1
|
Kensler RW, Craig R, Moss RL. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments. Proc Natl Acad Sci U S A 2017; 114:E1355-E1364. [PMID: 28167762 PMCID: PMC5338423 DOI: 10.1073/pnas.1614020114] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium.
Collapse
Affiliation(s)
- Robert W Kensler
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, PR 00936;
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Richard L Moss
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
2
|
Woodhead JL, Craig R. Through Thick and Thin--Interfilament Communication in Muscle. Biophys J 2016; 109:665-7. [PMID: 26287618 DOI: 10.1016/j.bpj.2015.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/16/2015] [Indexed: 11/15/2022] Open
Affiliation(s)
- John L Woodhead
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
3
|
González-Solá M, Al-Khayat HA, Behra M, Kensler RW. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure. Biophys J 2014; 106:1671-80. [PMID: 24739166 PMCID: PMC4008832 DOI: 10.1016/j.bpj.2014.01.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/11/2022] Open
Abstract
To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes.
Collapse
Affiliation(s)
- Maryví González-Solá
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico.
| | - Hind A Al-Khayat
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martine Behra
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico
| | - Robert W Kensler
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico
| |
Collapse
|
4
|
Kensler RW, Shaffer JF, Harris SP. Binding of the N-terminal fragment C0-C2 of cardiac MyBP-C to cardiac F-actin. J Struct Biol 2011; 174:44-51. [PMID: 21163356 PMCID: PMC3056911 DOI: 10.1016/j.jsb.2010.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022]
Abstract
Cardiac myosin-binding protein C (cMyBP-C), a major accessory protein of cardiac thick filaments, is thought to play a key role in the regulation of myocardial contraction. Although current models for the function of the protein focus on its binding to myosin S2, other evidence suggests that it may also bind to F-actin. We have previously shown that the N-terminal fragment C0-C2 of cardiac myosin-binding protein-C (cMyBP-C) bundles actin, providing evidence for interaction of cMyBP-C and actin. In this paper we directly examined the interaction between C0-C2 and F-actin at physiological ionic strength and pH by negative staining and electron microscopy. We incubated C0-C2 (5-30μM, in a buffer containing in mM: 180 KCl, 1 MgCl(2), 1 EDTA, 1 DTT, 20 imidazole, at pH 7.4) with F-actin (5μM) for 30min and examined negatively-stained samples of the solution by electron microscopy (EM). Examination of EM images revealed that C0-C2 bound to F-actin to form long helically-ordered complexes. Fourier transforms indicated that C0-C2 binds with the helical periodicity of actin with strong 1st and 6th layer lines. The results provide direct evidence that the N-terminus of cMyBP-C can bind to F-actin in a periodic complex. This interaction of cMyBP-C with F-actin supports the possibility that binding of cMyBP-C to F-actin may play a role in the regulation of cardiac contraction.
Collapse
Affiliation(s)
- Robert W Kensler
- Department of Anatomy, University of Puerto Rico, San Juan, PR, USA.
| | | | | |
Collapse
|
5
|
Jung SH, Park JY, Yoo JO, Shin I, Kim YM, Ha KS. Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy. Ultramicroscopy 2009; 109:1428-34. [DOI: 10.1016/j.ultramic.2009.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/09/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
6
|
Nyland LR, Palmer BM, Chen Z, Maughan DW, Seidman CE, Seidman J, Kreplak L, Vigoreaux JO. Cardiac myosin binding protein-C is essential for thick-filament stability and flexural rigidity. Biophys J 2009; 96:3273-80. [PMID: 19383471 PMCID: PMC2718271 DOI: 10.1016/j.bpj.2008.12.3946] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 01/13/2023] Open
Abstract
Using atomic force microscopy, we examined the contribution of cardiac myosin binding protein-C (cMyBP-C) to thick-filament length and flexural rigidity. Native thick filaments were isolated from the hearts of transgenic mice bearing a truncation mutation of cMyBP-C (t/t) that results in no detectable cMyBP-C and from age-matched wild-type controls (+/+). Atomic force microscopy images of these filaments were evaluated with an automated analysis algorithm that identified filament position and shape. The t/t thick-filament length (1.48 +/- 0.02 microm) was significantly (P < 0.01) shorter than +/+ (1.56 +/- 0.02 microm). This 5%-shorter thick-filament length in the t/t was reflected in 4% significantly shorter sarcomere lengths of relaxed isolated cardiomyocytes of the t/t (1.97 +/- 0.01 microm) compared to +/+ (2.05 +/- 0.01 microm). To determine if cMyBP-C contributes to the mechanical properties of thick filaments, we used statistical polymer chain mechanics to calculate a per-filament-specific persistence length, an index of flexural rigidity directly proportional to Young's modulus. Thick-filament-specific persistence length in the t/t (373 +/- 62 microm) was significantly lower than in +/+ (639 +/- 101 microm). Accordingly, Young's modulus of t/t thick filaments was approximately 60% of +/+. These results provide what we consider a new understanding for the critical role of cMyBP-C in defining normal cardiac output by sustaining force and muscle stiffness.
Collapse
Affiliation(s)
- Lori R. Nyland
- Department of Biology, University of Vermont, Burlington, Vermont 05405
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Zengyi Chen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - David W. Maughan
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Christine E. Seidman
- Department of Genetics, Howard Hughes Medical Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - J.G. Seidman
- Department of Genetics, Howard Hughes Medical Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jim O. Vigoreaux
- Department of Biology, University of Vermont, Burlington, Vermont 05405
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
7
|
Zhao FQ, Padrón R, Craig R. Blebbistatin stabilizes the helical order of myosin filaments by promoting the switch 2 closed state. Biophys J 2008; 95:3322-9. [PMID: 18599626 PMCID: PMC2547462 DOI: 10.1529/biophysj.108.137067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/13/2008] [Indexed: 11/18/2022] Open
Abstract
Blebbistatin is a small-molecule, high-affinity, noncompetitive inhibitor of myosin II. We have used negative staining electron microscopy to study the effects of blebbistatin on the organization of the myosin heads on muscle thick filaments. Loss of ADP and Pi from the heads causes thick filaments to lose their helical ordering. In the presence of 100 microM blebbistatin, disordering was at least 10 times slower. In the M.ADP state, myosin heads are also disordered. When blebbistatin was added to M.ADP thick filaments, helical ordering was restored. However, blebbistatin did not improve the order of thick filaments lacking bound nucleotide. Addition of calcium to relaxed muscle homogenates induced thick-thin filament interaction and filament sliding. In the presence of blebbistatin, filament interaction was inhibited. These structural observations support the conclusion, based on biochemical studies, that blebbistatin inhibits myosin ATPase and actin interaction by stabilizing the closed switch 2 structure of the myosin head. These properties make blebbistatin a useful tool in structural and functional studies of cell motility and muscle contraction.
Collapse
Affiliation(s)
- Fa-Qing Zhao
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, USA
| | | | | |
Collapse
|
8
|
Al-Khayat HA, Morris EP, Kensler RW, Squire JM. Myosin filament 3D structure in mammalian cardiac muscle. J Struct Biol 2008; 163:117-26. [PMID: 18472277 PMCID: PMC2531245 DOI: 10.1016/j.jsb.2008.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/18/2022]
Abstract
A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2 × 430 Å long, each of which was treated as an independent ‘particle’. The resulting 40 Å resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430 Å repeat, with successive crown rotations of approximately 60°, 60° and 0°, rather than the regular 40° for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac).
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Institute of Biomedical Engineering, Imperial College London, Bessemer Building, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
9
|
Kensler RW, Harris SP. The structure of isolated cardiac Myosin thick filaments from cardiac Myosin binding protein-C knockout mice. Biophys J 2008; 94:1707-18. [PMID: 17993479 PMCID: PMC2242758 DOI: 10.1529/biophysj.107.115899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/22/2007] [Indexed: 11/18/2022] Open
Abstract
Mutations in the thick filament associated protein cardiac myosin binding protein-C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C is thought to play both a structural and a regulatory role in the contraction of cardiac muscle, detailed information about the role of this protein in stability of the thick filament and maintenance of the ordered helical arrangement of the myosin cross-bridges is limited. To address these questions, the structure of myosin thick filaments isolated from the hearts of wild-type mice containing cMyBP-C (cMyBP-C(+/+)) were compared to those of cMyBP-C knockout mice lacking this protein (cMyBp-C(-/-)). The filaments from the knockout mice hearts lacking cMyBP-C are stable and similar in length and appearance to filaments from the wild-type mice hearts containing cMyBP-C. Both wild-type and many of the cMyBP-C(-/-) filaments display a distinct 43 nm periodicity. Fourier transforms of electron microscope images typically show helical layer lines to the sixth layer line, confirming the well-ordered arrangement of the cross-bridges in both sets of filaments. However, the "forbidden" meridional reflections, thought to derive from a perturbation from helical symmetry in the wild-type filament, are weaker or absent in the transforms of the cMyBP-C(-/-) myocardial thick filaments. In addition, the cross-bridge array in the absence of cMyBP-C appears more easily disordered.
Collapse
|
10
|
Zoghbi ME, Woodhead JL, Moss RL, Craig R. Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc Natl Acad Sci U S A 2008; 105:2386-90. [PMID: 18252826 PMCID: PMC2268146 DOI: 10.1073/pnas.0708912105] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Indexed: 11/18/2022] Open
Abstract
Contraction of the heart results from interaction of the myosin and actin filaments. Cardiac myosin filaments consist of the molecular motor myosin II, the sarcomeric template protein, titin, and the cardiac modulatory protein, myosin binding protein C (MyBP-C). Inherited hypertrophic cardiomyopathy (HCM) is a disease caused mainly by mutations in these proteins. The structure of cardiac myosin filaments and the alterations caused by HCM mutations are unknown. We have used electron microscopy and image analysis to determine the three-dimensional structure of myosin filaments from wild-type mouse cardiac muscle and from a MyBP-C knockout model for HCM. Three-dimensional reconstruction of the wild-type filament reveals the conformation of the myosin heads and the organization of titin and MyBP-C at 4 nm resolution. Myosin heads appear to interact with each other intramolecularly, as in off-state smooth muscle myosin [Wendt T, Taylor D, Trybus KM, Taylor K (2001) Proc Natl Acad Sci USA 98:4361-4366], suggesting that all relaxed muscle myosin IIs may adopt this conformation. Titin domains run in an elongated strand along the filament surface, where they appear to interact with part of MyBP-C and with the myosin backbone. In the knockout filament, some of the myosin head interactions are disrupted, suggesting that MyBP-C is important for normal relaxation of the filament. These observations provide key insights into the role of the myosin filament in cardiac contraction, assembly, and disease. The techniques we have developed should be useful in studying the structural basis of other myosin-related HCM diseases.
Collapse
Affiliation(s)
- Maria E. Zoghbi
- *Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655; and
| | - John L. Woodhead
- *Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655; and
| | - Richard L. Moss
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Roger Craig
- *Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655; and
| |
Collapse
|
11
|
Xu S, Martyn D, Zaman J, Yu LC. X-ray diffraction studies of the thick filament in permeabilized myocardium from rabbit. Biophys J 2006; 91:3768-75. [PMID: 16950853 PMCID: PMC1630466 DOI: 10.1529/biophysj.106.088971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low angle x-ray diffraction patterns from relaxed permeabilized rabbit cardiac trabeculae and psoas muscle fibers were compared. Temperature was varied from 25 degrees C to 5 degrees C at 200 mM and 50 mM ionic strengths (mu), respectively. Effects of temperature and mu on the intensities of the myosin layer lines (MLL), the equatorial intensity ratio I(1,1)/I(1,0), and the spacing of the filament lattice are similar in both muscles. At 25 degrees C, particularly at mu = 50 mM, the x-ray patterns exhibited up to six orders of MLL and sharp meridional reflections, signifying that myosin heads (cross-bridges) are distributed in a well-ordered helical array. Decreasing temperature reduced MLL intensities but increased I(1,1)/I(1,0). Decreases in the MLL intensities indicate increasing disorder in the distribution of cross-bridges on the thick filaments surface. In the skeletal muscle, order/disorder is directly correlated with the hydrolysis equilibrium of ATP by myosin, [M.ADP.P(i)]/[M.ATP]. Similar effects of temperature on MLL and similar biochemical ATP hydrolysis pathway found in both types of muscles suggest that the order/disorder states of cardiac cross-bridges may well be correlated with the same biochemical and structural states. This implies that in relaxed cardiac muscle under physiological conditions, the unattached cross-bridges are largely in the M.ADP.P(i) state and with the lowering of the temperature, the equilibrium is increasingly in favor of [M.ATP] and [A.M.ATP]. There appear to be some differences in the diffraction patterns from the two muscles, however. Mainly, in the cardiac muscle, the MLL are weaker, the I(1,1)/I(1,0) ratio tends to be higher, and the lattice spacing D(10), larger. These differences are consistent with the idea that under a wide range of conditions, a greater fraction of cross-bridges is weakly bound to actin in the myocardium.
Collapse
Affiliation(s)
- Sengen Xu
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
12
|
Kensler RW. The mammalian cardiac muscle thick filament: backbone contributions to meridional reflections. J Struct Biol 2005; 149:313-24. [PMID: 15721585 DOI: 10.1016/j.jsb.2004.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Information about the structure of the vertebrate striated muscle thick filament backbone is important for understanding the arrangement of both the rod portion of the myosin molecule and the accessory proteins associated with the backbone region of the filament. Although models of the backbone have been proposed, direct data on the structure of the backbone is limited. In this study, we provide evidence that electron micrographs of isolated negatively stained cardiac thick filaments contain significant information about the filament backbone. Computed Fourier transforms from isolated cardiac thick filaments show meridional (or near meridional) reflections on the 10th and 11th layer lines that are particularly strong. Comparison of Fourier filtrations of the filaments that exclude, or include, these reflections, provide evidence that these reflections originate at least in part from a series of striations on the backbone at a approximately 4 nm spacing. The striations are likely to result either from the packing of the myosin rods, or from proteins such as titin associated with the filament backbone.
Collapse
Affiliation(s)
- Robert W Kensler
- Department of Anatomy, University of Puerto Rico Medical School, Medical Sciences Campus, P.O. Box 365067, San Juan, PR 00936-5067, USA.
| |
Collapse
|
13
|
Kensler RW. The mammalian cardiac muscle thick filament: crossbridge arrangement. J Struct Biol 2005; 149:303-12. [PMID: 15721584 DOI: 10.1016/j.jsb.2004.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 12/06/2004] [Indexed: 11/21/2022]
Abstract
Although skeletal muscle thick filaments have been extensively studied, information on the structure of cardiac thick filaments is limited. Since cardiac muscle differs in many physiological properties from skeletal muscle it is important to elucidate the structure of the cardiac thick filament. The structure of isolated and negatively stained rabbit cardiac thick filaments has been analyzed from computed Fourier transforms and image analysis. The transforms are detailed, showing a strong set of layer lines corresponding to a 42.9 nm quasi-helical repeat. The presence of relatively strong "forbidden" meridional reflections not expected from ideal helical symmetry on the second, fourth, fifth, seventh, eighth, and tenth layer lines suggest that the crossbridge array is perturbed from ideal helical symmetry. Analysis of the phase differences for the primary reflections on the first layer line of transforms from 15 filaments showed an average difference of 170 degrees, close to the value of 180 degrees expected for an odd-stranded structure. Computer-filtered images of the isolated thick filaments unequivocally demonstrate a three-stranded arrangement of the crossbridges on the filaments and provide evidence that the crossbridge arrangement is axially perturbed from ideal helical symmetry.
Collapse
Affiliation(s)
- Robert W Kensler
- Department of Anatomy, University of Puerto Rico Medical School, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| |
Collapse
|