1
|
Horn M, Nienhaus K, Nienhaus GU. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase. F1000Res 2014; 3:290. [PMID: 25653844 DOI: 10.12688/f1000research.5836.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2014] [Indexed: 03/23/2024] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO) and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS) with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO) inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOS oxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOS oxy-NO, demonstrating the strong trans effect of the heme-bound NO.
Collapse
Affiliation(s)
- Michael Horn
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany ; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Horn M, Nienhaus K, Nienhaus GU. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase. F1000Res 2014; 3:290. [PMID: 25653844 PMCID: PMC4304226 DOI: 10.12688/f1000research.5836.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2014] [Indexed: 11/20/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO) and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS) with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO) inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOS oxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOS oxy-NO, demonstrating the strong trans effect of the heme-bound NO.
Collapse
Affiliation(s)
- Michael Horn
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Yoo BK, Kruglik SG, Lamarre I, Martin JL, Negrerie M. Absorption Band III Kinetics Probe the Picosecond Heme Iron Motion Triggered by Nitric Oxide Binding to Hemoglobin and Myoglobin. J Phys Chem B 2012; 116:4106-14. [DOI: 10.1021/jp300849y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Sergei G. Kruglik
- Laboratoire Jean Perrin, UPMC Université Paris 06, CNRS FRE 3231, 75005 Paris, France
| | - Isabelle Lamarre
- Laboratoire d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Louis Martin
- Laboratoire d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Michel Negrerie
- Laboratoire d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
4
|
Cryoradiolysis and cryospectroscopy for studies of heme-oxygen intermediates in cytochromes p450. Methods Mol Biol 2012; 875:375-91. [PMID: 22573452 DOI: 10.1007/978-1-61779-806-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cryogenic radiolytic reduction is one of the most straightforward and convenient methods of generation and stabilization of reactive iron-oxygen intermediates for mechanistic studies in chemistry and biochemistry. The method is based on one-electron reduction of the precursor complex in frozen solution via exposure to the ionizing radiation at cryogenic temperatures. Such approach allows for accumulation of the fleeting reactive complexes which otherwise could not be generated at sufficient amount for structural and mechanistic studies. Application of this method allowed for characterizing of peroxo-ferric and hydroperoxo-ferric intermediates, which are common for the oxygen activation mechanism in cytochromes P450, heme oxygenases, and nitric oxide synthases, as well as for the peroxide metabolism by peroxidases and catalases.
Collapse
|
5
|
Nienhaus K, Lutz S, Meuwly M, Nienhaus GU. Structural Identification of Spectroscopic Substates in Neuroglobin. Chemphyschem 2010; 11:119-29. [DOI: 10.1002/cphc.200900637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Influence of distal residue B10 on CO dynamics in myoglobin and neuroglobin. J Biol Phys 2008; 33:357-70. [PMID: 19669524 DOI: 10.1007/s10867-008-9059-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 02/08/2008] [Indexed: 10/22/2022] Open
Abstract
For many years, myoglobin has served as a paradigm for structure-function studies in proteins. Ligand binding and migration within myoglobin has been studied in great detail by crystallography and spectroscopy, showing that gaseous ligands such as O(2), CO, and NO not only bind to the heme iron but may also reside transiently in three internal ligand docking sites, the primary docking site B and secondary sites C and D. These sites affect ligand association and dissociation in specific ways. Neuroglobin is another vertebrate heme protein that also binds small ligands. Ligand migration pathways in neuroglobin have not yet been elucidated. Here, we have used Fourier transform infrared temperature derivative spectroscopy at cryogenic temperatures to compare the influence of the side chain volume of amino acid residue B10 on ligand migration to and rebinding from docking sites in myoglobin and neuroglobin.
Collapse
|
7
|
Ming X, Fang WH. Mechanistic Photodissociation of CO-Ligated Neuroglobin and Subsequent Rebinding Processes: A Theoretical Study. J Phys Chem B 2008; 112:990-6. [DOI: 10.1021/jp076419u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin Ming
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
8
|
Nienhaus K, Nienhaus GU. Ligand dynamics in heme proteins observed by Fourier transform infrared spectroscopy at cryogenic temperatures. Methods Enzymol 2008; 437:347-78. [PMID: 18433637 DOI: 10.1016/s0076-6879(07)37018-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fourier transform infrared spectroscopy is a powerful tool for the investigation of protein-ligand interactions in heme proteins. From the variety of ligands that bind to the heme iron, nitric oxide and carbon monoxide are particularly attractive, as their bond-stretching vibrations give rise to strong mid-infrared absorption bands that can be measured with exquisite sensitivity and precision using photolysis difference spectroscopy at cryogenic temperatures. These stretching bands are fine-tuned by electrostatic interactions with the environment and, therefore, the ligands can be utilized as local probes of structure and dynamics. Bound to the heme iron, the ligand-stretching bands are susceptible to changes in the iron-ligand bond and the electric field at the active site. Upon photolysis, the vibrational bands reveal changes due to ligand relocation to docking sites within the protein, rotational motions of the ligand in these sites, and protein conformational changes. Photolysis difference spectra taken over a wide temperature range (3-300 K) using specific temperature protocols for sample photodissociation thus can provide detailed insights into both protein and ligand dynamics. Moreover, temperature-derivative spectroscopy has proven to be a particularly powerful technique to study protein-ligand interactions. This technique has been extensively applied to studies of carbon monoxide binding to heme proteins, whereas measurements with nitric oxide are still scarce. This chapter describes infrared cryospectroscopy techniques and presents examples that demonstrate their applicability to nitric oxide binding to heme proteins.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Biophysics, University of Ulm, Ulm, Germany
| | | |
Collapse
|
9
|
Nienhaus K, Palladino P, Nienhaus GU. Structural Dynamics of Myoglobin: FTIR-TDS Study of NO Migration and Binding†. Biochemistry 2007; 47:935-48. [DOI: 10.1021/bi701935v] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Karin Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, and Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Il 61801
| | - Pasquale Palladino
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, and Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Il 61801
| | - G. Ulrich Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, and Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Il 61801
| |
Collapse
|
10
|
Ceccarelli M, Anedda R, Casu M, Ruggerone P. CO escape from myoglobin with metadynamics simulations. Proteins 2007; 71:1231-6. [DOI: 10.1002/prot.21817] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Nienhaus K, Knapp JE, Palladino P, Royer WE, Nienhaus GU. Ligand migration and binding in the dimeric hemoglobin of Scapharca inaequivalvis. Biochemistry 2007; 46:14018-31. [PMID: 18001141 DOI: 10.1021/bi7016798] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures, we have studied CO binding to the heme and CO migration among cavities in the interior of the dimeric hemoglobin of Scapharca inaequivalvis (HbI) after photodissociation. By combining these studies with X-ray crystallography, three transient ligand docking sites were identified: a primary docking site B in close vicinity to the heme iron, and two secondary docking sites C and D corresponding to the Xe4 and Xe2 cavities of myoglobin. To assess the relevance of these findings for physiological binding, we also performed flash photolysis experiments on HbICO at room temperature and equilibrium binding studies with dioxygen. Our results show that the Xe4 and Xe2 cavities serve as transient docking sites for unbound ligands in the protein, but not as way stations on the entry/exit pathway. For HbI, the so-called histidine gate mechanism proposed for other globins appears as a plausible entry/exit route as well.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
12
|
Mouawad L, Tetreau C, Abdel-Azeim S, Perahia D, Lavalette D. CO migration pathways in cytochrome P450cam studied by molecular dynamics simulations. Protein Sci 2007; 16:781-94. [PMID: 17400927 PMCID: PMC2206643 DOI: 10.1110/ps.062374707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous laser flash photolysis investigations between 100 and 300 K have shown that the kinetics of CO rebinding with cytochrome P450(cam)(camphor) consist of up to four different processes revealing a complex internal dynamics after ligand dissociation. In the present work, molecular dynamics simulations were undertaken on the ternary complex P450(cam)(cam)(CO) to explore the CO migration pathways, monitor the internal cavities of the protein, and localize the CO docking sites. One trajectory of 1 nsec with the protein in a water box and 36 trajectories of 1 nsec in the vacuum were calculated. In each trajectory, the protein contained only one CO ligand on which no constraints were applied. The simulations were performed at 200, 300, and 320 K. The results indicate the presence of seven CO docking sites, mainly hydrophobic, located in the same moiety of the protein. Two of them coincide with xenon binding sites identified by crystallography. The protein matrix exhibits eight persistent internal cavities, four of which corresponding to the ligand docking sites. In addition, it was observed that water molecules entering the protein were mainly attracted into the polar pockets, far away from the CO docking sites. Finally, the identified CO migration pathways provide a consistent interpretation of the experimental rebinding kinetics.
Collapse
Affiliation(s)
- Liliane Mouawad
- Inserm U759, Institut Curie-Recherche, Bâtiment 112, Université Paris-Sud, 91405 Orsay cedex, France.
| | | | | | | | | |
Collapse
|
13
|
Schirò G, Cammarata M, Levantino M, Cupane A. Spectroscopic markers of the T<-->R quaternary transition in human hemoglobin. Biophys Chem 2005; 114:27-33. [PMID: 15792858 DOI: 10.1016/j.bpc.2004.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 11/04/2004] [Accepted: 11/04/2004] [Indexed: 11/21/2022]
Abstract
In this work, we use a sol-gel protocol to trap and compare the R and T quaternary states of both the deoxygenated (deoxyHb) and carbonmonoxide (HbCO) derivatives of human hemoglobin. The near infrared optical absorption band III and the infrared CO stretching band are used to detect the effect of quaternary structure on the spectral properties of deoxyHb and HbCO; comparison with myoglobin allows for an assessment of tertiary and quaternary contributions to the measured band shifts. The R<-->T transition is shown to cause a blue shift of the band III by approximately 35 cm(-1) for deoxyHb and a red shift of the CO stretching band by only approximately 0.3 cm(-1) for HbCO. This clearly shows that quaternary structure changes are transmitted to the heme pocket and that effects on deoxyHb are much larger than on HbCO, at least as far as the band energies are concerned. Experiments performed in the ample temperature interval of 300-10K show that the above quaternary structure effects are "static" and do not influence the dynamic properties of the heme pocket, at least as probed by the temperature dependence of band III and of the CO stretching band. The availability of quaternary structure sensitive spectroscopic markers and the quantitative measurement of the quaternary structure contribution to band shifts will be of considerable help in the analysis of flash-photolysis experiments on hemoglobin. Moreover, it will enable one to characterize the dynamic properties of functionally relevant hemoglobin intermediates and to study the kinetics of both the T-->R and R-->T quaternary transitions through time-resolved spectroscopy.
Collapse
Affiliation(s)
- Giorgio Schirò
- National Institute for the Physics of Matter (INFM) and Department of Physical and Astronomical Sciences, University of Palermo, via Archirafi 36, I-90123, Palermo, Italy
| | | | | | | |
Collapse
|
14
|
Ye X, Yu A, Georgiev GY, Gruia F, Ionascu D, Cao W, Sage JT, Champion PM. CO rebinding to protoheme: investigations of the proximal and distal contributions to the geminate rebinding barrier. J Am Chem Soc 2005; 127:5854-61. [PMID: 15839683 PMCID: PMC2768272 DOI: 10.1021/ja042365f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rebinding kinetics of CO to protoheme (FePPIX) in the presence and absence of a proximal imidazole ligand reveals the magnitude of the rebinding barrier associated with proximal histidine ligation. The ligation states of the heme under different solvent conditions are also investigated using both equilibrium and transient spectroscopy. In the absence of imidazole, a weak ligand (probably water) is bound on the proximal side of the FePPIX-CO adduct. When the heme is encapsulated in micelles of cetyltrimethylammonium bromide (CTAB), photolysis of FePPIX-CO induces a complicated set of proximal ligation changes. In contrast, the use of glycerol-water solutions leads to a simple two-state geminate kinetic response with rapid (10-100 ps) CO recombination and a geminate amplitude that can be controlled by adjusting the solvent viscosity. By comparing the rate of CO rebinding to protoheme in glycerol solution with and without a bound proximal imidazole ligand, we find the enthalpic contribution to the proximal rebinding barrier, H(p), to be 11 +/- 2 kJ/mol. Further comparison of the CO rebinding rate of the imidazole bound protoheme with the analogous rate in myoglobin (Mb) leads to a determination of the difference in their distal free energy barriers: DeltaG(D) approximately 12 +/- 1 kJ/mol. Estimates of the entropic contributions, due to the ligand accessible volumes in the distal pocket and the xenon-4 cavity of myoglobin ( approximately 3 kJ/mol), then lead to a distal pocket enthalpic barrier of H(D) approximately 9 +/- 2 kJ/mol. These results agree well with the predictions of a simple model and with previous independent room-temperature measurements of the enthalpic MbCO rebinding barrier (18 +/- 2 kJ/mol).
Collapse
|
15
|
Sheu SY. Molecular dynamics simulation of entropy driven ligand escape process in heme pocket. J Chem Phys 2005; 122:104905. [PMID: 15836356 DOI: 10.1063/1.1860552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics simulations were performed to investigate the gate effect of protein motion on the escape of O(2) from the heme pocket. The existing geometric entropy in a spherical cavity pushes the ligand toward the cavity surface, and then the ligand escape along the cavity surface is controlled by the gate size and gate modulation, i.e., protein dynamics regulate the gating behavior, which is an inherent feature of proteins such as myoglobin. Our simulation results confirm that the ligand escape process is basically entropy driven.
Collapse
Affiliation(s)
- Sheh-Yi Sheu
- Faculty of Life Sciences, Institute of Biochemistry, Institute of Bioinformatics, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
16
|
Arcovito A, Lamb DC, Nienhaus GU, Hazemann JL, Benfatto M, Della Longa S. Light-induced relaxation of photolyzed carbonmonoxy myoglobin: a temperature-dependent x-ray absorption near-edge structure (XANES) study. Biophys J 2005; 88:2954-64. [PMID: 15681649 PMCID: PMC1305389 DOI: 10.1529/biophysj.104.054973] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray absorption near-edge structure (XANES) spectra at the Fe K-edge have been measured and compared on solution samples of horse carbonmonoxy-myoglobin and its photoproducts, prepared by two different photolysis protocols: 1), extended illumination at low temperature (15 K) by white light; and 2), slow-cool from 140 to 10 K at a rate of 0.5 K/min while illuminating the sample with a 532-nm continuous-wave laser source. CO recombination has been followed while increasing the temperature at a rate of 1.2 K/min. After extended illumination at 15 K, a single process is observed, corresponding to CO recombination from a completely photolyzed species with CO bound to the primary docking site (formally B-state, in agreement with previous x-ray diffraction studies). The temperature peak for this single process is approximately 50 K. Using slow-cool illumination, data show a two-state recombination curve, the two temperature peaks being roughly assigned to 50 K and 110 K. These results are in good agreement with previous FTIR studies using temperature-derivative spectroscopy. The XANES spectroscopic markers probe structural differences between the photoproduct induced by extended illumination at 15 K and the photoproduct induced by slow-cool illumination. These differences in the XANES data have been interpreted as due to light-induced Fe-heme relaxation that does not involve CO migration from the B-state. A quantitative description of the unrelaxed and relaxed B-states, including the measurements of the Fe-N(p), Fe-N(His), and Fe-CO distances, and the out-of-plane Fe displacement, has been obtained via a procedure (MXAN) recently developed by us. This work shows that XANES, being able to extract both kinetic and structural parameters in a single experiment, is a powerful tool for structural dynamic studies of proteins.
Collapse
Affiliation(s)
- A Arcovito
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Levantino M, Cupane A, Zimányi L, Ormos P. Different relaxations in myoglobin after photolysis. Proc Natl Acad Sci U S A 2004; 101:14402-7. [PMID: 15385677 PMCID: PMC521970 DOI: 10.1073/pnas.0406062101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the interplay of kinetic hole-burning (KHB), structural relaxation, and ligand migration in myoglobin (Mb), we measured time-resolved absorption spectra in the Soret region after photolysis of carbon monoxide Mb (MbCO) in the temperature interval 120-260 K and in the time window 350 ns to 200 ms. The spectral contributions of both photolyzed (Mb*) and liganded Mb (MbCO) have been analyzed by taking into account homogeneous bandwidth, coupling to vibrational modes, and static conformational heterogeneity. We succeeded in separating the "time-dependent" spectral changes, and this work provides possibilities to identify the events in the process of ligand rebinding. KHB is dominant at T <190 K in both the Mb* and the MbCO components. For MbCO, conformational substates interconversion at higher temperatures tends to average out the KHB effect. At 230-260 K, whereas almost no shift is observed in the MbCO spectrum, a shift of the order of approximately 80 cm(-1) is observed in Mb*. We attribute this shift to protein relaxation coupled to ligand migration. The time dependence of the Mb* spectral shift is interpreted with a model that enables us to calculate the highly nonexponential relaxation kinetics. Fits of stretched exponentials to this kinetics yield Kohlrausch parameter values of 0.25, confirming the analogy between proteins and glasses.
Collapse
Affiliation(s)
- Matteo Levantino
- National Institute for the Physics of Matter and Department of Physical and Astronomical Sciences, University of Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| | | | | | | |
Collapse
|
18
|
Brunori M, Bourgeois D, Vallone B. The structural dynamics of myoglobin. J Struct Biol 2004; 147:223-34. [PMID: 15450292 DOI: 10.1016/j.jsb.2004.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 03/15/2004] [Indexed: 10/26/2022]
Abstract
Conformational fluctuations in proteins were initially invoked to explain the observation that diffusion of small ligands through the matrix is a global phenomenon. Small globular proteins contain internal cavities that play a role not only in matrix dynamics but also in controlling function, tracing a pathway for the diffusion of the ligand to and from the active site. This is the main point addressed in this Review, which presents pertinent information obtained on myoglobin (Mb). Mb, a simple globular heme protein which binds reversibly oxygen and other ligands. The bond between the heme Fe(II) and gaseous ligands can be photodissociated by a laser pulse, generating a non-equilibrium population of protein structures that relaxes on a picosecond to millisecond time range. This process is associated with migration of the ligand to internal cavities of the protein, which are known to bind xenon. Some of the results obtained by laser photolysis, molecular dynamics simulations, and X-ray diffraction of intermediate states of wild-type and mutant myoglobins are summarized. The extended relaxation of the globin moiety directly observed by Laue crystallography reflects re-equilibration among conformational substates known to play an essential role in controlling protein function.
Collapse
Affiliation(s)
- M Brunori
- Departimento di Scienze Biochimiche and Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma "La Sapienza," Rome, Italy.
| | | | | |
Collapse
|
19
|
Nutt DR, Meuwly M. Theoretical investigation of infrared spectra and pocket dynamics of photodissociated carbonmonoxy myoglobin. Biophys J 2004; 85:3612-23. [PMID: 14645054 PMCID: PMC1303666 DOI: 10.1016/s0006-3495(03)74779-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Molecular dynamics simulations of the photodissociated state of carbonmonoxy myoglobin (MbCO) are presented using a fluctuating charge model for CO. A new three-point charge model is fitted to high-level ab initio calculations of the dipole and quadrupole moment functions taken from the literature. The infrared spectrum of the CO molecule in the heme pocket is calculated using the dipole moment time autocorrelation function and shows good agreement with experiment. In particular, the new model reproduces the experimentally observed splitting of the CO absorption spectrum. The splitting of 3-7 cm(-1) (compared to the experimental value of 10 cm(-1)) can be directly attributed to the two possible orientations of CO within the docking site at the edge of the distal heme pocket (the B states), as previously suggested on the basis of experimental femtosecond time-resolved infrared studies. Further information on the time evolution of the position and orientation of the CO molecule is obtained and analyzed. The calculated difference in the free energy between the two possible orientations (Fe...CO and Fe...OC) is 0.3 kcal mol(-1) and agrees well with the experimentally estimated value of 0.29 kcal mol(-1). A comparison of the new fluctuating charge model with an established fixed charge model reveals some differences that may be critical for the correct prediction of the infrared spectrum and energy barriers. The photodissociation of CO from the myoglobin mutant L29F using the new model shows rapid escape of CO from the distal heme pocket, in good agreement with recent experimental data. The effect of the protein environment on the multipole moments of the CO ligand is investigated and taken into account in a refined model. Molecular dynamics simulations with this refined model are in agreement with the calculations based on the gas-phase model. However, it is demonstrated that even small changes in the electrostatics of CO alter the details of the dynamics.
Collapse
Affiliation(s)
- David R Nutt
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
20
|
Teeter MM. Myoglobin cavities provide interior ligand pathway. Protein Sci 2004; 13:313-8. [PMID: 14739317 PMCID: PMC2286717 DOI: 10.1110/ps.03334304] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Revised: 10/22/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022]
Abstract
The myoglobin protein binds oxygen and catalyzes NO oxidation. As a key model protein, its dynamics have been well studied by spectroscopy and by crystallography as well as by simulation. Nonetheless, visualization of the mechanism of movement of ligands within myoglobin has been difficult. Coordinates of the A1 and A3 taxonomic spectral states of myoglobin from the 1 A crystal structure (1a6g) are generated as consistent sets of correlated clusters of residues with A or B crystal alternates. Analysis of cavities in these A1 and A3 conformations clarifies the pathway of ligand motion from distal entry through interior movement to the proximal side of the heme. Cavities opened up by buried alternate conformations link the distal to the proximal side of the heme. Structural conservation highlights the relevance of this pathway to human neuroglobin. Cavity migration via myoglobin crystal alternates provides a specific link of protein structure to protein dynamics and protein function and demonstrates the relevance of substates (discrete disorder) to function for all proteins.
Collapse
Affiliation(s)
- Martha M Teeter
- University of California at Davis, Davis, Department of Chemistry, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Stavrov SS. Correct interpretation of heme protein spectra allows distinguishing between the heme and the protein dynamics. Biopolymers 2004; 74:37-40. [PMID: 15137090 DOI: 10.1002/bip.20039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is shown by using the vibronic approach that the iron displacement out of the porphyrin plane in deoxyheme proteins intermixes the porphyrin pi and axial iron-histidine sigma electronic subsystems. This intermixing explains the substantial coupling of the iron-histidine vibration to the heme Soret excitation, the appearance of the iron-histidine band in the corresponding resonance Raman spectra, and a number of other experimental data, including the dependence of the iron-histidine vibrational frequency on the extent of the iron displacement out of the porphyrin plane. This dependence implies that there is an anharmonic coupling between the corresponding vibrations, which is shown to be the cause of the specific temperature dependence of the iron-histidine band. The anharmonic coupling and the dependence of the dipole transition moment of the charge transfer optical absorption band III on the iron-porphyrin distance cause the anomalous temperature and pressure dependencies of this band. It is shown that the change in both the magnitude and the distribution of the iron-porphyrin distance is expected to affect the band III intensity. Consequently, the stationarity of the band III intensity can be considered as a signature of the stationarity of the iron-porphyrin distance and its distribution in deoxyheme proteins, whereas the band III position and width could be also affected by the change in the protein electric field, caused by the protein globule dynamics.
Collapse
Affiliation(s)
- Solomon S Stavrov
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
22
|
Nienhaus K, Deng P, Olson JS, Warren JJ, Nienhaus GU. Structural dynamics of myoglobin: ligand migration and binding in valine 68 mutants. J Biol Chem 2003; 278:42532-44. [PMID: 12907676 DOI: 10.1074/jbc.m306888200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have combined Fourier transform infrared/temperature derivative (FTIR-TDS) spectroscopy at cryogenic temperatures and flash photolysis at ambient temperature to examine the effects of polar and bulky amino acid replacements of the highly conserved distal valine 68 in sperm whale myoglobin. In FTIR-TDS experiments, the CO ligand can serve as an internal voltmeter that monitors the local electrostatic field not only at the active site but also at intermediate ligand docking sites. Mutations of residue 68 alter size, shape, and electric field of the distal pocket, especially in the vicinity of the primary docking site (state B). As a consequence, the infrared bands associated with the ligand at site B are shifted. The effect is most pronounced in mutants with large aromatic side chains. Polar side chains (threonine or serine) have only little effect on the peak frequencies. Ligands that migrate toward more remote sites C and D give rise to IR bands with altered frequencies. TDS experiments separate the photoproducts according to their recombination temperatures. The rates and extent of ligand migration among internal cavities at cryogenic temperatures can be used to interpret geminate and bimolecular O2 and CO recombination at room temperature. The kinetics of geminate recombination can be explained by steric arguments alone, whereas both the polarity and size of the position 68 side chain play major roles in regulating bimolecular ligand binding from the solvent.
Collapse
Affiliation(s)
- Karin Nienhaus
- Department of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
23
|
Nienhaus K, Deng P, Kriegl JM, Nienhaus GU. Structural dynamics of myoglobin: effect of internal cavities on ligand migration and binding. Biochemistry 2003; 42:9647-58. [PMID: 12911306 DOI: 10.1021/bi034788k] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures, we have studied CO binding to the heme and CO migration among cavities in the interior of sperm whale carbonmonoxy myoglobin (MbCO) after photodissociation. Photoproduct intermediates, characterized by CO in different locations, were selectively enhanced by laser illumination at specific temperatures. Measurements were performed on the wild-type protein and a series of mutants (L104W, I107W, I28F, and I28W) in which bulky amino acid side chains were introduced to block passageways between cavities or to fill these sites. Binding of xenon was also employed as an alternative means of filling cavities. In all samples, photolyzed CO ligands were observed to initially bind at primary docking site B in the vicinity of the heme iron, from where they migrate to the secondary docking sites, the Xe4 and/or Xe1 cavities. To examine the relevance of these internal docking sites for physiological ligand binding, we have performed room-temperature flash photolysis on the entire set of proteins in the CO- and O(2)-bound form. Together with the cryospectroscopic results, these data provide a clear picture of the role of the internal sites for ligand escape from and binding to myoglobin.
Collapse
Affiliation(s)
- Karin Nienhaus
- Department of Biophysics, University of Ulm, 89069 Ulm, Germany
| | | | | | | |
Collapse
|
24
|
Nienhaus K, Deng P, Kriegl JM, Nienhaus GU. Structural dynamics of myoglobin: spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W. Biochemistry 2003; 42:9633-46. [PMID: 12911305 DOI: 10.1021/bi034787s] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied CO binding to the heme and CO migration among protein internal cavities after photodissociation in sperm whale carbonmonoxy myoglobin (MbCO) mutant L29W using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) and kinetic experiments at cryogenic temperatures. Photoproduct intermediates, characterized by CO at particular locations in the protein, were selectively enhanced by applying special laser illumination protocols. These studies were performed on the L29W mutant protein and a series of double mutants constructed so that bulky amino acid side chains block passageways between cavities or fill these sites. Binding of xenon was also employed as an alternative means of occluding cavities. All mutants exhibit two conformations, A(I) and A(II), with distinctly different photoproduct states and ligand binding properties. These differences arise mainly from different positions of the W29 and H64 side chains in the distal heme pocket [Ostermann, A., et al. (2000) Nature 404, 205-208]. The detailed knowledge of the interplay between protein structure, protein dynamics, and ligand migration at cryogenic temperatures allowed us to develop a dynamic model that explains the slow CO and O(2) bimolecular association observed after flash photolysis at ambient temperature.
Collapse
Affiliation(s)
- Karin Nienhaus
- Department of Biophysics, University of Ulm, 89069 Ulm, Germany
| | | | | | | |
Collapse
|
25
|
Bourgeois D, Vallone B, Schotte F, Arcovito A, Miele AE, Sciara G, Wulff M, Anfinrud P, Brunori M. Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc Natl Acad Sci U S A 2003; 100:8704-9. [PMID: 12847289 PMCID: PMC166376 DOI: 10.1073/pnas.1430900100] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Indexed: 11/18/2022] Open
Abstract
Although conformational changes are essential for the function of proteins, little is known about their structural dynamics at atomic level resolution. Myoglobin (Mb) is the paradigm to investigate conformational dynamics because it is a simple globular heme protein displaying a photosensitivity of the iron-ligand bond. Upon laser photodissociation of carboxymyoglobin Mb a nonequilibrium population of protein structures is generated that relaxes over a broad time range extending from picoseconds to milliseconds. This process is associated with migration of the ligand to cavities in the matrix and with a reduction in the geminate rebinding rate by several orders of magnitude. Here we report nanosecond time-resolved Laue diffraction data to 1.55-A resolution on a Mb mutant, which depicts the sequence of structural events associated with this extended relaxation. Motions of the distal E-helix, including the mutated residue Gln-64(E7), and of the CD-turn are found to lag significantly (100-300 ns) behind local rearrangements around the heme such as heme tilting, iron motion out of the heme plane, and swinging of the mutated residue Tyr-29(B10), all of which occur promptly (< or =3 ns). Over the same delayed time range, CO is observed to migrate from a cavity distal to the heme known to bind xenon (called Xe4) to another such cavity proximal to the heme (Xe1). We propose that the extended relaxation of the globin moiety reflects reequilibration among conformational substates known to play an essential role in controlling protein function.
Collapse
Affiliation(s)
- Dominique Bourgeois
- Laboratoire de Cristallographie et de Cristallogénèse des Protéines, UMR 9015, Institut de Biologie Structurale/Commissariat à l'Energie Atomique/Université Joseph Fourier, and European Synchrotron Radiation Facility, Grenoble, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kriegl JM, Nienhaus K, Deng P, Fuchs J, Nienhaus GU. Ligand dynamics in a protein internal cavity. Proc Natl Acad Sci U S A 2003; 100:7069-74. [PMID: 12773621 PMCID: PMC165831 DOI: 10.1073/pnas.1231856100] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied the temperature dependence of the IR stretch bands of carbon monoxide (CO) in the Xe 4 internal cavity of myoglobin mutant L29W-S108L at cryogenic temperatures. Pronounced changes of band areas and positions were analyzed quantitatively by using a simple dynamic model in which CO rotation in the cavity is constrained by a static potential. The librational dynamics of the CO causes a decrease of the total spectral area. A strong local electric field splits the CO stretch absorption into a doublet, indicating that CO can assume opposite orientations in the cavity. With increasing temperature, the two peaks approach each other, because the average angle of the CO with respect to the electric field increases. A combined classical and quantum-mechanical analysis precisely reproduces the observed temperature dependencies of both spectral area and peak shifts. It yields the height of the energy barrier between the two wells associated with opposite CO orientations, V0 approximately 2 kJ/mol, and the frequency of oscillation within a well, omega approximately 25 cm(-1). The electric field in the protein cavity was estimated as 10 MV/cm.
Collapse
Affiliation(s)
- Jan M Kriegl
- Department of Biophysics, University of Ulm, D-89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
27
|
Dunietz BD, Dreuw A, Head-Gordon M. Initial Steps of the Photodissociation of the CO Ligated Heme Group. J Phys Chem B 2003. [DOI: 10.1021/jp0226376] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barry D. Dunietz
- Department of Chemistry, University of California at Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Andreas Dreuw
- Department of Chemistry, University of California at Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Martin Head-Gordon
- Department of Chemistry, University of California at Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
28
|
Levantino M, Cupane A, Zimányi L. Quaternary structure dependence of kinetic hole burning and conformational substates interconversion in hemoglobin. Biochemistry 2003; 42:4499-505. [PMID: 12693946 DOI: 10.1021/bi0272555] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a sol-gel encapsulation technique, we have prepared samples of CO saturated human adult hemoglobin locked in the R or T quaternary conformation. We report time-resolved spectra of these samples in the Soret region following flash photolysis, in the time interval ranging from 250 ns to 200 ms and in the temperature interval of 100-170 K. A suitable analysis of the measured difference spectra enables us to obtain the spectral contribution of deoxyHb and HbCO molecules as a function of time and/or of the fraction N(t) of deoxyHb molecules. In our experimental time window geminate CO rebinding to hemoglobin in the T quaternary conformation is about 2 orders of magnitude slower than to hemoglobin in the R conformation: this suggests that the barrier distribution for the CO rebinding, g(H), depends strongly on the protein quaternary structure. In our temperature interval, spectral shifts due to kinetic hole burning (KHB) are present: for HbCO the KHB effect is large in the R conformation and small in the T conformation. For deoxyHb the opposite is true. We attribute the observed behavior to the effect of interconversion between the relevant substates. This effect is stronger for HbCO molecules in the T conformation and for deoxyHb molecules in the R conformation; it confirms the quaternary structure dependence of the hemoglobin energy landscape and suggests enhanced dynamics of ligation intermediate species such as T-state HbCO or R-state deoxyHb.
Collapse
Affiliation(s)
- Matteo Levantino
- National Institute for the Physics of Matter (INFM) and Department of Physical and Astronomical Sciences (DSFA), University of Palermo, I-90123 Palermo, Italy
| | | | | |
Collapse
|
29
|
Franzen S, Peterson ES, Brown D, Friedman JM, Thomas MR, Boxer SG. Proximal ligand motions in H93G myoglobin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4879-86. [PMID: 12354119 DOI: 10.1046/j.1432-1033.2002.03193.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Resonance Raman spectroscopy has been used to observe changes in the iron-ligand stretching frequency in photoproduct spectra of the proximal cavity mutant of myoglobin H93G. The measurements compare the deoxy ferrous state of the heme iron in H93G(L), where L is an exogenous imidazole ligand bound in the proximal cavity, to the photolyzed intermediate of H93G(L)*CO at 8 ns. There are significant differences in the frequencies of the iron-ligand axial out-of-plane mode nu(Fe-L) in the photoproduct spectra depending on the nature of L for a series of methyl-substituted imidazoles. Further comparison was made with the proximal cavity mutant of myoglobin in the absence of exogenous ligand (H93G) and the photoproduct of the carbonmonoxy adduct of H93G (H93G-*CO). For this case, it has been shown that H2O is the axial (fifth) ligand to the heme iron in the deoxy form of H93G. The photoproduct of H93G-*CO is consistent with a transiently bound ligand proposed to be a histidine. The data presented here further substantiate the conclusion that a conformationally driven ligand switch exists in photolyzed H93G-*CO. The results suggest that ligand conformational changes in response to dynamic motions of the globin on the nanosecond and longer time scales are a general feature of the H93G proximal cavity mutant.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Kriegl JM, Bhattacharyya AJ, Nienhaus K, Deng P, Minkow O, Nienhaus GU. Ligand binding and protein dynamics in neuroglobin. Proc Natl Acad Sci U S A 2002; 99:7992-7. [PMID: 12048231 PMCID: PMC123008 DOI: 10.1073/pnas.082244399] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb) is a recently discovered protein in vertebrate brain tissue that belongs to the globin family of proteins. It has been implicated in the neuronal response to hypoxia or ischemia, although its physiological role has been hitherto unknown. Ngb is hexacoordinate in the ferrous deoxy form under physiological conditions. To bind exogenous ligands like O(2) and CO, the His E7 endogenous ligand is displaced from the sixth coordination. By using infrared spectroscopy and nanosecond time-resolved visible spectroscopy, we have investigated the ligand-binding reaction over a wide temperature range (3-353 K). Multiple, intrinsically heterogeneous distal heme pocket conformations exist in NgbCO. Photolysis at cryogenic temperatures creates a five-coordinate deoxy species with very low geminate-rebinding barriers. The photodissociated CO is observed to migrate within the distal heme pocket even at 20 K. Flash photolysis near physiological temperature (275-353 K) exhibits four sequential kinetic features: (i) geminate rebinding (t < 1 micros); (ii) extremely fast bimolecular exogenous ligand binding (10 micros < t < 1 ms) with a nontrivial temperature dependence; (iii) endogenous ligand binding (100 micros < t < 10 ms), which can be studied by using flash photolysis on deoxy Ngb; and (iv) displacement of the endogenous by the exogenous ligand (10 ms < t < 10 ks). All four processes are markedly nonexponential, suggesting that Ngb fluctuates among different conformations on surprisingly long time scales.
Collapse
Affiliation(s)
- Jan M Kriegl
- Department of Biophysics, University of Ulm, D-89069 Ulm, Germany
| | | | | | | | | | | |
Collapse
|