates at the nuclear rim when SAC3 is mutated, suggesting that Sac3 functions in Mex67 translocation through the NPC.
Collapse
Affiliation(s)
- Elissa P Lei
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|