1
|
Agrawal S, Govind Kumar V, Gundampati RK, Moradi M, Kumar TKS. Characterization of the structural forces governing the reversibility of the thermal unfolding of the human acidic fibroblast growth factor. Sci Rep 2021; 11:15579. [PMID: 34341408 PMCID: PMC8329156 DOI: 10.1038/s41598-021-95050-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Human acidic fibroblast growth factor (hFGF1) is an all beta-sheet protein that is involved in the regulation of key cellular processes including cell proliferation and wound healing. hFGF1 is known to aggregate when subjected to thermal unfolding. In this study, we investigate the equilibrium unfolding of hFGF1 using a wide array of biophysical and biochemical techniques. Systematic analyses of the thermal and chemical denaturation data on hFGF1 variants (Q54P, K126N, R136E, K126N/R136E, Q54P/K126N, Q54P/R136E, and Q54P/K126N/R136E) indicate that nullification of charges in the heparin-binding pocket can significantly increase the stability of wtFGF1. Triple variant (Q54P/K126N/R136E) was found to be the most stable of all the hFGF1 variants studied. With the exception of triple variant, thermal unfolding of wtFGF1 and the other variants is irreversible. Thermally unfolded triple variant refolds completely to its biologically native conformation. Microsecond-level molecular dynamic simulations reveal that a network of hydrogen bonds and salt bridges linked to Q54P, K126N, and R136E mutations, are responsible for the high stability and reversibility of thermal unfolding of the triple variant. In our opinion, the findings of the study provide valuable clues for the rational design of a stable hFGF1 variant that exhibits potent wound healing properties.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
2
|
Pu F, Wang E, Jiang H, Ren J. Identification of polyoxometalates as inhibitors of basic fibroblast growth factor. ACTA ACUST UNITED AC 2013; 9:113-20. [DOI: 10.1039/c2mb25389e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Rajanikanth V, Srivastava SS, Singh AK, Rajyalakshmi M, Chandra K, Aravind P, Sankaranarayanan R, Sharma Y. Aggregation-prone near-native intermediate formation during unfolding of a structurally similar nonlenticular βγ-crystallin domain. Biochemistry 2012; 51:8502-13. [PMID: 23043265 DOI: 10.1021/bi300844u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding and unfolding of structurally similar proteins belonging to a family have long been a focus of investigation of the structure-(un)folding relationship. Such studies are yet to reach a consensus about whether structurally similar domains follow common or different unfolding pathways. Members of the βγ-crystallin superfamily, which consists of structurally similar proteins with limited sequence similarity from diverse life forms spanning microbes to mammals, form an appropriate model system for exploring this relationship further. We selected a new member, Crybg3_D3, the third βγ-crystallin domain of non-lens vertebrate protein Crybg3 from mouse brain. The crystal structure determined at 1.86 Å demonstrates that the βγ-crystallin domain of Crybg3 resembles more closely the lens βγ-crystallins than the microbial crystallins do. However, interestingly, this structural cousin follows a quite distinct (un)folding pathway via formation of an intermediate state. The intermediate species is in a nativelike conformation with variation in flexibility and tends to form insoluble aggregates. The individual domains of lens βγ-crystallins (and microbial homologues) do not follow such an unfolding pattern. Thus, even the closest members of a subfamily within a superfamily do not necessarily follow similar unfolding paths, suggesting the divergence acquired by these domains, which could be observed only by unfolding. Additionally, this study provides insights into the modifications that this domain has undergone during its recruitment into the non-lens tissues in vertebrates.
Collapse
Affiliation(s)
- V Rajanikanth
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Alsenaidy MA, Wang T, Kim JH, Joshi SB, Lee J, Blaber M, Volkin DB, Middaugh CR. An empirical phase diagram approach to investigate conformational stability of "second-generation" functional mutants of acidic fibroblast growth factor-1. Protein Sci 2012; 21:418-32. [PMID: 22113934 DOI: 10.1002/pro.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/06/2022]
Abstract
Acidic fibroblast growth factor-1 (FGF-1) is an angiogenic protein which requires binding to a polyanion such as heparin for its mitogenic activity and physicochemical stability. To evaluate the extent to which this heparin dependence on solution stability could be reduced or eliminated, the structural integrity and conformational stability of 10 selected FGF-1 mutants were examined as a function of solution pH and temperature by a series of spectroscopic methods including circular dichroism, intrinsic and extrinsic fluorescence spectroscopy and static light scattering. The biophysical data were summarized in the form of colored empirical phase diagrams (EPDs). FGF-1 mutants were identified with stability profiles in the absence of heparin comparable to that of wild-type FGF-1 in the presence of heparin while still retaining their biological activity. In addition, a revised version of the EPD methodology was found to provide an information rich, high throughput approach to compare the effects of mutations on the overall conformational stability of proteins in terms of their response to environmental stresses such as pH and temperature.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ahmed S, Guptasarma P. Design of a soluble mini-protein through tandem duplication of the minimally engineered beta hairpin 'tongue' motif of alpha-hemolysin. Biochimie 2008; 90:957-67. [PMID: 18374661 DOI: 10.1016/j.biochi.2008.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
In an attempt to fashion a globular protein out of two conjoined beta hairpin structural motif(s), we created a gene encoding, in tandem, two copies of the 40 residues-long transmembrane beta hairpin tongue (BHT) motif of the pore-forming toxin, alpha-hemolysin, of Staphylococcus aureus. Seven selected hydrophobic residues on each copy of the BHT motif's lipid-facing surface were mutated to hydrophilic residues, to prevent or reduce any non-specific aggregation based on hydrophobic interactions. Tandem BHT turned out to be expressed as a soluble polypeptide which could be raised to concentrations of approximately 2mg/ml. It displayed several characteristics of a folded mini-protein, although not the characteristics of a typical well-folded globular protein. These characteristics include (i) far-UV CD and FTIR spectra indicative of the presence of sheet structure mixed with polyproline type II secondary structure, (ii) a near-UV CD spectrum, indicating some formation of tertiary structure, (iii) evidence of unfolding and dissociation transitions in the presence of denaturants, accompanied by increase in random coil content, and (iv) the ability to transform from sheet to helical structure through a biphasic structural transition in the presence of the cosolvent, trifluorethanol. Importantly, however, tandem BHT displayed no cooperativity during unfolding; taken together with the poor structural content revealed in the far-UV CD spectrum and some non-canonical gel filtration behavior seen in the presence of denaturants, this suggests a partially unsuccessful instance of protein design.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Department of Protein Science and Engineering, Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| | | |
Collapse
|
6
|
Ahmed S, Shukla A, Guptasarma P. Folding behavior of a backbone-reversed protein: reversible polyproline type II to beta-sheet thermal transitions in retro-GroES multimers with GroES-like features. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:916-23. [PMID: 18359305 DOI: 10.1016/j.bbapap.2008.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/19/2008] [Accepted: 02/19/2008] [Indexed: 11/17/2022]
Abstract
The structural consequences of the reversal of polypeptide backbone direction (retro modification) remain insufficiently explored. Here, we describe the behavior of an engineered, backbone-reversed form of the 97 residues-long GroES co-chaperonin of Escherichia coli. FTIR and far-UV CD spectroscopy suggest that retro-GroES adopts a mixed polyproline type II (PPII)-beta-strand structure with a beta(II) type CD spectrum similar to that of GroES. Gel-filtration chromatography reveals that the protein adopts trimeric and/or pentameric quaternary structures, with solubility retained up to concentrations of 5.0-5.5 mg/ml in aqueous solutions. Mutations inserting a single tryptophan residue as a spectroscopic probe at three different sites cause no perturbation in the protein's CD spectral characteristics, or in its quaternary structural status. The protein is cooperatively dissociated, and non-cooperatively unfolded, by both guanidine hydrochloride and urea. Intriguingly, unlike with GroES, retro-GroES is not unfolded by heat. Instead, there is a reversible structural transition involving conversion of PPII structure to beta sheet structure, upon heating, with no attendant aggregation even at 90 degrees C. Retro-GroES does not bind GroEL. In summary, some structure-forming characteristics of GroES appear to be conserved through the backbone reversal process, although the differential conformational behavior upon heating also indicates differences.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Protein Science and Engineering Division, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | |
Collapse
|
7
|
Rajalingam D, Graziani I, Prudovsky I, Yu C, Kumar TKS. Relevance of partially structured states in the non-classical secretion of acidic fibroblast growth factor. Biochemistry 2007; 46:9225-38. [PMID: 17636870 PMCID: PMC3656169 DOI: 10.1021/bi7002586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acidic fibroblast growth factor (aFGF) is a signal peptide-less protein that is secreted into the extracellular compartment as part of a multiprotein release complex, consisting of aFGF, S100A13 (a calcium binding protein), and a 40 kDa (p40) form of synaptotagmin (Syt1), a protein that participates in the docking of a variety of secretory vesicles. p40 Syt1, and specifically its C2A domain, is believed to play a major role in the non-classical secretion of the aFGF release complex mediated by the interaction of aFGF and p40 Syt1with the phospholipids of the cell membrane inner leaflet. In the present study, we investigate the structural characteristics of aFGF and the C2A domain of p40 Syt1 under acidic conditions, using a variety of biophysical techniques including multidimensional NMR spectroscopy. Urea-induced equilibrium unfolding (at pH 3.4) of both aFGF and the C2A domain are non-cooperative and proceed with the accumulation of stable intermediate states. 1-Anilino-8-napthalene sulfonate (ANS) binding and size-exclusion chromatography results suggest that both aFGF and the C2A domain exist as partially structured states under acidic conditions (pH 3.4). Limited trypsin digestion analysis and 1H-15N chemical shift perturbation data reveal that the flexibility of certain portions of the protein backbone is increased in the partially structured state(s) of aFGF. The residues that are perturbed in the partially structured state(s) in aFGF are mostly located at the N- and C-terminal ends of the protein. In marked contrast, most of the interactions stabilizing the native secondary structure are preserved in the partially structured state of the C2A domain. Isothermal titration calorimetry data indicate that the binding affinity between aFGF and the C2A domain is significantly enhanced at pH 3.4. In addition, both aFGF and the C2A domain exhibit much higher lipid binding affinity in their partially structured states. The translocation of the multiprotein FGF release complex across the membrane appears to be facilitated by the formation of partially structured states of aFGF and the C2A domain of p40 Syt1.
Collapse
Affiliation(s)
| | - Irene Graziani
- Department of Chemistry and Biochemistry, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Igor Prudovsky
- Department of Chemistry and Biochemistry, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Chin Yu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan
- To whom correspondence should be addressed. Phone: 479-575-5646. Fax: 479-575-4049. (T.K.S.K.). Phone: 886-35-711082. Fax: 886-35-721524. cyu@ mx.nthu.edu.tw (C.Y.)
| | - Thallapuranam Krishnaswamy S. Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
- To whom correspondence should be addressed. Phone: 479-575-5646. Fax: 479-575-4049. (T.K.S.K.). Phone: 886-35-711082. Fax: 886-35-721524. cyu@ mx.nthu.edu.tw (C.Y.)
| |
Collapse
|
8
|
Fan H, Li H, Zhang M, Middaugh CR. Effects of Solutes on Empirical Phase Diagrams of Human Fibroblast Growth Factor 1. J Pharm Sci 2007; 96:1490-503. [PMID: 17094138 DOI: 10.1002/jps.20796] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A variety of solutes are commonly used to increase the stability of protein in therapeutic formulations. An empirical phase diagram approach is used to evaluate the effects of different types of additives on the solution behavior of a protein of pharmaceutical interest, human fibroblast growth factor 1 (FGF-1). A specific stabilizer, heparin, and a nonspecific stabilizer, sucrose, were used in this work. The protein was characterized as a function of pH (3-8) and temperature (10-85 degrees C) using Far-UV circular dichroism (Far-UV CD), intrinsic and extrinsic fluorescence as well as second derivative UV absorption spectroscopy. Empirical phase diagrams were constructed to summarize the biophysical characterization data obtained with FGF-1 alone, in the presence of a threefold weight excess of heparin (3x heparin) or 10% sucrose (w/v). Three phases are observed in the low temperature regions at pH 3, 4, and 5-8. Phase boundaries corresponding to major heat-induced transitions are detected in the physiological temperature range. The highest thermal stabilities are observed near neutral pH (pH 6 and 7). Both heparin and sucrose appear to enhance the thermal stability of FGF-1, although their effects on the phase diagram are quite distinct. The greatest stabilization is observed at pH 8. Only heparin appears to protect FGF-1 from acid-induced unfolding to any extent.
Collapse
Affiliation(s)
- Haihong Fan
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
9
|
Kathir KM, Kumar TKS, Rajalingam D, Yu C. Time-dependent changes in the denatured state(s) influence the folding mechanism of an all beta-sheet protein. J Biol Chem 2005; 280:29682-8. [PMID: 15941715 DOI: 10.1074/jbc.m504389200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Newt fibroblast growth factor (nFGF-1) is an approximately 15-kDa all beta-sheet protein devoid of disulfide bonds. Urea-induced equilibrium unfolding of nFGF-1, monitored by steady state fluorescence and far-UV circular dichroism spectroscopy, is cooperative with no detectable intermediate(s). Urea-induced unfolding of nFGF-1 is reversible, but the percentage of the protein recovered in the native state depends on the time of incubation of the protein in the denaturant. The yield of the protein in the native state decreases with the increase in time of incubation in the denaturant. The failure of the protein to refold to its native state is not due to trivial chemical reactions that could possibly occur upon prolonged incubation in the denaturant. (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra, limited proteolytic digestion, and fluorescence data suggest that the misfolded state(s) of nFGF-1 has structural features resembling that of the denatured state(s). GroEL, in the presence of ATP, is observed to rescue the protein from being trapped in the misfolded state(s). (1)H-(15)N HSQC data of nFGF-1, acquired in the denatured state(s) (in 8 m urea), suggest that the protein undergoes subtle time-dependent structural changes in the denaturant. To our knowledge, this report for the first time demonstrates that the commitment to adapt unproductive pathways leading to protein misfolding/aggregation occurs in the denatured state ensemble.
Collapse
|
10
|
Hsieh HC, Kumar TKS, Chiu CC, Yu C. Equilibrium unfolding of an oligomeric protein involves formation of a multimeric intermediate state(s). Biochem Biophys Res Commun 2005; 326:108-14. [PMID: 15567159 DOI: 10.1016/j.bbrc.2004.10.211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Indexed: 01/29/2023]
Abstract
Superoxide dismutases (SODs) are important metalloenzymes which protect cells against oxidative stress by scavenging reactive superoxides. Missense mutations in SODs are known to lead to some familial cases of amyotrophic lateral sclerosis and several forms of cancers. In the present study, we investigate the guanidinium hydrochloride (GdnHCl)-induced equilibrium unfolding of apo-manganese superoxide dismutase (apo-MnSOD) isolated from Vibrio alginolyticus using a variety of biophysical techniques. GdnHCl-induced equilibrium unfolding of apo-MnSOD is non-cooperative and involves the accumulation of stable intermediate state(s). Results of 1-anilino-8-naphthalene sulfonate binding experiments suggest that the equilibrium intermediate state(s) accumulates maximally in 1.5M GdnHCl. The intermediate state(s) appears to be obligatory and occurs both in the unfolding and refolding pathways. Size-exclusion chromatography and sedimentation velocity data reveal that the equilibrium intermediate state(s) is multimeric. To our knowledge, this is the first report of the identification of a multimeric intermediate in the unfolding pathway(s) of oligomeric proteins. The formation and dissociation of the multimeric intermediate state(s) appears to dictate the fate of the protein either to refold to its native conformation or misfold and form aggregates as observed in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Hui-Chu Hsieh
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan
| | | | | | | |
Collapse
|
11
|
Reid CW, Brewer D, Clarke AJ. Substrate Binding Affinity of Pseudomonas aeruginosa Membrane-Bound Lytic Transglycosylase B by Hydrogen−Deuterium Exchange MALDI MS. Biochemistry 2004; 43:11275-82. [PMID: 15366937 DOI: 10.1021/bi049496d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer, peptidoglycan, between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. With 72% amino acid sequence identity between the enzymes, the theoretical structure of the membrane-bound lytic transglycosylase B (MltB) from Psuedomonas aeruginosa was modeled on the known crystal structure of Escherichia coli Slt35, the soluble derivative of its MltB. Of the twelve residues in Slt35 known to make contacts with peptidoglycan derivatives in Slt35, nine exist in the same position in the P. aeruginosa homologue, with two others only slightly displaced. To probe the binding properties of an engineered soluble form of the P. aeruginosa MltB, a SUPREX method involving hydrogen/deuterium exchange coupled with MALDI mass spectrometry detection was developed. Dissociation constants were calculated for a series of peptidoglycan components and compared to those obtained by difference UV absorption spectroscopy. These data indicated that GlcNAc alone does not bind to MltB with any measurable affinity but it does contribute to the binding of GlcNAc-MurNAc-dipeptide. With the MurNAc series of ligands, significant binding contributions are made through both the N-acetyl and C-3 lactyl moieties of the aminosugar with additional contributions to binding provided by associated peptides.
Collapse
Affiliation(s)
- Christopher W Reid
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|