1
|
Carreón-Rodríguez OE, Gosset G, Escalante A, Bolívar F. Glucose Transport in Escherichia coli: From Basics to Transport Engineering. Microorganisms 2023; 11:1588. [PMID: 37375089 PMCID: PMC10305011 DOI: 10.3390/microorganisms11061588] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli is the best-known model for the biotechnological production of many biotechnological products, including housekeeping and heterologous primary and secondary metabolites and recombinant proteins, and is an efficient biofactory model to produce biofuels to nanomaterials. Glucose is the primary substrate used as the carbon source for laboratory and industrial cultivation of E. coli for production purposes. Efficient growth and associated production and yield of desired products depend on the efficient sugar transport capabilities, sugar catabolism through the central carbon catabolism, and the efficient carbon flux through specific biosynthetic pathways. The genome of E. coli MG1655 is 4,641,642 bp, corresponding to 4702 genes encoding 4328 proteins. The EcoCyc database describes 532 transport reactions, 480 transporters, and 97 proteins involved in sugar transport. Nevertheless, due to the high number of sugar transporters, E. coli uses preferentially few systems to grow in glucose as the sole carbon source. E. coli nonspecifically transports glucose from the extracellular medium into the periplasmic space through the outer membrane porins. Once in periplasmic space, glucose is transported into the cytoplasm by several systems, including the phosphoenolpyruvate-dependent phosphotransferase system (PTS), the ATP-dependent cassette (ABC) transporters, and the major facilitator (MFS) superfamily proton symporters. In this contribution, we review the structures and mechanisms of the E. coli central glucose transport systems, including the regulatory circuits recruiting the specific use of these transport systems under specific growing conditions. Finally, we describe several successful examples of transport engineering, including introducing heterologous and non-sugar transport systems for producing several valuable metabolites.
Collapse
Affiliation(s)
| | | | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (O.E.C.-R.); (G.G.)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (O.E.C.-R.); (G.G.)
| |
Collapse
|
2
|
Understanding the functional role of membrane confinements in TNF-mediated signaling by multiscale simulations. Commun Biol 2022; 5:228. [PMID: 35277586 PMCID: PMC8917213 DOI: 10.1038/s42003-022-03179-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe interaction between TNFα and TNFR1 is essential in maintaining tissue development and immune responses. While TNFR1 is a cell surface receptor, TNFα exists in both soluble and membrane-bound forms. Interestingly, it was found that the activation of TNFR1-mediated signaling pathways is preferentially through the soluble form of TNFα, which can also induce the clustering of TNFR1 on plasma membrane of living cells. We developed a multiscale simulation framework to compare receptor clustering induced by soluble and membrane-bound ligands. Comparing with the freely diffusive soluble ligands, we hypothesize that the conformational dynamics of membrane-bound ligands are restricted, which affects the clustering of ligand-receptor complexes at cell-cell interfaces. Our simulation revealed that only small clusters can form if TNFα is bound on cell surface. In contrast, the clustering triggered by soluble TNFα is more dynamic, and the size of clusters is statistically larger. We therefore demonstrated the impact of membrane-bound ligand on dynamics of receptor clustering. Moreover, considering that larger TNFα-TNFR1 clusters is more likely to provide spatial platform for downstream signaling pathway, our studies offer new mechanistic insights about why the activation of TNFR1-mediated signaling pathways is not preferred by membrane-bound form of TNFα.
Collapse
|
3
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|
4
|
Wu Y, Dhusia K, Su Z. Mechanistic dissection of spatial organization in NF-κB signaling pathways by hybrid simulations. Integr Biol (Camb) 2021; 13:109-120. [PMID: 33893499 DOI: 10.1093/intbio/zyab006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/16/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is one of the most important transcription factors involved in the regulation of inflammatory signaling pathways. Inappropriate activation of these pathways has been linked to autoimmunity and cancers. Emerging experimental evidences have been showing the existence of elaborate spatial organizations for various molecular components in the pathways. One example is the scaffold protein tumor necrosis factor receptor associated factor (TRAF). While most TRAF proteins form trimeric quaternary structure through their coiled-coil regions, the N-terminal region of some members in the family can further be dimerized. This dimerization of TRAF trimers can drive them into higher-order clusters as a response to receptor stimulation, which functions as a spatial platform to mediate the downstream poly-ubiquitination. However, the molecular mechanism underlying the TRAF protein clustering and its functional impacts are not well-understood. In this article, we developed a hybrid simulation method to tackle this problem. The assembly of TRAF-based signaling platform at the membrane-proximal region is modeled with spatial resolution, while the dynamics of downstream signaling network, including the negative feedbacks through various signaling inhibitors, is simulated as stochastic chemical reactions. These two algorithms are further synchronized under a multiscale simulation framework. Using this computational model, we illustrated that the formation of TRAF signaling platform can trigger an oscillatory NF-κB response. We further demonstrated that the temporal patterns of downstream signal oscillations are closely regulated by the spatial factors of TRAF clustering, such as the geometry and energy of dimerization between TRAF trimers. In general, our study sheds light on the basic mechanism of NF-κB signaling pathway and highlights the functional importance of spatial regulation within the pathway. The simulation framework also showcases its potential of application to other signaling pathways in cells.
Collapse
Affiliation(s)
- Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
5
|
Su Z, Dhusia K, Wu Y. A multiscale study on the mechanisms of spatial organization in ligand-receptor interactions on cell surfaces. Comput Struct Biotechnol J 2021; 19:1620-1634. [PMID: 33868599 PMCID: PMC8026753 DOI: 10.1016/j.csbj.2021.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 01/11/2023] Open
Abstract
The binding of cell surface receptors with extracellular ligands triggers distinctive signaling pathways, leading into the corresponding phenotypic variation of cells. It has been found that in many systems, these ligand-receptor complexes can further oligomerize into higher-order structures. This ligand-induced oligomerization of receptors on cell surfaces plays an important role in regulating the functions of cell signaling. The underlying mechanism, however, is not well understood. One typical example is proteins that belong to the tumor necrosis factor receptor (TNFR) superfamily. Using a generic multiscale simulation platform that spans from atomic to subcellular levels, we compared the detailed physical process of ligand-receptor oligomerization for two specific members in the TNFR superfamily: the complex formed between ligand TNFα and receptor TNFR1 versus the complex formed between ligand TNFβ and receptor TNFR2. Interestingly, although these two systems share high similarity on the tertiary and quaternary structural levels, our results indicate that their oligomers are formed with very different dynamic properties and spatial patterns. We demonstrated that the changes of receptor’s conformational fluctuations due to the membrane confinements are closely related to such difference. Consistent to previous experiments, our simulations also showed that TNFR can preassemble into dimers prior to ligand binding, while the introduction of TNF ligands induced higher-order oligomerization due to a multivalent effect. This study, therefore, provides the molecular basis to TNFR oligomerization and reveals new insights to TNFR-mediated signal transduction. Moreover, our multiscale simulation framework serves as a prototype that paves the way to study higher-order assembly of cell surface receptors in many other bio-systems.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
6
|
A computational study of co-inhibitory immune complex assembly at the interface between T cells and antigen presenting cells. PLoS Comput Biol 2021; 17:e1008825. [PMID: 33684103 PMCID: PMC7971848 DOI: 10.1371/journal.pcbi.1008825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/18/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022] Open
Abstract
The activation and differentiation of T-cells are mainly directly by their co-regulatory receptors. T lymphocyte-associated protein-4 (CTLA-4) and programed cell death-1 (PD-1) are two of the most important co-regulatory receptors. Binding of PD-1 and CTLA-4 with their corresponding ligands programed cell death-ligand 1 (PD-L1) and B7 on the antigen presenting cells (APC) activates two central co-inhibitory signaling pathways to suppress T cell functions. Interestingly, recent experiments have identified a new cis-interaction between PD-L1 and B7, suggesting that a crosstalk exists between two co-inhibitory receptors and the two pairs of ligand-receptor complexes can undergo dynamic oligomerization. Inspired by these experimental evidences, we developed a coarse-grained model to characterize the assembling of an immune complex consisting of CLTA-4, B7, PD-L1 and PD-1. These four proteins and their interactions form a small network motif. The temporal dynamics and spatial pattern formation of this network was simulated by a diffusion-reaction algorithm. Our simulation method incorporates the membrane confinement of cell surface proteins and geometric arrangement of different binding interfaces between these proteins. A wide range of binding constants was tested for the interactions involved in the network. Interestingly, we show that the CTLA-4/B7 ligand-receptor complexes can first form linear oligomers, while these oligomers further align together into two-dimensional clusters. Similar phenomenon has also been observed in other systems of cell surface proteins. Our test results further indicate that both co-inhibitory signaling pathways activated by B7 and PD-L1 can be down-regulated by the new cis-interaction between these two ligands, consistent with previous experimental evidences. Finally, the simulations also suggest that the dynamic and the spatial properties of the immune complex assembly are highly determined by the energetics of molecular interactions in the network. Our study, therefore, brings new insights to the co-regulatory mechanisms of T cell activation. The activation of a T cell can be regulated by the receptors on its surface, such as CTLA-4 and PD-1. People used to think that these two receptors inhibit T cell activation through distinct pathways. However, recent experiments discovered that the ligands of these two receptors, B7 and PD-L1, can interact with each other on the same surface of antigen presenting cells. Here we utilized computational simulations to investigate functional roles of this newly discovered interaction in T cell coregulation. The specific environment of interface between T cell and antigen presenting cell has been taken into account of our model. Ligand and receptors randomly diffuse within this interface area. They further involve in different types of interactions, with each other from the same side or the opposite side of cell surface. Using this method, we found ligands and receptors can not only form complexes, but also aggregate into large-scale clusters. We also demonstrated that the engagement between B7 and PD-L1 can reduce the interactions with their corresponding receptors. This study, therefore, offers new insights to our understanding of signal regulation in T cells.
Collapse
|
7
|
Su Z, Dhusia K, Wu Y. Understand the Functions of Scaffold Proteins in Cell Signaling by a Mesoscopic Simulation Method. Biophys J 2020; 119:2116-2126. [PMID: 33113350 DOI: 10.1016/j.bpj.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 02/02/2023] Open
Abstract
Scaffold proteins are central players in regulating the spatial-temporal organization of many important signaling pathways in cells. They offer physical platforms to downstream signaling proteins so that their transient interactions in a crowded and heterogeneous environment of cytosol can be greatly facilitated. However, most scaffold proteins tend to simultaneously bind more than one signaling molecule, which leads to the spatial assembly of multimeric protein complexes. The kinetics of these protein oligomerizations are difficult to quantify by traditional experimental approaches. To understand the functions of scaffold proteins in cell signaling, we developed a, to our knowledge, new hybrid simulation algorithm in which both spatial organization and binding kinetics of proteins were implemented. We applied this new technique to a simple network system that contains three molecules. One molecule in the network is a scaffold protein, whereas the other two are its binding targets in the downstream signaling pathway. Each of the three molecules in the system contains two binding motifs that can interact with each other and are connected by a flexible linker. By applying the new simulation method to the model, we show that the scaffold proteins will promote not only thermodynamics but also kinetics of cell signaling given the premise that the interaction between the two signaling molecules is transient. Moreover, by changing the flexibility of the linker between two binding motifs, our results suggest that the conformational fluctuations in a scaffold protein play a positive role in recruiting downstream signaling molecules. In summary, this study showcases the capability of computational simulation in understanding the general principles of scaffold protein functions.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
8
|
Su Z, Wu Y. A computational model for understanding the oligomerization mechanisms of TNF receptor superfamily. Comput Struct Biotechnol J 2020; 18:258-270. [PMID: 32021664 PMCID: PMC6994755 DOI: 10.1016/j.csbj.2019.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023] Open
Abstract
By recognizing members in the tumor necrosis factor (TNF) receptor superfamily, TNF ligand proteins function as extracellular cytokines to activate various signaling pathways involved in inflammation, proliferation, and apoptosis. Most ligands in TNF superfamily are trimeric and can simultaneously bind to three receptors on cell surfaces. It has been experimentally observed that the formation of these molecular complexes further triggers the oligomerization of TNF receptors, which in turn regulate the intracellular signaling processes by providing transient compartmentalization in the membrane proximal regions of cytoplasm. In order to decode the molecular mechanisms of oligomerization in TNF receptor superfamily, we developed a new computational method that can physically simulate the spatial-temporal process of binding between TNF ligands and their receptors. The simulations show that the TNF receptors can be organized into hexagonal oligomers. The formation of this spatial pattern is highly dependent not only on the molecular properties such as the affinities of trans and cis binding, but also on the cellular factors such as the concentration of TNF ligands in the extracellular area or the density of TNF receptors on cell surfaces. Moreover, our model suggests that if TNF receptors are pre-organized into dimers before ligand binding, these lateral interactions between receptor monomers can play a positive role in stabilizing the ligand-receptor interactions, as well as in regulating the kinetics of receptor oligomerization. Altogether, this method throws lights on the mechanisms of TNF ligand-receptor interactions in cellular environments.
Collapse
|
9
|
Chen J, Newhall J, Xie ZR, Leckband D, Wu Y. A Computational Model for Kinetic Studies of Cadherin Binding and Clustering. Biophys J 2017; 111:1507-1518. [PMID: 27705773 DOI: 10.1016/j.bpj.2016.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/02/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Cadherin is a cell-surface transmembrane receptor that mediates calcium-dependent cell-cell adhesion and is a major component of adhesive junctions. The formation of intercellular adhesive junctions is initiated by trans binding between cadherins on adjacent cells, which is followed by the clustering of cadherins via the formation of cis interactions between cadherins on the same cell membranes. Moreover, classical cadherins have multiple glycosylation sites along their extracellular regions. It was found that aberrant glycosylation affects the adhesive function of cadherins and correlates with metastatic phenotypes of several cancers. However, a mechanistic understanding of cadherin clustering during cell adhesion and the role of glycosylation in this process is still lacking. Here, we designed a kinetic model that includes multistep reaction pathways for cadherin clustering. We further applied a diffusion-reaction algorithm to numerically simulate the clustering process using a recently developed coarse-grained model. Using experimentally measured rates of trans binding between soluble E-cadherin extracellular domains, we conducted simulations of cadherin-mediated cell-cell binding kinetics, and the results are quantitatively comparable to experimental data from micropipette experiments. In addition, we show that incorporating cadherin clustering via cis interactions further increases intercellular binding. Interestingly, a two-phase kinetic profile was derived under the assumption that glycosylation regulates the kinetic rates of cis interactions. This two-phase profile is qualitatively consistent with experimental results from micropipette measurements. Therefore, our computational studies provide new, to our knowledge, insights into the molecular mechanism of cadherin-based cell adhesion.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jillian Newhall
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Deborah Leckband
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
10
|
Chen J, Wu Y. Understanding the Functional Roles of Multiple Extracellular Domains in Cell Adhesion Molecules with a Coarse-Grained Model. J Mol Biol 2017; 429:1081-1095. [PMID: 28237680 PMCID: PMC5989558 DOI: 10.1016/j.jmb.2017.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023]
Abstract
Intercellular contacts in multicellular organisms are maintained by membrane receptors called cell adhesion molecules (CAMs), which are expressed on cell surfaces. One interesting feature of CAMs is that almost all of their extracellular regions contain repeating copies of structural domains. It is not clear why so many extracellular domains need to be evolved through natural selection. We tackled this problem by computational modeling. A generic model of CAMs was constructed based on the domain organization of neuronal CAM, which is engaged in maintaining neuron-neuron adhesion in central nervous system. By placing these models on a cell-cell interface, we developed a Monte-Carlo simulation algorithm that incorporates both molecular factors including conformational changes of CAMs and cellular factor including fluctuations of plasma membranes to approach the physical process of CAM-mediated adhesion. We found that the presence of multiple domains at the extracellular region of a CAM plays a positive role in regulating its trans-interaction with other CAMs from the opposite side of cell surfaces. The trans-interaction can further be facilitated by the intramolecular contacts between different extracellular domains of a CAM. Finally, if more than one CAM is introduced on each side of cell surfaces, the lateral binding (cis-interactions) between these CAMs will positively correlate with their trans-interactions only within a small energetic range, suggesting that cell adhesion is an elaborately designed process in which both trans- and cis-interactions are fine-tuned collectively by natural selection. In short, this study deepens our general understanding of the molecular mechanisms of cell adhesion.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY10461, USA.
| |
Collapse
|
11
|
Somavanshi R, Ghosh B, Sourjik V. Sugar Influx Sensing by the Phosphotransferase System of Escherichia coli. PLoS Biol 2016; 14:e2000074. [PMID: 27557415 PMCID: PMC4996493 DOI: 10.1371/journal.pbio.2000074] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/20/2016] [Indexed: 12/05/2022] Open
Abstract
The phosphotransferase system (PTS) plays a pivotal role in the uptake of multiple sugars in Escherichia coli and many other bacteria. In the cell, individual sugar-specific PTS branches are interconnected through a series of phosphotransfer reactions, thus creating a global network that not only phosphorylates incoming sugars but also regulates a number of cellular processes. Despite the apparent importance of the PTS network in bacterial physiology, the holistic function of the network in the cell remains unclear. Here we used Förster resonance energy transfer (FRET) to investigate the PTS network in E. coli, including the dynamics of protein interactions and the processing of different stimuli and their transmission to the chemotaxis pathway. Our results demonstrate that despite the seeming complexity of the cellular PTS network, its core part operates in a strikingly simple way, sensing the overall influx of PTS sugars irrespective of the sugar identity and distributing this information equally through all studied branches of the network. Moreover, it also integrates several other specific metabolic inputs. The integrated output of the PTS network is then transmitted linearly to the chemotaxis pathway, in stark contrast to the amplification of conventional chemotactic stimuli. Finally, we observe that default uptake through the uninduced PTS network correlates well with the quality of the carbon source, apparently representing an optimal regulatory strategy. The bacterial phosphotransferase system (PTS) mediates uptake of multiple sugars from the environment and also controls cell physiology and swimming behavior in sugar gradients. In Escherichia coli and other bacteria, the PTS consists of a number of sugar-specific branches, interconnected via shared components through a series of phosphotransfer reactions. Whereas most previous studies have focused on understanding individual PTS branches, the holistic function of the entire PTS network in the cell remained elusive. In this study we address this question by investigating the dynamics of multiple protein interactions within the cellular PTS network upon stimulation with sugars and other metabolites. We demonstrate that despite its seeming complexity, the core part of the PTS network operates in a strikingly simple way, sensing the overall influx of PTS sugars and key metabolites into the cell and utilizing this information to control bacterial behavior. We further show that the default influx of the carbon source correlates with its quality, and we use computer simulations to demonstrate that this correlation apparently represents an optimal regulatory strategy.
Collapse
Affiliation(s)
- Rahul Somavanshi
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Bhaswar Ghosh
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Chen J, Xie ZR, Wu Y. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method. J Comput Biol 2016; 23:566-84. [PMID: 27028148 DOI: 10.1089/cmb.2015.0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional importance of spatial organization in cross-membrane signal transduction. The method can be applied to any specific signaling pathway in cells.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University , Bronx, New York
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University , Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University , Bronx, New York
| |
Collapse
|
13
|
Chen J, Xie ZR, Wu Y. Elucidating the general principles of cell adhesion with a coarse-grained simulation model. MOLECULAR BIOSYSTEMS 2016; 12:205-18. [DOI: 10.1039/c5mb00612k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-grained simulation of interplay between cell adhesion and cell signaling.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| | - Yinghao Wu
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| |
Collapse
|
14
|
Kremling A, Geiselmann J, Ropers D, de Jong H. Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol 2014; 23:99-109. [PMID: 25475882 DOI: 10.1016/j.tim.2014.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/26/2014] [Accepted: 11/05/2014] [Indexed: 01/14/2023]
Abstract
Carbon catabolite repression (CCR) controls the order in which different carbon sources are metabolized. Although this system is one of the paradigms of the regulation of gene expression in bacteria, the underlying mechanisms remain controversial. CCR involves the coordination of different subsystems of the cell that are responsible for the uptake of carbon sources, their breakdown for the production of energy and precursors, and the conversion of the latter to biomass. The complexity of this integrated system, with regulatory mechanisms cutting across metabolism, gene expression, and signaling, and that are subject to global physical and physiological constraints, has motivated important modeling efforts over the past four decades, especially in the enterobacterium Escherichia coli. Different hypotheses concerning the dynamic functioning of the system have been explored by a variety of modeling approaches. We review these studies and summarize their contributions to the quantitative understanding of CCR, focusing on diauxic growth in E. coli. Moreover, we propose a highly simplified representation of diauxic growth that makes it possible to bring out the salient features of the models proposed in the literature and confront and compare the explanations they provide.
Collapse
Affiliation(s)
- A Kremling
- Fachgebiet für Systembiotechnologie, Technische Universität München, Boltzmannstrasse 15, 85748 Garching, Germany.
| | - J Geiselmann
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier, Grenoble I, CNRS UMR 5588, 140 Avenue de la Physique, BP 87, 38402 Saint Martin d'Hères, France; Institut National de Recherche en Informatique et en Automatique (INRIA), Centre de recherche Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot, 38334 Saint Ismier CEDEX, France
| | - D Ropers
- Institut National de Recherche en Informatique et en Automatique (INRIA), Centre de recherche Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot, 38334 Saint Ismier CEDEX, France
| | - H de Jong
- Institut National de Recherche en Informatique et en Automatique (INRIA), Centre de recherche Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot, 38334 Saint Ismier CEDEX, France.
| |
Collapse
|
15
|
Xie ZR, Chen J, Wu Y. A coarse-grained model for the simulations of biomolecular interactions in cellular environments. J Chem Phys 2014; 140:054112. [PMID: 24511927 DOI: 10.1063/1.4863992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The interactions of bio-molecules constitute the key steps of cellular functions. However, in vivo binding properties differ significantly from their in vitro measurements due to the heterogeneity of cellular environments. Here we introduce a coarse-grained model based on rigid-body representation to study how factors such as cellular crowding and membrane confinement affect molecular binding. The macroscopic parameters such as the equilibrium constant and the kinetic rate constant are calibrated by adjusting the microscopic coefficients used in the numerical simulations. By changing these model parameters that are experimentally approachable, we are able to study the kinetic and thermodynamic properties of molecular binding, as well as the effects caused by specific cellular environments. We investigate the volumetric effects of crowded intracellular space on bio-molecular diffusion and diffusion-limited reactions. Furthermore, the binding constants of membrane proteins are currently difficult to measure. We provide quantitative estimations about how the binding of membrane proteins deviates from soluble proteins under different degrees of membrane confinements. The simulation results provide biological insights to the functions of membrane receptors on cell surfaces. Overall, our studies establish a connection between the details of molecular interactions and the heterogeneity of cellular environments.
Collapse
Affiliation(s)
- Zhong-Ru Xie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
16
|
Tian Z, Fauré A, Mori H, Matsuno H. Identification of key regulators in glycogen utilization in E. coli based on the simulations from a hybrid functional Petri net model. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 6:S1. [PMID: 24565082 PMCID: PMC4029488 DOI: 10.1186/1752-0509-7-s6-s1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Glycogen and glucose are two sugar sources available during the lag phase of E. coli, but the mechanism that regulates their utilization is still unclear. METHODS Attempting to unveil the relationship between glucose and glycogen, we propose an integrated hybrid functional Petri net (HFPN) model including glycolysis, PTS, glycogen metabolic pathway, and their internal regulatory systems. RESULTS AND CONCLUSIONS By comparing known biological results to this model, basic necessary regulatory mechanism for utilizing glucose and glycogen were identified as a feedback circuit in which HPr and EIIAGlc play key roles. Based on this regulatory HFPN model, we discuss the process of glycogen utilization in E. coli in the context of a systematic understanding of carbohydrate metabolism.
Collapse
|
17
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhang YHP. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 2011; 29:715-25. [PMID: 21672618 DOI: 10.1016/j.biotechadv.2011.05.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/19/2011] [Accepted: 05/30/2011] [Indexed: 12/25/2022]
Abstract
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme-enzyme or enzyme-cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB).
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
19
|
Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J 2008; 94:3748-59. [PMID: 18234819 DOI: 10.1529/biophysj.107.116053] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We present a general-purpose model for biomolecular simulations at the molecular level that incorporates stochasticity, spatial dependence, and volume exclusion, using diffusing and reacting particles with physical dimensions. To validate the model, we first established the formal relationship between the microscopic model parameters (timestep, move length, and reaction probabilities) and the macroscopic coefficients for diffusion and reaction rate. We then compared simulation results with Smoluchowski theory for diffusion-limited irreversible reactions and the best available approximation for diffusion-influenced reversible reactions. To simulate the volumetric effects of a crowded intracellular environment, we created a virtual cytoplasm composed of a heterogeneous population of particles diffusing at rates appropriate to their size. The particle-size distribution was estimated from the relative abundance, mass, and stoichiometries of protein complexes using an experimentally derived proteome catalog from Escherichia coli K12. Simulated diffusion constants exhibited anomalous behavior as a function of time and crowding. Although significant, the volumetric impact of crowding on diffusion cannot fully account for retarded protein mobility in vivo, suggesting that other biophysical factors are at play. The simulated effect of crowding on barnase-barstar dimerization, an experimentally characterized example of a bimolecular association reaction, reveals a biphasic time course, indicating that crowding exerts different effects over different timescales. These observations illustrate that quantitative realism in biosimulation will depend to some extent on mesoscale phenomena that are not currently well understood.
Collapse
|
20
|
Dobrzynski M, Rodríguez JV, Kaandorp JA, Blom JG. Computational methods for diffusion-influenced biochemical reactions. ACTA ACUST UNITED AC 2007; 23:1969-77. [PMID: 17537752 DOI: 10.1093/bioinformatics/btm278] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MOTIVATION We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. RESULTS In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. AVAILABILITY Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/
Collapse
Affiliation(s)
- Maciej Dobrzynski
- CWI (Center for Mathematics and Computer Science), Kruislaan 413 and Section Computational Science, Faculty of Science, University of Amsterdam, Kruislaan 403, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 998] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
22
|
Rodríguez JV, Kaandorp JA, Dobrzyński M, Blom JG. Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli. Bioinformatics 2006; 22:1895-901. [PMID: 16731694 DOI: 10.1093/bioinformatics/btl271] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Many biochemical networks involve reactions localized on the cell membrane. This can give rise to spatial gradients of the concentration of cytosolic species. Moreover, the number of membrane molecules can be small and stochastic effects can become relevant. Pathways usually consist of a complex interaction network and are characterized by a large set of parameters. The inclusion of spatial and stochastic effects is a major challenge in developing quantitative and dynamic models of pathways. RESULTS We have developed a particle-based spatial stochastic method (GMP) to simulate biochemical networks in space, including fluctuations from the diffusion of particles and reactions. Gradients emerging from membrane reactions can be resolved. As case studies for the GMP method we used a simple gene expression system and the phosphoenolpyruvate:glucose phosphotransferase system pathway. AVAILABILITY The source code for the GMP method is available at http://www.science.uva.nl/research/scs/CellMath/GMP.
Collapse
Affiliation(s)
- J Vidal Rodríguez
- Section Computational Science, Faculty of Science, University of Amsterdam Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Ropers D, de Jong H, Page M, Schneider D, Geiselmann J. Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems 2006; 84:124-52. [PMID: 16325332 DOI: 10.1016/j.biosystems.2005.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/28/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
In case of nutritional stress, like carbon starvation, Escherichia coli cells abandon their exponential-growth state to enter a more resistant, non-growth state called stationary phase. This growth-phase transition is controlled by a genetic regulatory network integrating various environmental signals. Although E. coli is a paradigm of the bacterial world, it is little understood how its response to carbon starvation conditions emerges from the interactions between the different components of the regulatory network. Using a qualitative method that is able to overcome the current lack of quantitative data on kinetic parameters and molecular concentrations, we model the carbon starvation response network and simulate the response of E. coli cells to carbon deprivation. This allows us to identify essential features of the transition between exponential and stationary phase and to make new predictions on the qualitative system behavior following a carbon upshift.
Collapse
Affiliation(s)
- Delphine Ropers
- Institut National de Recherche en Informatique et en Automatique (INRIA), Unité de recherche Rhône-Alpes, 655 Avenue de l 'Europe, Montbonnot, 38334 Saint Ismier Cedex, France.
| | | | | | | | | |
Collapse
|
24
|
Bruggeman FJ, Boogerd FC, Westerhoff HV. The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica. FEBS J 2005; 272:1965-85. [PMID: 15819889 DOI: 10.1111/j.1742-4658.2005.04626.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ammonium assimilation in Escherichia coli is regulated through multiple mechanisms (metabolic, signal transduction leading to covalent modification, transcription, and translation), which (in-)directly affect the activities of its two ammonium-assimilating enzymes, i.e. glutamine synthetase (GS) and glutamate dehydrogenase (GDH). Much is known about the kinetic properties of the components of the regulatory network that these enzymes are part of, but the ways in which, and the extents to which the network leads to subtle and quasi-intelligent regulation are unappreciated. To determine whether our present knowledge of the interactions between and the kinetic properties of the components of this network is complete - to the extent that when integrated in a kinetic model it suffices to calculate observed physiological behaviour - we now construct a kinetic model of this network, based on all of the kinetic data on the components that is available in the literature. We use this model to analyse regulation of ammonium assimilation at various carbon statuses for cells that have adapted to low and high ammonium concentrations. We show how a sudden increase in ammonium availability brings about a rapid redirection of the ammonium assimilation flux from GS/glutamate synthase (GOGAT) to GDH. The extent of redistribution depends on the nitrogen and carbon status of the cell. We develop a method to quantify the relative importance of the various regulators in the network. We find the importance is shared among regulators. We confirm that the adenylylation state of GS is the major regulator but that a total of 40% of the regulation is mediated by ADP (22%), glutamate (10%), glutamine (7%) and ATP (1%). The total steady-state ammonium assimilation flux is remarkably robust against changes in the ammonium concentration, but the fluxes through GS and GDH are completely nonrobust. Gene expression of GOGAT above a threshold value makes expression of GS under ammonium-limited conditions, and of GDH under glucose-limited conditions, sufficient for ammonium assimilation.
Collapse
Affiliation(s)
- Frank J Bruggeman
- Molecular Cell Physiology, Institute of Molecular Cell Biology, CRBCS, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | |
Collapse
|
25
|
Abstract
Systems biology describes the collection of a set of measurements on a system, integrated with a mathematical model of that system. The model and the measurements must be made together and refined iteratively, requiring close collaboration between biologists and modellers. A complete cell is probably too large and complicated to model yet, but simplified subsystems will probably produce valuable results. I consider various ways of simplifying the system and conclude that the biggest challenge is to get everyone working together productively.
Collapse
Affiliation(s)
- M P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
26
|
Armitage JP, Holland IB, Jenal U, Kenny B. "Neural networks" in bacteria: making connections. J Bacteriol 2005; 187:26-36. [PMID: 15601685 PMCID: PMC538844 DOI: 10.1128/jb.187.1.26-36.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Vaknin A, Berg HC. Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. Proc Natl Acad Sci U S A 2004; 101:17072-7. [PMID: 15569922 PMCID: PMC535373 DOI: 10.1073/pnas.0407812101] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component signaling systems, in which a receptor-coupled kinase is used to control the phosphorylation level of a response regulator, are commonly used in bacteria to sense their environment. In the chemotaxis system of Escherichia coli, the receptors, and thus the kinase, are clustered on the inner cell membrane. The phosphatase of this system also is recruited to receptor clusters, but the reason for this association is not clear. By using FRET imaging of single cells, we show that in vivo the phosphatase activity is substantially larger at the cluster, indicating that the signaling source (the kinase) and the signaling sink (the phosphatase) tend to be located at the same place in the cell. When this association is disrupted, a gradient in the concentration of the phosphorylated response regulator appears, and the chemotactic response is degraded. Such colocalization is inevitable in systems in which the activity of the kinase and the phosphatase are produced by the same enzyme. Evidently, this design enables a more rapid and spatially uniform response.
Collapse
Affiliation(s)
- Ady Vaknin
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
28
|
Hellingwerf KJ. A network of net-workers: report of the Euresco conference on ‘Bacterial Neural Networks’ held at San Feliu (Spain) from 8 to 14 May 2004. Mol Microbiol 2004; 54:2-13. [PMID: 15458400 DOI: 10.1111/j.1365-2958.2004.04321.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In May 2004, over 100 bacteriologists from 19 different countries discussed recent progress in identification and understanding of individual signal transfer mechanisms in bacteria and in the mutual interactions between these systems to form a functional living cell. The meeting was held in San Feliu and supported by ESF and EMBO. In part through the extensive sequencing efforts of the past few years, the bulk of the bacterial signal transfer systems have been resolved and their detailed characterization is revealing such characteristics as signal specificity, signalling rate constants, molecular interaction affinities, subcellular localization, etc., which should provide a solid basis to a computational extension of this field of studies. In parallel, the new genomics techniques are providing tools to characterize the way a collection of such systems interact in an individual cell, to give rise to 'life'. Systems theory provides rational and convenient ways to bring order to the wide range of observables thus obtained. Ultimately, the performance of engineered design will have to prove whether or not we know enough about the processes involved.
Collapse
Affiliation(s)
- Klaas J Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands.
| |
Collapse
|
29
|
The bacterial phosphotransferase system: a perfect link of sugar transport and signal transduction. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b95776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Peletier MA, Westerhoff HV, Kholodenko BN. Control of spatially heterogeneous and time-varying cellular reaction networks: a new summation law. J Theor Biol 2003; 225:477-87. [PMID: 14615206 DOI: 10.1016/s0022-5193(03)00289-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A hallmark of a plethora of intracellular signaling pathways is the spatial separation of activation and deactivation processes that potentially results in precipitous gradients of activated proteins. The classical metabolic control analysis (MCA), which quantifies the influence of an individual process on a system variable as the control coefficient, cannot be applied to spatially separated protein networks. The present paper unravels the principles that govern the control over the fluxes and intermediate concentrations in spatially heterogeneous reaction networks. Our main results are two types of control summation theorems. The first type is a non-trivial generalization of the classical theorems to systems with spatially and temporally varying concentrations. In this generalization, the process of diffusion, which enters as the result of spatial concentration gradients, plays a role similar to other processes such as chemical reactions and membrane transport. The second summation theorem is completely novel. It states that the control by the membrane transport, the diffusion control coefficient multiplied by two, and a newly introduced control coefficient associated with changes in the spatial size of a system (e.g., cell), all add up to one and zero for the control over flux and concentration. Using a simple example of a kinase/phosphatase system in a spherical cell, we speculate that unless active mechanisms of intracellular transport are involved, the threshold cell size is limited by the diffusion control, when it is beginning to exceed the spatial control coefficient significantly.
Collapse
Affiliation(s)
- Mark A Peletier
- Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
| | | | | |
Collapse
|