1
|
Chaves-Moreira D, Gremski LH, de Moraes FR, Vuitika L, Wille ACM, Hernández González JE, Chaim OM, Senff-Ribeiro A, Arni RK, Veiga SS. Brown Spider Venom Phospholipase-D Activity upon Different Lipid Substrates. Toxins (Basel) 2023; 15:toxins15020109. [PMID: 36828423 PMCID: PMC9965952 DOI: 10.3390/toxins15020109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Brown spider envenomation results in dermonecrosis, characterized by an intense inflammatory reaction. The principal toxins of brown spider venoms are phospholipase-D isoforms, which interact with different cellular membrane components, degrade phospholipids, and generate bioactive mediators leading to harmful effects. The Loxosceles intermedia phospholipase D, LiRecDT1, possesses a loop that modulates the accessibility to the active site and plays a crucial role in substrate. In vitro and in silico analyses were performed to determine aspects of this enzyme's substrate preference. Sphingomyelin d18:1/6:0 was the preferred substrate of LiRecDT1 compared to other Sphingomyelins. Lysophosphatidylcholine 16:0/0:0 was preferred among other lysophosphatidylcholines, but much less than Sphingomyelin d18:1/6:0. In contrast, phosphatidylcholine d18:1/16:0 was not cleaved. Thus, the number of carbon atoms in the substrate plays a vital role in determining the optimal activity of this phospholipase-D. The presence of an amide group at C2 plays a key role in recognition and activity. In silico analyses indicated that a subsite containing the aromatic residues Y228 and W230 appears essential for choline recognition by cation-π interactions. These findings may help to explain why different cells, with different phospholipid fatty acid compositions exhibit distinct susceptibilities to brown spider venoms.
Collapse
Affiliation(s)
- Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Fábio Rogério de Moraes
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil
| | - Larissa Vuitika
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural and Molecular Biology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - Jorge Enrique Hernández González
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil
| | - Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Raghuvir Krishnaswamy Arni
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
- Correspondence: ; Tel.: +55-41-3361-1776
| |
Collapse
|
2
|
An Analytical Approach of One-Compartmental Pharmacokinetic Models with Sigmoidal Hill Elimination. Bull Math Biol 2022; 84:117. [DOI: 10.1007/s11538-022-01078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
|
3
|
Kouchakpour F, Chaibakhsh N, Naeemi AS. Efficient removal of cytotoxic drugs from wastewater by single-stage combined photocatalysis-algae treatment process. ENVIRONMENTAL TECHNOLOGY 2021; 42:3178-3190. [PMID: 32045560 DOI: 10.1080/09593330.2020.1725139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
In this study, the efficiency of a single-stage combined photocatalysis-algae treatment process in the removal of the anticancer drug, flutamide (FLU), from aqueous solution has been evaluated. The removal abilities of the individual blue-green alga (Anabaena sp.), nano-sized MoS2 photocatalyst under visible light irradiation, and combined photocatalysis-algal treatment process were investigated. Using response surface optimization technique, 85.1% of the FLU removal was achieved at the optimum conditions of pH 7.0, nanophotocatalyst dose of 15.23 mg and 12.12 mL of the alga in 30 min. Compared to the individual biological and chemical treatment methods, a higher FLU removal efficiency was obtained at a shorter reaction time by using the combined treatment system. Kinetics study showed that FLU removal by the algal treatment, photocatalysis, and the combined processes followed the modified Freundlich, pseudo-first-order, and nonlinear sigmoidal kinetic models, respectively. The results indicate that a synergistic effect appears when algal treatment process and photocatalysis are performed simultaneously. The novel combined system is a low-cost and efficient microalgae-based technology for the removal of cytotoxic compounds from wastewaters.
Collapse
Affiliation(s)
- Farnaz Kouchakpour
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Naz Chaibakhsh
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
4
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Di Trani JM, Moitessier N, Mittermaier AK. Complete Kinetic Characterization of Enzyme Inhibition in a Single Isothermal Titration Calorimetric Experiment. Anal Chem 2018; 90:8430-8435. [DOI: 10.1021/acs.analchem.8b00993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Cerminati S, Paoletti L, Peirú S, Menzella HG, Castelli ME. The βγ-crystallin domain of Lysinibacillus sphaericus phosphatidylinositol phospholipase C plays a central role in protein stability. Appl Microbiol Biotechnol 2018; 102:6997-7005. [DOI: 10.1007/s00253-018-9136-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
|
7
|
Cerminati S, Eberhardt F, Elena CE, Peirú S, Castelli ME, Menzella HG. Development of a highly efficient oil degumming process using a novel phosphatidylinositol-specific phospholipase C enzyme. Appl Microbiol Biotechnol 2017; 101:4471-4479. [PMID: 28238084 DOI: 10.1007/s00253-017-8201-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 11/27/2022]
Abstract
Enzymatic degumming using phospholipase C (PLC) enzymes may be used in environmentally friendly processes with improved oil recovery yields. In this work, phosphatidylinositol-specific phospholipase C (PIPLC) candidates obtained from an in silico analysis were evaluated for oil degumming. A PIPLC from Lysinibacillus sphaericus was shown to efficiently remove phosphatidylinositol from crude oil, and when combined with a second phosphatidylcholine and phosphatidylethanolamine-specific phospholipase C, the three major phospholipids were completely hydrolyzed, providing an extra yield of oil greater than 2.1%, compared to standard methods. A remarkably efficient fed-batch Escherichia coli fermentation process producing ∼14 g/L of the recombinant PIPLC enzyme was developed, which may facilitate the adoption of this cost-effective oil-refining process.
Collapse
Affiliation(s)
- Sebastián Cerminati
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina
| | - Florencia Eberhardt
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina
| | | | - Salvador Peirú
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina.,Keclon S.A., Tucumán 7180, 2000, Rosario, Argentina
| | - María E Castelli
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina.,Keclon S.A., Tucumán 7180, 2000, Rosario, Argentina
| | - Hugo G Menzella
- CONICET y Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Suipacha 531, 2000, Rosario, Argentina. .,Keclon S.A., Tucumán 7180, 2000, Rosario, Argentina.
| |
Collapse
|
8
|
Joo JC, Khusnutdinova AN, Flick R, Kim T, Bornscheuer UT, Yakunin AF, Mahadevan R. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chem Sci 2017; 8:1406-1413. [PMID: 28616142 PMCID: PMC5460604 DOI: 10.1039/c6sc02842j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/08/2016] [Indexed: 12/26/2022] Open
Abstract
Adipic acid, a precursor for Nylon-6,6 polymer, is one of the most important commodity chemicals, which is currently produced from petroleum. The biosynthesis of adipic acid from glucose still remains challenging due to the absence of biocatalysts required for the hydrogenation of unsaturated six-carbon dicarboxylic acids to adipic acid. Here, we demonstrate the first enzymatic hydrogenation of 2-hexenedioic acid and muconic acid to adipic acid using enoate reductases (ERs). ERs can hydrogenate 2-hexenedioic acid and muconic acid producing adipic acid with a high conversion rate and yield in vivo and in vitro. Purified ERs exhibit a broad substrate spectrum including aromatic and aliphatic 2-enoates and a significant oxygen tolerance. The discovery of the hydrogenation activity of ERs contributes to an understanding of the catalytic mechanism of these poorly characterized enzymes and enables the environmentally benign biosynthesis of adipic acid and other chemicals from renewable resources.
Collapse
Affiliation(s)
- Jeong Chan Joo
- Center for Bio-based Chemistry , Division of Convergence Chemistry , Korea Research Institute of Chemical Technology , 141 Gajeong-ro, Yuseong-gu , Daejeon 34114 , Republic of Korea .
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Taeho Kim
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Uwe T Bornscheuer
- Institute of Biochemistry , Department of Biotechnology & Enzyme Catalysis , Greifswald University , Felix-Hausdorff-Strasse 4 , 17487 Greifswald , Germany
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| |
Collapse
|
9
|
Liu Y, Mihai C, Kubiak RJ, Rebecchi M, Bruzik KS. Phosphorothiolate analogues of phosphatidylinositols as assay substrates for phospholipase C. Chembiochem 2016; 8:1430-9. [PMID: 17659518 DOI: 10.1002/cbic.200700061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accurate measurement of phosphatidylinositol-specific phospholipase C (PI-PLC) activity is important in view of the key role of this enzyme in signal-transduction pathways. In this work we synthesized enantiomerically pure phosphorothiolate analogues of all natural PI-PLC substrates, including those of phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2), 4-phosphate (PI-4-P), 5-phosphate (PI-5-P) and unphosphorylated PI, in both long- and short-chain versions. The enzymatic cleavage of these substrates produces thiol analogues of diacyl glycerol, which can be quantified by UV absorbance after treatment with dipyridyl disulfide. The monodisperse dihexanoyl derivatives are suitable substrates for PI-PLC assay: they give rise to high enzyme activity, and provide excellent linear kinetic responses. For all substrates, we found a good linear correlation between the reaction rate and the amount of enzyme; this indicated the suitability of this assay for enzyme quantification. The short-chain substrates enable the enzyme specificity with variously phosphorylated inositol head groups to be established--unobstructed by substrate aggregation, "scooting" kinetics on micelles, or surface dilution effects. The kinetic results indicated allosteric behavior of PLC for all substrates tested. We found that substrates phosphorylated at the inositol 4-position (phosphorothiolate analogues of PI-4,5-P2 and PI-4-P) displayed very similar kinetic properties, and were cleaved with approximately 20- to 30-fold higher activity than the 4-nonphosphorylated substrates (analogues of PI-5-P and PI). Hence it appears that interactions between the enzyme and the 4-phosphate group of the substrate, but not its 5-phosphate group, is important for PI-PLC catalysis. In addition, the binding affinities of all four substrate types were found to be quite similar; this indicates that the energy of enzyme interaction with the 4-phosphate group is directed almost entirely to catalysis.
Collapse
Affiliation(s)
- Yinghui Liu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago IL 60612, USA
| | | | | | | | | |
Collapse
|
10
|
Possible allostery and oligomerization of recombinant plastidial sn-glycerol-3-phosphate acyltransferase. Arch Biochem Biophys 2014; 554:55-64. [PMID: 24841490 DOI: 10.1016/j.abb.2014.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/26/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022]
Abstract
Plastidial acyl-acyl carrier protein:sn-glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the acyl-acyl carrier protein-dependent sn-1 acylation of sn-glycerol 3-phosphate (G3P) to produce lysophosphatic acid. Functional recombinant Erysimum asperum GPAT (EaGPAT), devoid of transit peptide, was produced in yeast. Analysis of the dependence of EaGPAT activity on increasing G3P concentration resulted in a hyperbolic response. EaGPAT exhibited a preference for 18-carbon unsaturated acyl-CoAs. Assays with concentrations of oleoyl-CoA up to 90μM revealed an exponential response to increasing concentrations of acyl donor, and the introduction of increasing concentrations of unlabeled linoleoyl-CoA into the standard reaction mixture resulted in increased incorporation of radiolabeled oleoyl moieties into lysophosphatidic acid. Collectively, the kinetic results suggest that acyl-CoA may act as both substrate and allosteric effector. EaGPAT was also shown to oligomerize to form higher molecular mass multimers, with the monomer and trimer being the predominant forms of the enzyme. Since most allosteric enzyme exhibit quaternary structure, the self-associating properties of EaGPAT are consistent with those of an allosteric enzyme. These results could have important regulatory implications when plastidial GPAT is introduced into a cytoplasmic environment where acyl-CoA is the acyl donor supporting cytoplasmic glycerolipid assembly.
Collapse
|
11
|
Neohesperidin dihydrochalcone: Presentation of a small molecule activator of mammalian alpha-amylase as an allosteric effector. FEBS Lett 2013; 587:652-8. [DOI: 10.1016/j.febslet.2013.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 12/28/2012] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
|
12
|
Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat Struct Mol Biol 2011; 18:604-13. [PMID: 21478864 PMCID: PMC3087843 DOI: 10.1038/nsmb.2021] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 01/26/2011] [Indexed: 02/07/2023]
Abstract
ERAP1 trims antigen precursors to fit into MHC class I proteins. To perform this function, ERAP1 has unique substrate preferences, trimming long peptides while sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin. The structure reveals an open conformation with a large interior compartment. An extended groove originating from the enzyme's catalytic center can accommodate long peptides and has features that explain ERAP1's broad specificity for antigenic peptide precursors. Structural and biochemical analysis suggest a mechanism for ERAP1's length-dependent trimming activity, whereby binding of long but not short substrates induces a conformational change with reorientation of a key catalytic residue towards the active site. ERAP1's unique structural elements suggest how a generic aminopeptidase structure has been adapted for the specialized function of trimming antigenic precursors.
Collapse
|
13
|
Min W, Jiang L, Xie X. Complex Kinetics of Fluctuating Enzymes: Phase Diagram Characterization of a Minimal Kinetic Scheme. Chem Asian J 2010; 5:1129-38. [DOI: 10.1002/asia.200900627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Fluorescent small-molecule probes of biochemistry at the plasma membrane. Curr Opin Chem Biol 2010; 14:57-63. [DOI: 10.1016/j.cbpa.2009.09.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/19/2009] [Indexed: 12/19/2022]
|
15
|
Zhang X, Wehbi H, Roberts MF. Cross-linking phosphatidylinositol-specific phospholipase C traps two activating phosphatidylcholine molecules on the enzyme. J Biol Chem 2004; 279:20490-500. [PMID: 14996830 DOI: 10.1074/jbc.m401016200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), a bacterial model for the catalytic domain of mammalian PI-PLC enzymes, was cross-linked by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride to probe for the aggregation and/or conformational changes of PI-PLC when bound to activating phosphatidylcholine (PC) interfaces. Dimers and higher order multimers (up to 31% of the total protein when cross-linked at pH 7) were observed when the enzyme was cross-linked in the presence of PC vesicles. Aggregates were also detected with PI-PLC bound to diheptanoyl-PC (diC(7)PC) micelles, although the fraction of cross-linked multimers (19% at pH 7) was lower than when the enzyme was cross-linked in the presence of vesicles. PI-PLC cross-linked in the presence of a diC(7)PC interface exhibited an enhanced specific activity for PI cleavage. The extent of this cross-linking-enhanced activation was reduced in PI-PLC mutants lacking either tryptophan in the rim (W47A and W242A) of this (betaalpha)(8)-barrel protein. The higher activity of the native protein cross-linked in the presence of diC(7)PC correlated with an increased affinity of the protein for two diC(7)PC molecules as detected by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. In contrast to wild type protein, W47A and W242A had only a single diC(7)PC tightly associated when cross-linked in the presence of that activator molecule. These results indicate that (i) each rim tryptophan residue is involved in binding a PC molecule at interfaces, (ii) the affinity of the enzyme for an activating PC molecule is enhanced when the protein is bound to a surface, and (iii) this conformation of the enzyme with at least two PC bound that is stabilized by chemical cross-linking interacts more effectively with activating interfaces, leading to higher observed specific activities for the phosphotransferase reaction.
Collapse
Affiliation(s)
- Xin Zhang
- Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
16
|
Xu HQ, Deprez E, Zhang AH, Tauc P, Ladjimi MM, Brochon JC, Auclair C, Xi XG. The Escherichia coli RecQ helicase functions as a monomer. J Biol Chem 2003; 278:34925-33. [PMID: 12805371 DOI: 10.1074/jbc.m303581200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RecQ helicases belong to an important family of highly conserved DNA helicases that play a key role in chromosomal maintenance, and their defects have been shown to lead to several disorders and cancer in humans. In this work, the conformational and functional properties of the Escherichia coli RecQ helicase have been determined using a wide array of biochemical and biophysical techniques. The results obtained clearly indicate that E. coli RecQ helicase is monomeric in solution up to a concentration of 20 microM and in a temperature range between 4 and 37 degrees C. Furthermore, these properties are not affected by the presence of ATP, which is strictly required for the unwinding and translocating activity of the protein, or by its nonhydrolyzable analogue 5'-adenylyl-beta,gamma-imidodiphosphate. Consistent with the structural properties, functional analysis shows that both DNA unwinding activity and single-stranded DNA-stimulated ATPase specific activity were independent of RecQ concentration. The monomeric state was further confirmed by the ATPase-deficient mutants of RecQ protein. The rate of unwinding was unchanged when the wild type RecQ helicase was mixed with the ATPase-deficient mutants, indicating that nonprotein-protein interactions were involved in the unwinding processes. Taken together, these results indicate that RecQ helicase functions as a monomer and provide new data on the structural and functional properties of RecQ helicase that may help elucidate its mechanism action.
Collapse
Affiliation(s)
- Hou Qiang Xu
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée CNRS UMR 8113, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | | | | | | | |
Collapse
|