1
|
Pandey S, Wohland T. EGFR does not directly interact with cortical actin: A SRRF'n'TIRF study. Biophys J 2024:S0006-3495(24)00634-9. [PMID: 39340155 DOI: 10.1016/j.bpj.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) governs pivotal signaling pathways in cell proliferation and survival, with mutations implicated in numerous cancers. The organization of EGFR on the plasma membrane (PM) is influenced by the lipids and the cortical actin (CA) cytoskeleton. Despite the presence of a putative actin-binding domain (ABD) spanning 13 residues, a direct interaction between EGFR and CA has not been definitively established. While disrupting the cytoskeleton can impact EGFR behavior, suggesting a connection, the influence of the static actin cytoskeleton has been found to be indirect. Here, we investigate the potential interaction between EGFR and CA, as well as the extent to which CA regulates EGFR's distribution on the PM using SRRF'n'TIRF, a spatiotemporal super-resolution microscopy technique that provides sub-100 nm resolution and ms-scale dynamics from the same data set. To label CA, we constructed PMT-mEGFP-F-tractin, which combines an inner leaflet targeting domain PMT, fluorescent probe mEGFP, and the actin-binding protein F-tractin. In addition to EGFR-mEGFP, we included two control constructs: 1) an ABD deletion mutant, EGFRΔABD-mEGFP serving as a negative control and 2) EGFR-mApple-F-tractin, where F-tractin is fused to the C-terminus of EGFR-mApple, serving as the positive control. We find that EGFR-mEGFP and EGFRΔABD-mEGFP show similar membrane dynamics, implying that EGFR-mEGFP dynamics and organization are independent of CA. EGFR dynamics show CA dependence when F-tractin is anchored to the cytoplasmic tail. Together, our results demonstrate that EGFR does not directly interact with the CA in its resting and activated state.
Collapse
Affiliation(s)
- Shambhavi Pandey
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Martin‐Fernandez ML. A perspective of fluorescence microscopy for cellular structural biology with EGFR as witness. J Microsc 2023; 291:73-91. [PMID: 36282005 PMCID: PMC10952613 DOI: 10.1111/jmi.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a poster child for the understanding of receptor behaviour, and of paramount importance to cell function and human health. Cloned almost forty years ago, the interest in EGFR's structure/function relationships remains unabated, not least because changes in oncogenic EGFR mutants are key drivers of the formation of lung and brain tumours. The structure of the assemblies formed by EGFR have been comprehensibly investigated by techniques such as high-resolution X-ray crystallography, NMR and all-atom molecular dynamics (MD) simulations. However, the complexity embedded in the portfolio of EGFR states that are only possible in the physiological environment of cells has often proved refractory to cell-free structural methods. Conversely, some key inroads made by quantitative fluorescence microscopy and super-resolution have depended on exploiting the wealth of structures available. Here, a brief personal perspective is provided on how quantitative fluorescence microscopy and super-resolution methods have cross-fertilised with cell-free-derived EGFR structural information. I primarily discuss areas in which my research group has made a contribution to fill gaps in EGFR's cellular structural biology and towards developing new tools to investigate macromolecular assemblies in cells.
Collapse
Affiliation(s)
- M. L. Martin‐Fernandez
- Central Laser FacilityScience and Technology Facilities Council, Rutherford Appleton LaboratoryDidcotUK
| |
Collapse
|
3
|
Wollman AJM, Fournier C, Llorente-Garcia I, Harriman O, Payne-Dwyer AL, Shashkova S, Zhou P, Liu TC, Ouaret D, Wilding J, Kusumi A, Bodmer W, Leake MC. Critical roles for EGFR and EGFR-HER2 clusters in EGF binding of SW620 human carcinoma cells. J R Soc Interface 2022; 19:20220088. [PMID: 35612280 PMCID: PMC9131850 DOI: 10.1098/rsif.2022.0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidermal growth factor (EGF) signalling regulates normal epithelial and other cell growth, with EGF receptor (EGFR) overexpression reported in many cancers. However, the role of EGFR clusters in cancer and their dependence on EGF binding is unclear. We present novel single-molecule total internal reflection fluorescence microscopy of (i) EGF and EGFR in living cancer cells, (ii) the action of anti-cancer drugs that separately target EGFR and human EGFR2 (HER2) on these cells and (iii) EGFR–HER2 interactions. We selected human epithelial SW620 carcinoma cells for their low level of native EGFR expression, for stable transfection with fluorescent protein labelled EGFR, and imaged these using single-molecule localization microscopy to quantify receptor architectures and dynamics upon EGF binding. Prior to EGF binding, we observe pre-formed EGFR clusters. Unexpectedly, clusters likely contain both EGFR and HER2, consistent with co-diffusion of EGFR and HER2 observed in a different model CHO-K1 cell line, whose stoichiometry increases following EGF binding. We observe a mean EGFR : EGF stoichiometry of approximately 4 : 1 for plasma membrane-colocalized EGFR–EGF that we can explain using novel time-dependent kinetics modelling, indicating preferential ligand binding to monomers. Our results may inform future cancer drug developments.
Collapse
Affiliation(s)
- Adam J M Wollman
- Department of Physics, University of York, York, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte Fournier
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK.,Science and Technology Group, Okinawa Institute of Science and Technology Graduate University (OIST), 1919 Tancha, Onna-son, Okinawa 904-0495, Japan
| | | | - Oliver Harriman
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
| | | | | | - Peng Zhou
- Membrane Cooperativity Unit, OIST, 1919 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ta-Chun Liu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Djamila Ouaret
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jenny Wilding
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, OIST, 1919 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Walter Bodmer
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Mark C Leake
- Department of Physics, University of York, York, UK.,Department of Biology, University of York, York, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
4
|
Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods Enzymol 2022; 667:455-505. [PMID: 35525551 DOI: 10.1016/bs.mie.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.
Collapse
|
5
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
6
|
Martin-Fernandez ML. Fluorescence Imaging of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14030686. [PMID: 35158954 PMCID: PMC8833717 DOI: 10.3390/cancers14030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related deaths, with a low (<21%) 5-year survival rate. Lung cancer is often driven by the misfunction of molecules on the surface of cells of the epithelium, which orchestrate mechanisms by which these cells grow and proliferate. Beyond common non-specific treatments, such as chemotherapy or radiotherapy, among molecular-specific treatments, a number of small-molecule drugs that block cancer-driven molecular activity have been developed. These drugs initially have significant success in a subset of patients, but these patients systematically develop resistance within approximately one year of therapy. Substantial efforts towards understanding the mechanisms of resistance have focused on the genomics of cancer progression, the response of cells to the drugs, and the cellular changes that allow resistance to develop. Fluorescence microscopy of many flavours has significantly contributed to the last two areas, and is the subject of this review. Abstract Non-small cell lung cancer (NSCLC) is a complex disease often driven by activating mutations or amplification of the epidermal growth factor receptor (EGFR) gene, which expresses a transmembrane receptor tyrosine kinase. Targeted anti-EGFR treatments include small-molecule tyrosine kinase inhibitors (TKIs), among which gefitinib and erlotinib are the best studied, and their function more often imaged. TKIs block EGFR activation, inducing apoptosis in cancer cells addicted to EGFR signals. It is not understood why TKIs do not work in tumours driven by EGFR overexpression but do so in tumours bearing classical activating EGFR mutations, although the latter develop resistance in about one year. Fluorescence imaging played a crucial part in research efforts to understand pro-survival mechanisms, including the dysregulation of autophagy and endocytosis, by which cells overcome the intendedly lethal TKI-induced EGFR signalling block. At their core, pro-survival mechanisms are facilitated by TKI-induced changes in the function and conformation of EGFR and its interactors. This review brings together some of the main advances from fluorescence imaging in investigating TKI function and places them in the broader context of the TKI resistance field, highlighting some paradoxes and suggesting some areas where super-resolution and other emerging methods could make a further contribution.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
| |
Collapse
|
7
|
Purba ER, Saita EI, Akhouri RR, Öfverstedt LG, Wilken G, Skoglund U, Maruyama IN. Allosteric activation of preformed EGF receptor dimers by a single ligand binding event. Front Endocrinol (Lausanne) 2022; 13:1042787. [PMID: 36531494 PMCID: PMC9748436 DOI: 10.3389/fendo.2022.1042787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Aberrant activation of the epidermal growth factor receptor (EGFR) by mutations has been implicated in a variety of human cancers. Elucidation of the structure of the full-length receptor is essential to understand the molecular mechanisms underlying its activation. Unlike previously anticipated, here, we report that purified full-length EGFR adopts a homodimeric form in vitro before and after ligand binding. Cryo-electron tomography analysis of the purified receptor also showed that the extracellular domains of the receptor dimer, which are conformationally flexible before activation, are stabilized by ligand binding. This conformational flexibility stabilization most likely accompanies rotation of the entire extracellular domain and the transmembrane domain, resulting in dissociation of the intracellular kinase dimer and, thus, rearranging it into an active form. Consistently, mutations of amino acid residues at the interface of the symmetric inactive kinase dimer spontaneously activate the receptor in vivo. Optical observation also indicated that binding of only one ligand activates the receptor dimer on the cell surface. Our results suggest how oncogenic mutations spontaneously activate the receptor and shed light on the development of novel cancer therapies.
Collapse
Affiliation(s)
- Endang R. Purba
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ei-ichiro Saita
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Reetesh R. Akhouri
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lars-Goran Öfverstedt
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Gunnar Wilken
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ulf Skoglund
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Ichiro N. Maruyama,
| |
Collapse
|
8
|
Karl K, Hristova K. Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Curr Opin Struct Biol 2021; 71:193-199. [PMID: 34399300 DOI: 10.1016/j.sbi.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA.
| |
Collapse
|
9
|
Conserved roles for receptor tyrosine kinase extracellular regions in regulating receptor and pathway activity. Biochem J 2020; 477:4207-4220. [PMID: 33043983 DOI: 10.1042/bcj20200702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022]
Abstract
Receptor Tyrosine Kinases (RTKs) comprise a diverse group of cell-surface receptors that mediate key signaling events during animal development and are frequently activated in cancer. We show here that deletion of the extracellular regions of 10 RTKs representing 7 RTK classes or their substitution with the dimeric immunoglobulin Fc region results in constitutive receptor phosphorylation but fails to result in phosphorylation of downstream signaling effectors Erk or Akt. Conversely, substitution of RTK extracellular regions with the extracellular region of the Epidermal Growth Factor Receptor (EGFR) results in increases in effector phosphorylation in response to EGF. These results indicate that the activation signal generated by the EGFR extracellular region is capable of activating at least seven different RTK classes. Failure of phosphorylated Fc-RTK chimeras or RTKs with deleted extracellular regions to stimulate phosphorylation of downstream effectors indicates that either dimerization and receptor phosphorylation per se are insufficient to activate signaling or constitutive dimerization leads to pathway inhibition.
Collapse
|
10
|
Martin-Fernandez ML. A brief history of the octopus imaging facility to celebrate its 10th anniversary. J Microsc 2020; 281:3-15. [PMID: 33111321 DOI: 10.1111/jmi.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022]
Abstract
Octopus (Optics Clustered to OutPut Unique Solutions) celebrated in June 2020 its 10th birthday. Based at Harwell, near Oxford, Octopus is an open access, peer reviewed, national imaging facility that offers successful U.K. applicants supported access to single molecule imaging, confocal microscopy, several flavours of superresolution imaging, light sheet microscopy, optical trapping and cryoscanning electron microscopy. Managed by a multidisciplinary team, Octopus has so far assisted >100 groups of U.K. and international researchers. Cross-fertilisation across fields proved to be a strong propeller of success underpinned by combining access to top-end instrumentation with a strong programme of imaging hardware and software developments. How Octopus was born, and highlights of the multidisciplinary output produced during its 10-year journey are reviewed below, with the aim of celebrating a myriad of collaborations with the U.K. scientific community, and reflecting on their scientific and societal impact.
Collapse
Affiliation(s)
- M L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, U.K
| |
Collapse
|
11
|
Byrne PO, Hristova K, Leahy DJ. EGFR forms ligand-independent oligomers that are distinct from the active state. J Biol Chem 2020; 295:13353-13362. [PMID: 32727847 DOI: 10.1074/jbc.ra120.012852] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/27/2020] [Indexed: 01/15/2023] Open
Abstract
The human epidermal growth factor receptor (EGFR/ERBB1) is a receptor tyrosine kinase (RTK) that forms activated oligomers in response to ligand. Much evidence indicates that EGFR/ERBB1 also forms oligomers in the absence of ligand, but the structure and physiological role of these ligand-independent oligomers remain unclear. To examine these features, we use fluorescence microscopy to measure the oligomer stability and FRET efficiency for homo- and hetero-oligomers of fluorescent protein-labeled forms of EGFR and its paralog, human epidermal growth factor receptor 2 (HER2/ERBB2) in vesicles derived from mammalian cell membranes. We observe that both receptors form ligand-independent oligomers at physiological plasma membrane concentrations. Mutations introduced in the kinase region at the active state asymmetric kinase dimer interface do not affect the stability of ligand-independent EGFR oligomers. These results indicate that ligand-independent EGFR oligomers form using interactions that are distinct from the EGFR active state.
Collapse
Affiliation(s)
- Patrick O Byrne
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel J Leahy
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
12
|
Wu X, Du J, Song W, Cao M, Chen S, Xia R. Weak power frequency magnetic fields induce microtubule cytoskeleton reorganization depending on the epidermal growth factor receptor and the calcium related signaling. PLoS One 2018; 13:e0205569. [PMID: 30312357 PMCID: PMC6185734 DOI: 10.1371/journal.pone.0205569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/27/2018] [Indexed: 01/14/2023] Open
Abstract
We have shown previously that a weak 50 Hz magnetic field (MF) invoked the actin-cytoskeleton, and provoked cell migration at the cell level, probably through activating the epidermal growth factor receptor (EGFR) related motility pathways. However, whether the MF also affects the microtubule (MT)-cytoskeleton is still unknown. In this article, we continuously investigate the effects of 0.4 mT, 50 Hz MF on the MT, and try to understand if the MT effects are also associated with the EGFR pathway as the actin-cytoskeleton effects were. Our results strongly suggest that the MF effects are similar to that of EGF stimulation on the MT cytoskeleton, showing that 1) the MF suppressed MT in multiple cell types including PC12 and FL; 2) the MF promoted the clustering of the EGFR at the protein and the cell levels, in a similar way of that EGF did but with higher sensitivity to PD153035 inhibition, and triggered EGFR phosphorylation on sites of Y1173 and S1046/1047; 3) these effects were strongly depending on the Ca2+ signaling through the L-type calcium channel (LTCC) phosphorylation and elevation of the intracellular Ca2+ level. Strong associations were observed between EGFR and the Ca2+ signaling to regulate the MF-induced-reorganization of the cytoskeleton network, via phosphorylating the signaling proteins in the two pathways, including a significant MT protein, tau. These results strongly suggest that the MF activates the overall cytoskeleton in the absence of EGF, through a mechanism related to both the EGFR and the LTCC/Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Xia Wu
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Juan Du
- Physics Department, East China Normal University, Shanghai, China
| | - Weitao Song
- Physics Department, East China Normal University, Shanghai, China
| | - Meiping Cao
- Physics Department, East China Normal University, Shanghai, China
| | - Shude Chen
- Physics Department, East China Normal University, Shanghai, China
| | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Zahavi EE, Steinberg N, Altman T, Chein M, Joshi Y, Gradus-Pery T, Perlson E. The receptor tyrosine kinase TrkB signals without dimerization at the plasma membrane. Sci Signal 2018; 11:11/529/eaao4006. [PMID: 29739881 DOI: 10.1126/scisignal.aao4006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropomyosin-related tyrosine kinase B (TrkB) is the receptor for brain-derived neurotrophic factor (BDNF) and provides critical signaling that supports the development and function of the mammalian nervous system. Like other receptor tyrosine kinases (RTKs), TrkB is thought to signal as a dimer. Using cell imaging and biochemical assays, we found that TrkB acted as a monomeric receptor at the plasma membrane regardless of its binding to BDNF and initial activation. Dimerization occurred only after the internalization and accumulation of TrkB monomers within BDNF-containing endosomes. We further showed that dynamin-mediated endocytosis of TrkB-BDNF was required for the effective activation of the kinase AKT but not of the kinase ERK1/2. Thus, we report a previously uncharacterized mode of monomeric signaling for an RTK and a specific role for the endosome in TrkB homodimerization.
Collapse
Affiliation(s)
- Eitan Erez Zahavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Noam Steinberg
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Michael Chein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Yuvraj Joshi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tal Gradus-Pery
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel. .,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
14
|
Yavas S, Macháň R, Wohland T. The Epidermal Growth Factor Receptor Forms Location-Dependent Complexes in Resting Cells. Biophys J 2017; 111:2241-2254. [PMID: 27851946 DOI: 10.1016/j.bpj.2016.09.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a prototypical receptor tyrosine kinase involved in cell growth and proliferation and associated with various cancers. It is commonly assumed that after activation by binding of epidermal growth factor to the extracellular domain it dimerizes, followed by autophosphorylation of tyrosine residues at the intracellular domain. However, its oligomerization state before activation is controversial. In the absence of ligands, EGFR has been found in various, inconsistent amounts of monomeric, inactive dimeric, and oligomeric forms. In addition, evidence suggests that the active conformation is not a simple dimer but contains higher oligomers. As experiments in the past have been conducted at different conditions, we investigate here the influence of cell lines (HEK293, COS-7, and CHO-K1), temperature (room temperature and 37°C), and membrane localization on the quantitation of preformed dimers using SW-FCCS, DC-FCCS, quasi PIE-FCCS, and imaging FCCS. While measurement modality, temperature, and localization on upper or lower membranes have only a limited influence on the dimerization amount observed, the cell line and location to periphery versus center of the cell can change dimerization results significantly. The observed dimerization amount is strongly dependent on the expression level of endogenous EGFR in a cell line and shows a strong cell-to-cell variability even within the same cell line. In addition, using imaging FCCS, we find that dimers have a tendency to be found at the periphery of cells compared to central positions.
Collapse
Affiliation(s)
- Sibel Yavas
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Radek Macháň
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells 2017; 6:cells6020013. [PMID: 28574446 PMCID: PMC5492017 DOI: 10.3390/cells6020013] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays vital roles in cellular processes including cell proliferation, survival, motility, and differentiation. The dysregulated activation of the receptor is often implicated in human cancers. EGFR is synthesized as a single-pass transmembrane protein, which consists of an extracellular ligand-binding domain and an intracellular kinase domain separated by a single transmembrane domain. The receptor is activated by a variety of polypeptide ligands such as epidermal growth factor and transforming growth factor α. It has long been thought that EGFR is activated by ligand-induced dimerization of the receptor monomer, which brings intracellular kinase domains into close proximity for trans-autophosphorylation. An increasing number of diverse studies, however, demonstrate that EGFR is present as a pre-formed, yet inactive, dimer prior to ligand binding. Furthermore, recent progress in structural studies has provided insight into conformational changes during the activation of a pre-formed EGFR dimer. Upon ligand binding to the extracellular domain of EGFR, its transmembrane domains rotate or twist parallel to the plane of the cell membrane, resulting in the reorientation of the intracellular kinase domain dimer from a symmetric inactive configuration to an asymmetric active form (the “rotation model”). This model is also able to explain how oncogenic mutations activate the receptor in the absence of the ligand, without assuming that the mutations induce receptor dimerization. In this review, we discuss the mechanisms underlying the ligand-induced activation of the preformed EGFR dimer, as well as how oncogenic mutations constitutively activate the receptor dimer, based on the rotation model.
Collapse
|
16
|
Optical measurement of receptor tyrosine kinase oligomerization on live cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1436-1444. [PMID: 28389201 DOI: 10.1016/j.bbamem.2017.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022]
Abstract
Receptor tyrosine kinases (RTK) are important cell surface receptors that transduce extracellular signals across the plasma membrane. The traditional view of how these receptors function is that ligand binding to the extracellular domains acts as a master-switch that enables receptor monomers to dimerize and subsequently trans-phosphorylate each other on their intracellular domains. However, a growing body of evidence suggests that receptor oligomerization is not merely a consequence of ligand binding, but is instead part of a complex process responsible for regulation of receptor activation. Importantly, the oligomerization dynamics and subsequent activation of these receptors are affected by other cellular components, such as cytoskeletal machineries and cell membrane lipid characteristics. Thus receptor activation is not an isolated molecular event mediated by the ligand-receptor interaction, but instead involves orchestrated interactions between the receptors and other cellular components. Measuring receptor oligomerization dynamics on live cells can yield important insights into the characteristics of these interactions. Therefore, it is imperative to develop techniques that can probe receptor movements on the plasma membrane with optimal temporal and spatial resolutions. Various microscopic techniques have been used for this purpose. Optical techniques including single molecule tracking (SMT) and fluorescence correlation spectroscopy (FCS) measure receptor diffusion on live cells. Receptor-receptor interactions can also be assessed by detecting Förster resonance energy transfer (FRET) between fluorescently-labeled receptors situated in close proximity or by counting the number of receptors within a diffraction limited fluorescence spot (stepwise bleaching). This review will describe recent developments of optical techniques that have been used to study receptor oligomerization on living cells. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
|
17
|
Bocharov EV, Mineev KS, Pavlov KV, Akimov SA, Kuznetsov AS, Efremov RG, Arseniev AS. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:561-576. [PMID: 27884807 DOI: 10.1016/j.bbamem.2016.10.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/18/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022]
Abstract
Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; National Research Centre "Kurchatov Institute", Akad. Kurchatova pl. 1, Moscow, 123182, Russian Federation.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Konstantin V Pavlov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation
| | - Sergey A Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation; National University of Science and Technology "MISiS", Leninskiy prospect 4, Moscow, 119049, Russian Federation
| | - Andrey S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation.
| |
Collapse
|
18
|
Needham SR, Roberts SK, Arkhipov A, Mysore VP, Tynan CJ, Zanetti-Domingues LC, Kim ET, Losasso V, Korovesis D, Hirsch M, Rolfe DJ, Clarke DT, Winn MD, Lajevardipour A, Clayton AHA, Pike LJ, Perani M, Parker PJ, Shan Y, Shaw DE, Martin-Fernandez ML. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nat Commun 2016; 7:13307. [PMID: 27796308 PMCID: PMC5095584 DOI: 10.1038/ncomms13307] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. Epidermal growth factor receptors have been shown to oligomerise upon binding to their cognate ligands. Here, the authors use biochemical, biophysical and cell biology techniques to analyse the structures of these oligomers, and argue that these formations are required for signalling.
Collapse
Affiliation(s)
- Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | | | | | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Eric T Kim
- D.E. Shaw Research, New York, New York 10036, USA
| | - Valeria Losasso
- Computational Science and Engineering Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, UK
| | - Dimitrios Korovesis
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Martyn D Winn
- Computational Science and Engineering Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, UK
| | - Alireza Lajevardipour
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Linda J Pike
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Michela Perani
- Division of Cancer Studies, King's College London, Guy's Medical School Campus, London SE1 1UL, UK
| | - Peter J Parker
- Division of Cancer Studies, King's College London, Guy's Medical School Campus, London SE1 1UL, UK.,The Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Yibing Shan
- D.E. Shaw Research, New York, New York 10036, USA
| | - David E Shaw
- D.E. Shaw Research, New York, New York 10036, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| |
Collapse
|
19
|
Tynan CJ, Lo Schiavo V, Zanetti-Domingues L, Needham SR, Roberts SK, Hirsch M, Rolfe DJ, Korovesis D, Clarke DT, Martin-Fernandez ML. A tale of the epidermal growth factor receptor: The quest for structural resolution on cells. Methods 2015; 95:86-93. [PMID: 26484734 DOI: 10.1016/j.ymeth.2015.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 01/03/2023] Open
Abstract
The challenge of determining the architecture and geometry of oligomers of the epidermal growth factor receptor (EGFR) on the cell surface has been approached using a variety of biochemical and biophysical methods. This review is intended to provide a narrative of how key concepts in the field of EGFR research have evolved over the years, from the origins of the prevalent EGFR signalling dimer hypothesis through to the development and implementation of methods that are now challenging the conventional view. The synergy between X-ray crystallography and cellular fluorescence microscopy has become particularly important, precisely because the results from these two methods diverged and highlighted the complexity of the challenge. We illustrate how developments in super-resolution microscopy are now bridging this gap. Exciting times lie ahead where knowledge of the nature of the complexes can assist with the development of a new generation of anti-cancer drugs.
Collapse
Affiliation(s)
- Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Valentina Lo Schiavo
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Laura Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Dimitrios Korovesis
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom.
| |
Collapse
|
20
|
Valley CC, Arndt-Jovin DJ, Karedla N, Steinkamp MP, Chizhik AI, Hlavacek WS, Wilson BS, Lidke KA, Lidke DS. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer. Mol Biol Cell 2015; 26:4087-99. [PMID: 26337388 PMCID: PMC4710239 DOI: 10.1091/mbc.e15-05-0269] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor kinase mutations drive oncogenesis, but the molecular mechanism of pathological signal initiation is poorly understood. Using high-resolution microscopy methods, the authors reveal that these kinase mutations induce structural changes in the receptor ectodomain that lead to enhanced, ligand-independent dimerization. Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization.
Collapse
Affiliation(s)
- Christopher C Valley
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Donna J Arndt-Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Narain Karedla
- III. Institute of Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Mara P Steinkamp
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Alexey I Chizhik
- III. Institute of Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Bridget S Wilson
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
21
|
Maruyama IN. Activation of transmembrane cell-surface receptors via a common mechanism? The "rotation model". Bioessays 2015; 37:959-67. [PMID: 26241732 PMCID: PMC5054922 DOI: 10.1002/bies.201500041] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has long been thought that transmembrane cell-surface receptors, such as receptor tyrosine kinases and cytokine receptors, among others, are activated by ligand binding through ligand-induced dimerization of the receptors. However, there is growing evidence that prior to ligand binding, various transmembrane receptors have a preformed, yet inactive, dimeric structure on the cell surface. Various studies also demonstrate that during transmembrane signaling, ligand binding to the extracellular domain of receptor dimers induces a rotation of transmembrane domains, followed by rearrangement and/or activation of intracellular domains. The paper here describes transmembrane cell-surface receptors that are known or proposed to exist in dimeric form prior to ligand binding, and discusses how these preformed dimers are activated by ligand binding.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
22
|
Zanetti-Domingues LC, Hirsch M, Tynan CJ, Rolfe DJ, Boyadzhiev TV, Scherer KM, Clarke DT, Martin-Fernandez ML, Needham SR. Determining the geometry of oligomers of the human epidermal growth factor family on cells with 7 nm resolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:139-52. [PMID: 25900721 DOI: 10.1016/j.pbiomolbio.2015.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Dimerisation, oligomerisation, and clustering of receptor molecules are important for control of the signalling process. There has been a lack of suitable methods for the study and quantification of these processes in cells. Here we describe a protocol for a method that we have named "fluorophore localisation imaging with photobleaching" (FLImP), which uses single molecule localisation and single-step photobleaching to determine the separation of two fluorophores with a resolution of 7 nm or better. We describe the procedures required for the collection of FLImP data, and point out some of the pitfalls that must be avoided for the collection of high resolution data. We also present recent data obtained using FLImP, showing that the intracellular domain of the Epidermal Growth Factor Receptor is not required in the basal state for the receptor to form ordered inactive oligomers in the plasma membrane.
Collapse
Affiliation(s)
- Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Teodor V Boyadzhiev
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Kathrin M Scherer
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom.
| |
Collapse
|
23
|
Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015; 84:739-64. [PMID: 25621509 DOI: 10.1146/annurev-biochem-060614-034402] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. The structure of intact forms of this receptor has yet to be determined, but intense investigations of fragments of the receptor have provided a detailed view of its activation mechanism, which we review here. Ligand binding converts the receptor to a dimeric form, in which contacts are restricted to the receptor itself, allowing heterodimerization of the four EGFR family members without direct ligand involvement. Activation of the receptor depends on the formation of an asymmetric dimer of kinase domains, in which one kinase domain allosterically activates the other. Coupling between the extracellular and intracellular domains may involve a switch between alternative crossings of the transmembrane helices, which form dimeric structures. We also discuss how receptor regulation is compromised by oncogenic mutations and the structural basis for negative cooperativity in ligand binding.
Collapse
|
24
|
King C, Sarabipour S, Byrne P, Leahy DJ, Hristova K. The FRET signatures of noninteracting proteins in membranes: simulations and experiments. Biophys J 2014; 106:1309-17. [PMID: 24655506 DOI: 10.1016/j.bpj.2014.01.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/08/2014] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
Förster resonance energy transfer (FRET) experiments are often used to study interactions between integral membrane proteins in cellular membranes. However, in addition to the FRET of sequence-specific interactions, these experiments invariably record a contribution due to proximity FRET, which occurs when a donor and an acceptor approach each other by chance within distances of ∼100 Å. This effect does not reflect specific interactions in the membrane and is frequently unappreciated, despite the fact that its magnitude can be significant. Here we develop a computational description of proximity FRET, simulating the cases of proximity FRET when fluorescent proteins are used to tag monomeric, dimeric, trimeric, and tetrameric membrane proteins, as well as membrane proteins existing in monomer-dimer equilibria. We also perform rigorous experimental measurements of this effect, by identifying membrane receptors that do not associate in mammalian membranes. We measure the FRET efficiencies between yellow fluorescent protein and mCherry-tagged versions of these receptors in plasma-membrane-derived vesicles as a function of receptor concentration. Finally, we demonstrate that the experimental measurements are well described by our predictions. The work presented here brings additional rigor to FRET-based studies of membrane protein interactions, and should have broad utility in membrane biophysics research.
Collapse
Affiliation(s)
- Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sarvenaz Sarabipour
- Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Patrick Byrne
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Daniel J Leahy
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, Maryland; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
25
|
Structure-function relationships and supramolecular organization of the EGFR (epidermal growth factor receptor) on the cell surface. Biochem Soc Trans 2014; 42:114-9. [PMID: 24450637 DOI: 10.1042/bst20130236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dimerization and higher-order oligomerization are believed to play an important role in the activation of the EGFR (epidermal growth factor receptor). Understanding of the process has been limited by the lack of availability of suitable methods for the measurement in cells of distances in the range 10-100 nm, too short for imaging methods and too long for spectroscopic methods such as FRET. In the present article, we review the current state of our knowledge of EGFR oligomerization, and describe results from a new single-molecule localization method that has allowed the quantitative characterization of the distribution of EGFR-EGFR distances in cells. Recent data suggest the involvement of cortical actin in regulating the formation of EGFR complexes.
Collapse
|
26
|
Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells 2014; 3:304-30. [PMID: 24758840 PMCID: PMC4092861 DOI: 10.3390/cells3020304] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan.
| |
Collapse
|
27
|
Kozer N, Barua D, Henderson C, Nice EC, Burgess AW, Hlavacek WS, Clayton AHA. Recruitment of the adaptor protein Grb2 to EGFR tetramers. Biochemistry 2014; 53:2594-604. [PMID: 24697349 PMCID: PMC4010257 DOI: 10.1021/bi500182x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Adaptor
protein Grb2 binds phosphotyrosines in the epidermal growth
factor (EGF) receptor (EGFR) and thereby links receptor activation
to intracellular signaling cascades. Here, we investigated how recruitment
of Grb2 to EGFR is affected by the spatial organization and quaternary
state of activated EGFR. We used the techniques of image correlation
spectroscopy (ICS) and lifetime-detected Förster resonance
energy transfer (also known as FLIM-based FRET or FLIM–FRET)
to measure ligand-induced receptor clustering and Grb2 binding to
activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected
with fluorescently labeled forms of Grb2 (Grb2–mRFP) and EGFR
(EGFR–eGFP). Following stimulation of the cells with EGF, we
detected nanometer-scale association of Grb2–mRFP with EGFR–eGFP
clusters, which contained, on average, 4 ± 1 copies of EGFR–eGFP
per cluster. In contrast, the pool of EGFR–eGFP without Grb2–mRFP
had an average cluster size of 1 ± 0.3 EGFR molecules per punctum.
In the absence of EGF, there was no association between EGFR–eGFP
and Grb2–mRFP. To interpret these data, we extended our recently
developed model for EGFR activation, which considers EGFR oligomerization
up to tetramers, to include recruitment of Grb2 to phosphorylated
EGFR. The extended model, with adjustment of one new parameter (the
ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster
size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1%
of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2.
Together, our experimental and modeling results further implicate
tetrameric EGFR as the key signaling unit and call into question the
widely held view that dimeric EGFR is the predominant signaling unit.
Collapse
Affiliation(s)
- Noga Kozer
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Poger D, Mark AE. Activation of the Epidermal Growth Factor Receptor: A Series of Twists and Turns. Biochemistry 2014; 53:2710-21. [DOI: 10.1021/bi401632z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Pryor MM, Low-Nam ST, Halász AM, Lidke DS, Wilson BS, Edwards JS. Dynamic transition states of ErbB1 phosphorylation predicted by spatial stochastic modeling. Biophys J 2014; 105:1533-43. [PMID: 24048005 DOI: 10.1016/j.bpj.2013.07.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/08/2013] [Accepted: 07/29/2013] [Indexed: 11/25/2022] Open
Abstract
ErbB1 overexpression is strongly linked to carcinogenesis, motivating better understanding of erbB1 dimerization and activation. Recent single-particle-tracking data have provided improved measures of dimer lifetimes and strong evidence that transient receptor coconfinement promotes repeated interactions between erbB1 monomers. Here, spatial stochastic simulations explore the potential impact of these parameters on erbB1 phosphorylation kinetics. This rule-based mathematical model incorporates structural evidence for conformational flux of the erbB1 extracellular domains, as well as asymmetrical orientation of erbB1 cytoplasmic kinase domains during dimerization. The asymmetric dimer model considers the theoretical consequences of restricted transactivation of erbB1 receptors within a dimer, where the N-lobe of one monomer docks with the C-lobe of the second monomer and triggers its catalytic activity. The dynamic nature of the erbB1 phosphorylation state is shown by monitoring activation states of individual monomers as they diffuse, bind, and rebind after ligand addition. The model reveals the complex interplay between interacting liganded and nonliganded species and the influence of their distribution and abundance within features of the membrane landscape.
Collapse
Affiliation(s)
- Meghan McCabe Pryor
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico
| | | | | | | | | | | |
Collapse
|
30
|
Arndt-Jovin DJ, Botelho MG, Jovin TM. Structure-function relationships of ErbB RTKs in the plasma membrane of living cells. Cold Spring Harb Perspect Biol 2014; 6:a008961. [PMID: 24691959 DOI: 10.1101/cshperspect.a008961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We review the states of the ErbB family of receptor tyrosine kinases (RTKs), primarily the EGF receptor (EGFR, ErbB1, HER1) and the orphan receptor ErbB2 as they exist in living mammalian cells, focusing on four main aspects: (1) aggregation state and distribution in the plasma membrane; (2) conformational features of the receptors situated in the plasma membrane, compared to the crystallographic structures of the isolated extracellular domains; (3) coupling of receptor disposition on filopodia with the transduction of signaling ligand gradients; and (4) ligand-independent receptor activation by application of a magnetic field.
Collapse
Affiliation(s)
- Donna J Arndt-Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | |
Collapse
|
31
|
Valley CC, Lidke KA, Lidke DS. The spatiotemporal organization of ErbB receptors: insights from microscopy. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a020735. [PMID: 24370847 DOI: 10.1101/cshperspect.a020735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Signal transduction is regulated by protein-protein interactions. In the case of the ErbB family of receptor tyrosine kinases (RTKs), the precise nature of these interactions remains a topic of debate. In this review, we describe state-of-the-art imaging techniques that are providing new details into receptor dynamics, clustering, and interactions. We present the general principles of these techniques, their limitations, and the unique observations they provide about ErbB spatiotemporal organization.
Collapse
Affiliation(s)
- Christopher C Valley
- Department of Pathology and the Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131
| | | | | |
Collapse
|
32
|
Ceresa BP, Peterson JL. Cell and molecular biology of epidermal growth factor receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:145-78. [PMID: 25376492 DOI: 10.1016/b978-0-12-800177-6.00005-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.
Collapse
Affiliation(s)
- Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Joanne L Peterson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
33
|
Macdonald-Obermann JL, Adak S, Landgraf R, Piwnica-Worms D, Pike LJ. Dynamic analysis of the epidermal growth factor (EGF) receptor-ErbB2-ErbB3 protein network by luciferase fragment complementation imaging. J Biol Chem 2013; 288:30773-30784. [PMID: 24014028 DOI: 10.1074/jbc.m113.489534] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ErbB3 is a member of the ErbB family of receptor tyrosine kinases. It is unique because it is the only member of the family whose kinase domain is defective. As a result, it is obliged to form heterodimers with other ErbB receptors to signal. In this study, we characterized the interaction of ErbB3 with the EGF receptor and ErbB2 and assessed the effects of Food and Drug Administration-approved therapeutic agents on these interactions. Our findings support the concept that ErbB3 exists in preformed clusters that can be dissociated by NRG-1β and that it interacts with other ErbB receptors in a distinctly hierarchical fashion. Our study also shows that all pairings of the EGF receptor, ErbB2, and ErbB3 form ligand-independent dimers/oligomers. The small-molecule tyrosine kinase inhibitors erlotinib and lapatinib differentially enhance the dimerization of the various ErbB receptor pairings, with the EGFR/ErbB3 heterodimer being particularly sensitive to the effects of erlotinib. The data suggest that the physiological effects of these drugs may involve not only inhibition of tyrosine kinase activity but also a dynamic restructuring of the entire network of receptors.
Collapse
Affiliation(s)
| | - Sangeeta Adak
- From the Departments of Biochemistry and Molecular Biophysics
| | - Ralf Landgraf
- the Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33101
| | - David Piwnica-Worms
- Cell Biology and Physiology, and; Developmental Biology,; the Mallinckrodt Institute of Radiology, and; the Bridging Research with Imaging, Genomics and High Throughput Technologies Institute, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Linda J Pike
- From the Departments of Biochemistry and Molecular Biophysics,.
| |
Collapse
|
34
|
Bücherl CA, van Esse GW, Kruis A, Luchtenberg J, Westphal AH, Aker J, van Hoek A, Albrecht C, Borst JW, de Vries SC. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. PLANT PHYSIOLOGY 2013; 162:1911-25. [PMID: 23796795 PMCID: PMC3729770 DOI: 10.1104/pp.113.220152] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/21/2013] [Indexed: 05/18/2023]
Abstract
The leucine-rich repeat receptor-like kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) is the main ligand-perceiving receptor for brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana). Binding of BRs to the ectodomain of plasma membrane (PM)-located BRI1 receptors initiates an intracellular signal transduction cascade that influences various aspects of plant growth and development. Even though the major components of BR signaling have been revealed and the PM was identified as the main site of BRI1 signaling activity, the very first steps of signal transmission are still elusive. Recently, it was shown that the initiation of BR signal transduction requires the interaction of BRI1 with its SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) coreceptors. In addition, the resolved structure of the BRI1 ectodomain suggested that BRI1-ASSOCIATED KINASE1 [BAK1](SERK3) may constitute a component of the ligand-perceiving receptor complex. Therefore, we investigated the spatial correlation between BRI1 and BAK1(SERK3) in the natural habitat of both leucine-rich repeat receptor-like kinases using comparative colocalization analysis and fluorescence lifetime imaging microscopy. We show that activation of BR signaling by exogenous ligand application resulted in both elevated colocalization between BRI1 and BAK1(SERK3) and an about 50% increase of receptor heterooligomerization in the PM of live Arabidopsis root epidermal cells. However, large populations of BRI1 and BAK1(SERK3) colocalized independently of BRs. Moreover, we could visualize that approximately 7% of the BRI1 PM pool constitutively heterooligomerizes with BAK1(SERK3) in live root cells. We propose that only small populations of PM-located BRI1 and BAK1(SERK3) receptors participate in active BR signaling and that the initiation of downstream signal transduction involves preassembled BRI1-BAK1(SERK3) heterooligomers.
Collapse
Affiliation(s)
- Christoph A. Bücherl
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - G. Wilma van Esse
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Alex Kruis
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Jeroen Luchtenberg
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Adrie H. Westphal
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - José Aker
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Arie van Hoek
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Catherine Albrecht
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Jan Willem Borst
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | | |
Collapse
|
35
|
Ziomkiewicz I, Loman A, Klement R, Fritsch C, Klymchenko AS, Bunt G, Jovin TM, Arndt-Jovin DJ. Dynamic conformational transitions of the EGF receptor in living mammalian cells determined by FRET and fluorescence lifetime imaging microscopy. Cytometry A 2013; 83:794-805. [DOI: 10.1002/cyto.a.22311] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Iwona Ziomkiewicz
- Laboratory of Cellular Dynamics; Max Planck Institute for Biophysical Chemistry; 37077; Göttingen; Germany
| | - Anastasia Loman
- Department of Neuro- and Sensory Physiology; University Medicine Göttingen; 37075; Göttingen; Germany
| | | | - Cornelia Fritsch
- Laboratory of Cellular Dynamics; Max Planck Institute for Biophysical Chemistry; 37077; Göttingen; Germany
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie; UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg; 67401; France
| | | | - Thomas M. Jovin
- Laboratory of Cellular Dynamics; Max Planck Institute for Biophysical Chemistry; 37077; Göttingen; Germany
| | - Donna J. Arndt-Jovin
- Laboratory of Cellular Dynamics; Max Planck Institute for Biophysical Chemistry; 37077; Göttingen; Germany
| |
Collapse
|
36
|
Kozer N, Barua D, Orchard S, Nice EC, Burgess AW, Hlavacek WS, Clayton AH. Exploring higher-order EGFR oligomerisation and phosphorylation--a combined experimental and theoretical approach. MOLECULAR BIOSYSTEMS 2013; 9:1849-63. [PMID: 23629589 PMCID: PMC3698845 DOI: 10.1039/c3mb70073a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epidermal growth factor receptor (EGFR) kinase is generally considered to be activated by either ligand-induced dimerisation or a ligand-induced conformational change within pre-formed dimers. Ligand-induced higher-order EGFR oligomerisation or clustering has been reported but it is not clear how EGFR oligomers, as distinct from EGFR dimers, influence signaling outputs. To address this question, we combined measures of receptor clustering (microscopy; image correlation spectroscopy) and phosphorylation (Western blots) with modelling of mass-action chemical kinetics. A stable BaF/3 cell-line that contains a high proportion (>90%) of inactive dimers of EGFR-eGFP but no secreted ligand and no other detectable ErbB receptors was used as the model cell system. EGF at concentrations of greater than 1 nM was found to cluster EGFR-eGFP dimers into higher-order complexes and cause parallel increases in EGFR phosphorylation. The kinetics of EGFR clustering and phosphorylation were both rapid, plateauing within 2 minutes after stimulation with 30 nM EGF. A rule-based model was formulated to interpret the data. This model took into account ligand binding, ligand-induced conformational changes in the cytosolic tail, monomer-dimer-trimer-tetramer transitions via ectodomain- and kinase-mediated interactions, and phosphorylation. The model predicts that cyclic EGFR tetramers are the predominant phosphorylated species, in which activated receptor dimers adopt a cyclic side-by-side orientation, and that receptor kinase activation is stabilised by the intramolecular interactions responsible for cyclic tetramerization.
Collapse
Affiliation(s)
- Noga Kozer
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division & Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Suzanne Orchard
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, PO Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
| | - Eduoard C. Nice
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, PO Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
- Department of Biochemistry, Monash University, Clayton, Victoria 3080, Australia
| | - Antony W. Burgess
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, PO Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division & Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Andrew H.A. Clayton
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
37
|
Needham SR, Hirsch M, Rolfe DJ, Clarke DT, Zanetti-Domingues LC, Wareham R, Martin-Fernandez ML. Measuring EGFR separations on cells with ~10 nm resolution via fluorophore localization imaging with photobleaching. PLoS One 2013; 8:e62331. [PMID: 23650512 PMCID: PMC3641073 DOI: 10.1371/journal.pone.0062331] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/20/2013] [Indexed: 01/17/2023] Open
Abstract
Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ~10-50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ~10 nm resolution while continuously covering the range of ~10-80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands.
Collapse
Affiliation(s)
- Sarah R. Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - David T. Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Richard Wareham
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| |
Collapse
|
38
|
Garcia MP, Shahid A, Chen JY, Xi J. Effects of the expression level of epidermal growth factor receptor on the ligand-induced restructuring of focal adhesions: a QCM-D study. Anal Bioanal Chem 2012. [DOI: 10.1007/s00216-012-6558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Single molecule fluorescence detection and tracking in mammalian cells: the state-of-the-art and future perspectives. Int J Mol Sci 2012. [PMID: 23203092 PMCID: PMC3509608 DOI: 10.3390/ijms131114742] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insights from single-molecule tracking in mammalian cells have the potential to greatly contribute to our understanding of the dynamic behavior of many protein families and networks which are key therapeutic targets of the pharmaceutical industry. This is particularly so at the plasma membrane, where the method has begun to elucidate the mechanisms governing the molecular interactions that underpin many fundamental processes within the cell, including signal transduction, receptor recognition, cell-cell adhesion, etc. However, despite much progress, single-molecule tracking faces challenges in mammalian samples that hinder its general application in the biomedical sciences. Much work has recently focused on improving the methods for fluorescent tagging of target molecules, detection and localization of tagged molecules, which appear as diffraction-limited spots in charge-coupled device (CCD) images, and objectively establishing the correspondence between moving particles in a sequence of image frames to follow their diffusive behavior. In this review we outline the state-of-the-art in the field and discuss the advantages and limitations of the methods available in the context of specific applications, aiming at helping researchers unfamiliar with single molecules methods to plan out their experiments.
Collapse
|
40
|
Dissipation monitoring for assessing EGF-induced changes of cell adhesion. Biosens Bioelectron 2012; 38:375-81. [DOI: 10.1016/j.bios.2012.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/17/2012] [Accepted: 06/14/2012] [Indexed: 11/19/2022]
|
41
|
Li Y, Macdonald-Obermann J, Westfall C, Piwnica-Worms D, Pike LJ. Quantitation of the effect of ErbB2 on epidermal growth factor receptor binding and dimerization. J Biol Chem 2012; 287:31116-25. [PMID: 22822073 DOI: 10.1074/jbc.m112.373647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The epidermal growth factor (EGF) receptor is a member of the ErbB family of receptors that also includes ErbB2, ErbB3, and ErbB4. These receptors form homo- and heterodimers in response to ligand with ErbB2 being the preferred dimerization partner. Here we use (125)I-EGF binding to quantitate the interaction of the EGF receptor with ErbB2. We show that the EGFR/ErbB2 heterodimer binds EGF with a 7-fold higher affinity than the EGFR homodimer. Because it cannot bind a second ligand, the EGFR/ErbB2 heterodimer is not subject to ligand-induced dissociation caused by the negatively cooperative binding of EGF to the second site on the EGFR homodimer. This increases the stability of the heterodimer relative to the homodimer and is associated with enhanced and prolonged EGF receptor autophosphorylation. These effects are independent of the kinase activity of ErbB2 but require back-to-back dimerization of the EGF receptor with ErbB2. Back-to-back dimerization is also required for phosphorylation of ErbB2. These findings provide a molecular explanation for the apparent preference of the EGF receptor for dimerizing with ErbB2 and suggest that the phosphorylation of ErbB2 occurs largely in the context of the EGFR/ErbB2 heterodimer, rather than through lateral phosphorylation of isolated ErbB2 subunits.
Collapse
Affiliation(s)
- Yu Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
42
|
Human epidermal growth factor receptor (HER1) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Biochem Soc Trans 2012; 40:184-8. [DOI: 10.1042/bst20110692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current models suggest that ligand-binding heterogeneity in HER1 [human EGFR (epidermal growth factor receptor] arises from negative co-operativity in signalling HER1 dimers, for which the asymmetry of the extracellular region of the Drosophila EGFR has recently provided a structural basis. However, no asymmetry is apparent in the current crystal structure of the isolated extracellular region of HER1. This receptor also differs from the Drosophila EGFR in that negative co-operativity is found only in full-length receptors in cells. Structural insights into HER1 in epithelial cells, derived from FLIM (fluorescence lifetime imaging microscopy) and two-dimensional FRET (Förster resonance energy transfer) combined with Monte Carlo and molecular dynamics simulations, have demonstrated a high-affinity ligand-binding HER1 conformation consistent with the extracellular region aligned flat on the plasma membrane. This conformation shares key features with that of the Drosophila EGFR, suggesting that the structural basis for negative co-operativity is conserved from invertebrates to humans, but that, in HER1, the extracellular region asymmetry requires interactions with the plasma membrane.
Collapse
|
43
|
Investigating extracellular in situ EGFR structure and conformational changes using FRET microscopy. Biochem Soc Trans 2012; 40:189-94. [DOI: 10.1042/bst20110632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystallographic structures of functional fragments of ErbBs have provided excellent insights into the geometry of growth factor binding and receptor dimerization. By placing together receptor fragments to build structural models of entire receptors, we expect to understand how these enzymes are allosterically regulated; however, several predictions from these models are inconsistent with experimental evidence from cells. The opening of this gap underlines the need to investigate intact ErbBs by combining cellular and structural studies into a full picture.
Collapse
|
44
|
Mechanics of EGF receptor/ErbB2 kinase activation revealed by luciferase fragment complementation imaging. Proc Natl Acad Sci U S A 2011; 109:137-42. [PMID: 22190492 DOI: 10.1073/pnas.1111316109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of EGF to its receptor induces dimerization of the normally monomeric receptor. Activation of its intracellular tyrosine kinase then occurs through the formation of an asymmetric kinase dimer in which one subunit, termed the "receiver" kinase, is activated by interaction with the other subunit, termed the "activator" kinase [Zhang, et al. (2006) Cell 125: 1137-1149]. Although there is significant experimental support for this model, the relationship between ligand binding and the mechanics of kinase activation are not known. Here we use luciferase fragment complementation in EGF receptor (EGFR)/ErbB2 heterodimers to probe the mechanics of ErbB kinase activation. Our data support a model in which ligand binding causes the cis-kinase (the EGFR) to adopt the receiver position in the asymmetric dimer and to be activated first. If the EGF receptor is kinase active, this results in the phosphorylation of the trans-kinase (ErbB2). However, if the EGF receptor kinase is kinase dead, the ErbB2 kinase is never activated. Thus, activation of the kinases in the EGFR/ErbB2 asymmetric dimer occurs in a specific sequence and depends on the kinase activity of the EGF receptor.
Collapse
|
45
|
Adak S, Yang KS, Macdonald-Obermann J, Pike LJ. The membrane-proximal intracellular domain of the epidermal growth factor receptor underlies negative cooperativity in ligand binding. J Biol Chem 2011; 286:45146-55. [PMID: 22069315 DOI: 10.1074/jbc.m111.274175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of EGF induces dimerization of its receptor, leading to the stimulation of its intracellular tyrosine kinase activity. Kinase activation occurs within the context of an asymmetric dimer in which one kinase domain serves as the activator for the other kinase domain but is not itself activated. How ligand binding is related to the formation and dynamics of this asymmetric dimer is not known. The binding of EGF to its receptor is negatively cooperative--that is, EGF binds with lower affinity to the second site on the dimer than to the first site on the dimer. In this study, we analyzed the binding of (125)I-EGF to a series of EGF receptor mutants in the intracellular juxtamembrane domain and demonstrate that the most membrane-proximal portion of this region plays a significant role in the genesis of negative cooperativity in the EGF receptor. The data are consistent with a model in which the binding of EGF to the first site on the dimer induces the formation of one asymmetric kinase dimer. The binding of EGF to the second site is required to disrupt the initial asymmetric dimer and allow the formation of the reciprocal asymmetric dimer. Thus, some of the energy of binding to the second site is used to reorient the first asymmetric dimer, leading to a lower binding affinity and the observed negative cooperativity.
Collapse
Affiliation(s)
- Sangeeta Adak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
46
|
Kozer N, Henderson C, Jackson JT, Nice EC, Burgess AW, Clayton AHA. Evidence for extended YFP-EGFR dimers in the absence of ligand on the surface of living cells. Phys Biol 2011; 8:066002. [PMID: 21946082 DOI: 10.1088/1478-3975/8/6/066002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the erbB tyrosine kinase family of receptors. Structural studies have revealed two distinct conformations of the ectodomain of the EGFR: a compact, tethered, conformation and an untethered extended conformation. In the context of a monomer-dimer transition model, ligand binding is thought to untether the monomeric receptor leading to exposure of a dimerization arm which then facilitates receptor dimerization, kinase activation and signaling. For receptors directed orthogonal to the local plane of the membrane surface, this would lead to a large change in the distance of the receptor N-terminus from the membrane surface. To investigate this experimentally, we produced stable BaF/3 cell lines expressing a biochemically functional yellow fluorescent protein (YFP)-EGFR chimera and determined the vertical separation of the N-terminal YFP tag from the membrane using fluorescence resonance energy transfer (FRET) techniques. Homo-FRET/rFLIM was employed to determine the presence of unliganded dimers and to measure the average distance between the N-terminal tags in those dimers. The results suggest that EGF-induced activation occurs within or between pre-formed and extended dimers with very little change in the extension of the N-terminii from the membrane surface. These results provide constraints on possible models for EGFR activation.
Collapse
Affiliation(s)
- Noga Kozer
- Centre for Microphotonics, Swinburne University of Technology, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Clarke DT, Botchway SW, Coles BC, Needham SR, Roberts SK, Rolfe DJ, Tynan CJ, Ward AD, Webb SED, Yadav R, Zanetti-Domingues L, Martin-Fernandez ML. Optics clustered to output unique solutions: a multi-laser facility for combined single molecule and ensemble microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:093705. [PMID: 21974592 DOI: 10.1063/1.3635536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Optics clustered to output unique solutions (OCTOPUS) is a microscopy platform that combines single molecule and ensemble imaging methodologies. A novel aspect of OCTOPUS is its laser excitation system, which consists of a central core of interlocked continuous wave and pulsed laser sources, launched into optical fibres and linked via laser combiners. Fibres are plugged into wall-mounted patch panels that reach microscopy end-stations in adjacent rooms. This allows multiple tailor-made combinations of laser colours and time characteristics to be shared by different end-stations minimising the need for laser duplications. This setup brings significant benefits in terms of cost effectiveness, ease of operation, and user safety. The modular nature of OCTOPUS also facilitates the addition of new techniques as required, allowing the use of existing lasers in new microscopes while retaining the ability to run the established parts of the facility. To date, techniques interlinked are multi-photon/multicolour confocal fluorescence lifetime imaging for several modalities of fluorescence resonance energy transfer (FRET) and time-resolved anisotropy, total internal reflection fluorescence, single molecule imaging of single pair FRET, single molecule fluorescence polarisation, particle tracking, and optical tweezers. Here, we use a well-studied system, the epidermal growth factor receptor network, to illustrate how OCTOPUS can aid in the investigation of complex biological phenomena.
Collapse
Affiliation(s)
- David T Clarke
- Science and Technology Facilities Council, Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxford OX11 0FA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Endres NF, Engel K, Das R, Kovacs E, Kuriyan J. Regulation of the catalytic activity of the EGF receptor. Curr Opin Struct Biol 2011; 21:777-84. [PMID: 21868214 DOI: 10.1016/j.sbi.2011.07.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in cell growth that is often misregulated in cancer. Several recent studies highlight the unique structural mechanisms involved in its regulation. Some elucidate the important role that the juxtamembrane segment and the transmembrane helix play in stabilizing the activating asymmetric kinase dimer, and suggest that its activation mechanism is likely to be conserved among the other human EGFR-related receptors. Other studies provide new explanations for two long observed, but poorly understood phenomena, the apparent heterogeneity in ligand binding and the formation of ligand-independent dimers. New insights into the allosteric mechanisms utilized by intracellular regulators of EGFR provide hope that allosteric sites could be used as targets for drug development.
Collapse
Affiliation(s)
- Nicholas F Endres
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
49
|
Human epidermal growth factor receptor (EGFR) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Mol Cell Biol 2011; 31:2241-52. [PMID: 21444717 DOI: 10.1128/mcb.01431-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ability of epidermal growth factor receptor (EGFR) to control cell fate is defined by its affinity for ligand. Current models suggest that ligand-binding heterogeneity arises from negative cooperativity in signaling receptor dimers, for which the asymmetry of the extracellular region of the Drosophila EGFR has recently provided a structural basis. However, no asymmetry is apparent in the isolated extracellular region of the human EGFR. Human EGFR also differs from the Drosophila EGFR in that negative cooperativity is found only in full-length receptors in cells. To gain structural insights into the human EGFR in situ, we developed an approach based on quantitative Förster resonance energy transfer (FRET) imaging, combined with Monte Carlo and molecular dynamics simulations, to probe receptor conformation in epithelial cells. We experimentally demonstrate a high-affinity ligand-binding human EGFR conformation consistent with the extracellular region aligned flat on the plasma membrane. We explored the relevance of this conformation to ligand-binding heterogeneity and found that the asymmetry of this structure shares key features with that of the Drosophila EGFR, suggesting that the structural basis for negative cooperativity is conserved from invertebrates to humans but that in human EGFR the extracellular region asymmetry requires interactions with the plasma membrane.
Collapse
|
50
|
Chen JY, Li M, Penn LS, Xi J. Real-Time and Label-Free Detection of Cellular Response to Signaling Mediated by Distinct Subclasses of Epidermal Growth Factor Receptors. Anal Chem 2011; 83:3141-6. [DOI: 10.1021/ac200160u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jennifer Y. Chen
- Chemistry Department, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Minghong Li
- Chemistry Department, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Lynn S. Penn
- Chemistry Department, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Jun Xi
- Chemistry Department, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|