1
|
Satheesan R, Vikraman D, Jayan P, Vijayan V, Chimerel C, Mahendran KR. Sensing PEGylated Peptide Conformations Using a Protein Nanopore. NANO LETTERS 2024; 24:3566-3574. [PMID: 38316144 DOI: 10.1021/acs.nanolett.3c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Membrane pores are exploited for the stochastic sensing of various analytes, and here, we use electrical recordings to explore the interaction of PEGylated peptides of different sizes with a protein pore, CymA. This wide-diameter natural pore comprises densely filled charged residues, facilitating electrophoretic binding of polyethylene glycol (PEG) tagged with a nonaarginine peptide. The small PEG 200 peptide conjugates produced monodisperse blockages and exhibited voltage-dependent translocation across the pores. Notably, the larger PEG 1000 and 2000 peptide conjugates yielded heterogeneous blockages, indicating a multitude of PEG conformations hindering their translocation through the pore. Furthermore, a much larger PEG 5000 peptide occludes the pore entrance, resulting in complete closure. The competitive binding of different PEGylated peptides with the same pore produced specific blockage signals reflecting their identity, size, and conformation. Our proposed model of sensing distinct polypeptide conformations corresponds to disordered protein unfolding, suggesting that this pore can find applications in proteomics.
Collapse
Affiliation(s)
- Remya Satheesan
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Devika Vikraman
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Parvathy Jayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Kerala 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Kerala 695551, India
| | - Catalin Chimerel
- Automation Department, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Brasov 500036, Romania
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|
2
|
Das A, K V, S SD, Mahendran KR. Synthetic α-Helical Nanopore Reactor for Chemical Sensing. JACS AU 2023; 3:2467-2477. [PMID: 37772177 PMCID: PMC10523496 DOI: 10.1021/jacsau.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 09/30/2023]
Abstract
The use of nanopores for the single-molecule sensing of folded proteins and biomacromolecules has recently gained attention. Here, we introduce a simplified synthetic α-helical transmembrane pore, pPorA, as a nanoreactor and sensor that exhibits functional versatility comparable to that of engineered protein and DNA nanopores. The pore, built from the assembly of synthetic 40-amino-acid-long peptides, is designed to contain cysteine residues within the lumen and at the pore terminus for site-specific chemical modification probed using single-channel electrical recordings. The reaction of the pore with differently charged activated thiol reagents was studied, wherein positively charged reagents electrophoretically driven into the pore resulted in pore blocking in discrete steps upon covalent bond formation. The asymmetric blockage patterns resulting from cis and trans-side addition of reagents reveal the pore orientation in the lipid membrane. Furthermore, activated PEG thiols covalently blocked the pores over a longer duration in a charge-independent manner, establishing the large diameter and orientation of the formed pores. While the covalent binding of thiol reagents caused a drop in the pore conductance, cationic cyclic octasaccharides produced time-resolved translocation events, confirming the structural flexibility and tunability of the pores. The ability of the pore to accommodate large analytes and the considerable current amplitude variation following bond formation events are promising for developing platforms to resolve multistep chemical reactions at the single-molecule level for applications in synthetic nanobiotechnology.
Collapse
Affiliation(s)
- Anjali
Devi Das
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India 695014
| | - Vidhu K
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India 695014
| | - Smitha Devi S
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India 695014
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India 695014
| |
Collapse
|
3
|
Punia B, Chaudhury S. Microscopic Mechanism of Macromolecular Crowder-Assisted DNA Capture and Translocation through Biological Nanopores. J Phys Chem B 2023. [PMID: 37294938 DOI: 10.1021/acs.jpcb.3c02792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological nanopore sensors are widely used for genetic sequencing as nucleic acids and other molecules translocate through them across membranes. Recent studies have shown that the transport of these polymers through nanopores is strongly influenced by macromolecular bulk crowders. By using poly(ethylene glycol) (PEG) molecules as crowders, experiments have shown an increase in the capture rates and translocation times of polymers through an α-hemolysin (αHL) nanopore, which provides high-throughput signals and accurate sensing. A clear molecular-level understanding of how the presence of PEGs offers such desirable outcomes in nanopore sensing is still missing. In this work, we present a new theoretical approach to probe the effect of PEG crowders on DNA capture and translocation through the αHL nanopore. We develop an exactly solvable discrete-state stochastic model based on the cooperative partitioning of individual polycationic PEGs within the cavity of the αHL nanopore. It is argued that the apparent electrostatic interactions between the DNA and PEGs control all of the dynamic processes. Our analytical predictions find excellent agreements with existing experiments, thereby strongly supporting our theory.
Collapse
Affiliation(s)
- Bhawakshi Punia
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
4
|
Ebrahimi A, Ergün T, Kaygusuz İzgördü Ö, Darcan C, Avci H, Öztürk B, Güner HR, Ghorbanpoor H, Doğan Güzel F. Revealing the single-channel characteristics of OprD (OccAB1) porins from hospital strains of Acinetobacter baumannii. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023:10.1007/s00249-023-01651-2. [PMID: 37052656 DOI: 10.1007/s00249-023-01651-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Nowadays, reports of antimicrobial resistance (AMR) against many antibiotics are increasing because of their misapplication. With this rise, there is a serious decrease in the discovery and development of new types of antibiotics amid an increase in multi-drug resistance. Unfermented Acinetobacter baumannii from gram-negative bacteria, which is one of the main causes of nosocomial infections and multi-drug resistance, has 4 main kinds of antibiotic resistance mechanism: inactivating antibiotics by enzymes, reduced numbers of porins and changing of their target or cellular functions due to mutations, and efflux pumps. In this study, characterization of the possible mutations in OprD (OccAB1) porins from hospital strains of A. baumannii were investigated using single channel electrophysiology and compared with the standard OprD isolated from wild type ATCC 19,606. For this aim, 5 A. baumannii bacteria samples were obtained from patients infected with A. baumannii, after which OprD porins were isolated from these A. baumannii strains. OprD porins were then inserted in an artificial lipid bilayer and the current-voltage curves were obtained using electrical recordings through a pair of Ag/AgCl electrodes. We observed that each porin has a characteristic conductance and single channel recording, which then leads to differences in channel diameter. Finally, the single channel data have been compared with the gene sequences of each porin. It was interesting to find out that each porin isolated has a unique porin diameter and decreased anion selectivity compared to the wild type.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
- Cellular Therapy and Stem Cell Research Center and Translational Medicine Research and Clinical Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Tuğçe Ergün
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
- Department of Biotechnology and Biosafety, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Özge Kaygusuz İzgördü
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Cihan Darcan
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Hüseyin Avci
- Cellular Therapy and Stem Cell Research Center and Translational Medicine Research and Clinical Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Turkey
- Faculty of Engineering and Architecture, Department of Metallurgical and Material Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
- Translational Medicine Research and Clinical Center (TATUM), Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Barçin Öztürk
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Adnan Menderes University, Aydin, Turkey
| | - Hatice Rahmet Güner
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Research Center and Translational Medicine Research and Clinical Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fatma Doğan Güzel
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey.
| |
Collapse
|
5
|
Li M, Xiong Y, Cao Y, Zhang C, Li Y, Ning H, Liu F, Zhou H, Li X, Ye X, Pang Y, Zhang J, Liang X, Qing G. Identification of tagged glycans with a protein nanopore. Nat Commun 2023; 14:1737. [PMID: 36977665 PMCID: PMC10050315 DOI: 10.1038/s41467-023-37348-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Structural complexity of glycans derived from the diversities in composition, linage, configuration, and branching considerably complicates structural analysis. Nanopore-based single-molecule sensing offers the potential to elucidate glycan structure and even sequence glycan. However, the small molecular size and low charge density of glycans have restricted direct nanopore detection of glycan. Here we show that glycan sensing can be achieved using a wild-type aerolysin nanopore by introducing a facile glycan derivatization strategy. The glycan molecule can induce impressive current blockages when moving through the nanopore after being connected with an aromatic group-containing tag (plus a carrier group for the neutral glycan). The obtained nanopore data permit the identification of glycan regio- and stereoisomers, glycans with variable monosaccharide numbers, and distinct branched glycans, either independently or with the use of machine learning methods. The presented nanopore sensing strategy for glycans paves the way towards nanopore glycan profiling and potentially sequencing.
Collapse
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Yuchen Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chen Zhang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yuting Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Hanwen Ning
- Department of Statistics, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Fan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xianlong Ye
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Jiaming Zhang
- Department of Statistics, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
6
|
Taylor MP. Confinement free energy for a polymer chain: Corrections to scaling. J Chem Phys 2022; 157:094902. [PMID: 36075705 DOI: 10.1063/5.0105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Spatial confinement of a polymer chain results in a reduction of conformational entropy. For confinement of a flexible N-mer chain in a planar slit or cylindrical pore (confining dimension D), a blob model analysis predicts the asymptotic scaling behavior ΔF/N ∼ D-γ with γ ≈ 1.70, where ΔF is the free energy increase due to confinement. Here, we extend this scaling analysis to include the variation of local monomer density upon confinement giving ΔF/N ∼ D-γ(1 - h(N, D)), where the correction-to-scaling term has the form h ∼ Dy/NΔ with exponents y = 3 - γ ≈ 1.30 and Δ = 3/γ - 1 ≈ 0.76. To test these scaling predictions, we carry out Wang-Landau simulations of confined and unconfined tangent-hard-sphere chains (bead diameter σ) in the presence of a square-well trapping potential. The fully trapped chain provides a common reference state, allowing for an absolute determination of the confinement free energy. Our simulation results for 32 ≤ N ≤ 1024 and 3 ≤ D/σ ≤ 14 are well-described by the extended scaling relation giving exponents of γ = 1.69(1), y = 1.25(2), and Δ = 0.75(6).
Collapse
Affiliation(s)
- Mark P Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| |
Collapse
|
7
|
Spyridakou M, Tsimenidis K, Gkikas M, Steinhart M, Graf R, Floudas G. Effects of Nanometer Confinement on the Self-Assembly and Dynamics of Poly(γ-benzyl- l-glutamate) and Its Copolymer with Poly(isobutylene). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kostas Tsimenidis
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
8
|
Nanodevices for Biological and Medical Applications: Development of Single-Molecule Electrical Measurement Method. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A comprehensive detection of a wide variety of diagnostic markers is required for the realization of personalized medicine. As a sensor to realize such personalized medicine, a single molecule electrical measurement method using nanodevices is currently attracting interest for its comprehensive simultaneous detection of various target markers for use in biological and medical application. Single-molecule electrical measurement using nanodevices, such as nanopore, nanogap, or nanopipette devices, has the following features:; high sensitivity, low-cost, high-throughput detection, easy-portability, low-cost availability by mass production technologies, and the possibility of integration of various functions and multiple sensors. In this review, I focus on the medical applications of single- molecule electrical measurement using nanodevices. This review provides information on the current status and future prospects of nanodevice-based single-molecule electrical measurement technology, which is making a full-scale contribution to realizing personalized medicine in the future. Future prospects include some discussion on of the current issues on the expansion of the application requirements for single-mole-cule measurement.
Collapse
|
9
|
Liu W, Nestorovich EM. Probing Protein Nanopores with Poly(ethylene glycol)s. Proteomics 2022; 22:e2100055. [PMID: 35030301 DOI: 10.1002/pmic.202100055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Neutral water-soluble poly(ethylene glycol)s (PEGs) have been extensively explored in protein nanopore research for the past several decades. The principal use of PEGs is to investigate the membrane protein ion channel physical characteristics and transport properties. In addition, protein nanopores are used to study polymer-protein interactions and polymer physicochemical properties. In this review, we focus on the biophysical studies on probing protein ion channels with PEGs, specifically on nanopore sizing by PEG partitioning. We discuss the fluctuation analysis of ion channel currents in response to the PEGs moving within their confined geometries. The advantages, limitations, and recent developments of the approach are also addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC, 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC, 20064, USA
| |
Collapse
|
10
|
Loiseau A, Boudon J, Mirjolet C, Morgand V, Millot N. About the Influence of PEG Spacers on the Cytotoxicity of Titanate Nanotubes-Docetaxel Nanohybrids against a Prostate Cancer Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2733. [PMID: 34685172 PMCID: PMC8539671 DOI: 10.3390/nano11102733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
The association between chemotherapeutic drugs and metal oxide nanoparticles has sparked a rapidly growing interest in cancer nanomedicine. The elaboration of new engineered docetaxel (DTX)-nanocarriers based on titanate nanotubes (TiONts) was reported. The idea was to maintain the drug inside cancer cells and avoid multidrug resistance mechanisms, which often limit drug efficacy by decreasing their intracellular concentrations in tumor cells. HS-PEGn-COOH (PEG: polyethylene glycol, n = 3000, 5000, 10,000) was conjugated, in an organic medium by covalent linkages, on TiONts surface. This study aimed to investigate the influence of different PEG derivatives chain lengths on the TiONts colloidal stability, on the PEGn density and conformation, as well as on the DTX biological activity in a prostate cancer model (human PC-3 prostate adenocarcinoma cells). In vitro tests highlighted significant cytotoxicities of the drug after loading DTX on PEGn-modified TiONts (TiONts-PEGn-DTX). Higher grafting densities for shorter PEGylated chains were most favorable on DTX cytotoxicity by promoting both colloidal stability in biological media and cells internalization. This promising strategy involves a better understanding of nanohybrid engineering, particularly on the PEGylated chain length influence, and can thus become a potent tool in nanomedicine to fight against cancer.
Collapse
Affiliation(s)
- Alexis Loiseau
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS Université Bourgogne Franche-Comté, BP 47870, CEDEX, 21078 Dijon, France;
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS Université Bourgogne Franche-Comté, BP 47870, CEDEX, 21078 Dijon, France;
| | - Céline Mirjolet
- INSERM 1231, Cadir Team, CEDEX, 21078 Dijon, France;
- Radiotherapy Department, Georges-Francois Leclerc Cancer Center, CEDEX, 21079 Dijon, France;
| | - Véronique Morgand
- Radiotherapy Department, Georges-Francois Leclerc Cancer Center, CEDEX, 21079 Dijon, France;
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS Université Bourgogne Franche-Comté, BP 47870, CEDEX, 21078 Dijon, France;
| |
Collapse
|
11
|
Angevine CE, Robertson JWF, Dass A, Reiner JE. Laser-based temperature control to study the roles of entropy and enthalpy in polymer-nanopore interactions. SCIENCE ADVANCES 2021; 7:eabf5462. [PMID: 33883140 PMCID: PMC8059931 DOI: 10.1126/sciadv.abf5462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/04/2021] [Indexed: 05/05/2023]
Abstract
Single-molecule approaches for probing the free energy of confinement for polymers in a nanopore environment are critical for the development of nanopore biosensors. We developed a laser-based nanopore heating approach to monitor the free energy profiles of such a single-molecule sensor. Using this approach, we measure the free energy profiles of two distinct polymers, polyethylene glycol and water-soluble peptides, as they interact with the nanopore sensor. Polyethylene glycol demonstrates a retention mechanism dominated by entropy with little sign of interaction with the pore, while peptides show an enthalpic mechanism, which can be attributed to physisorption to the nanopore (e.g., hydrogen bonding). To manipulate the energetics, we introduced thiolate-capped gold clusters [Au25(SG)18] into the pore, which increases the charge and leads to additional electrostatic interactions that help dissect the contribution that enthalpy and entropy make in this modified environment. These observations provide a benchmark for optimization of single-molecule nanopore sensors.
Collapse
Affiliation(s)
| | - Joseph W F Robertson
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Joseph E Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
12
|
Aguilella-Arzo M, Aguilella VM. PEG Equilibrium Partitioning in the α-Hemolysin Channel: Neutral Polymer Interaction with Channel Charges. Biomacromolecules 2020; 22:410-418. [PMID: 33337868 DOI: 10.1021/acs.biomac.0c01286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We study the interaction of neutral polyethylene glycol (PEG) molecules of different molecular weights (MWs) with the charged residues of the α-hemolysin channel secreted by Staphylococcus aureus. Previously reported experiments of PEG equilibrium partitioning into this nanopore show that the charge state of the channel changes the ability of PEG entry in an MW-dependent manner. We explain such an effect by parameter-free calculations of the PEG self-energy from the channel 3D atomic structure that include repulsive dielectrophoretic and hydrostatic forces on the polymer. We found that the pH-induced shift in the measured free energy of partitioning ΔΔGexp from single-channel conductance measurements agrees with calculated energy changes ΔΔEcalc. Our results show that the PEG-sizing technique may need corrections in the case of charged biological pores.
Collapse
Affiliation(s)
- Marcel Aguilella-Arzo
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Castellón 12071, Spain
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Castellón 12071, Spain
| |
Collapse
|
13
|
Nanopore Enzymology to Study Protein Kinases and Their Inhibition by Small Molecules. Methods Mol Biol 2020. [PMID: 32918732 DOI: 10.1007/978-1-0716-0806-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nanopore enzymology is a powerful single-molecule technique for the label-free study of enzymes using engineered protein nanopore sensors. The technique has been applied to protein kinases, where it has enabled the full repertoire of kinase function to be observed, including: kinetics of substrate binding and dissociation, product binding and dissociation, nucleotide binding, and reversible phosphorylation. Further, minor modifications enable the screening of type I kinase inhibitors and the determination of inhibition constants in a facile and label-free manner. Here, we describe the design and production of suitably engineered protein nanopores and their use for the determination of key mechanistic parameters of kinases. We also provide procedures for the determination of inhibition constants of protein kinase inhibitors.
Collapse
|
14
|
Yao F, Peng X, Su Z, Tian L, Guo Y, Kang XF. Crowding-Induced DNA Translocation through a Protein Nanopore. Anal Chem 2020; 92:3827-3833. [PMID: 32048508 DOI: 10.1021/acs.analchem.9b05249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A crowded cellular environment is highly associated with many significant biological processes. However, the effect of molecular crowding on the translocation behavior of DNA through a pore has not been explored. Here, we use nanopore single-molecule analytical technique to quantify the thermodynamics and kinetics of DNA transport under heterogeneous cosolute PEGs. The results demonstrate that the frequency of the translocation event exhibits a nonmonotonic dependence on the crowding agent size, while both the event frequency and translocation time increase monotonically with increasing crowder concentration. In the presence of PEGs, the rate of DNA capture into the nanopore elevates 118.27-fold, and at the same time the translocation velocity decreases from 20 to 120 μs/base. Interestingly, the impact of PEG 4k on the DNA-nanopore interaction is the most notable, with up to ΔΔG = 16.27 kJ mol-1 change in free energy and 764.50-fold increase in the binding constant at concentration of 40% (w/v). The molecular crowding effect will has broad applications in nanopore biosensing and nanopore DNA sequencing in which the strategy to capture analyte and to control the transport is urgently required.
Collapse
Affiliation(s)
- Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao Peng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhuoqun Su
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
15
|
Fang Z, Liu L, Wang Y, Xi D, Zhang S. Unambiguous Discrimination of Multiple Protein Biomarkers by Nanopore Sensing with Double-Stranded DNA-Based Probes. Anal Chem 2019; 92:1730-1737. [DOI: 10.1021/acs.analchem.9b02965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhen Fang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P.R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Liping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P.R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
16
|
Liu L, Fang Z, Zheng X, Xi D. Nanopore-Based Strategy for Sensing of Copper(II) Ion and Real-Time Monitoring of a Click Reaction. ACS Sens 2019; 4:1323-1328. [PMID: 31050287 DOI: 10.1021/acssensors.9b00236] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A straightforward yet efficient, nanopore-based strategy that enables the sensitive detection of copper(II) ion (Cu2+) and real-time monitoring of a click reaction is provided. Two single-stranded DNAs (ssDNAs) are designed to act as the preprobes, one being modified with an azide and the other an alkyne. The presence of Cu2+ induces the ligation of two ssDNAs via click reaction, leading to the formation of a forked DNA which can quantitatively generate characteristic current signatures when interacts with α-hemolysin (α-HL) nanopore. The assay facilitates a highly selective and sensitive measurement of Cu2+ without the need for labels or signal amplification. More importantly, this nanopore platform exhibits excellent performance in real-time monitoring of a copper(I) ion (Cu+)-catalyzed click reaction at the single-molecule level, by recording the current signals of the forked DNA generated by click chemistry. The proposed strategy is believed to play an important role in both nanopore sensing and characterization of chemistry reactions, especially coupling reactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Zhen Fang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xiangjiang Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
17
|
Tarnacka M, Talik A, Kamińska E, Geppert-Rybczyńska M, Kaminski K, Paluch M. The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice,School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | | | | | | |
Collapse
|
18
|
Larimi MG, Mayse LA, Movileanu L. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. ACS NANO 2019; 13:4469-4477. [PMID: 30925041 PMCID: PMC6482057 DOI: 10.1021/acsnano.9b00008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Molecular crowding, a ubiquitous feature of the cellular environment, has significant implications in the kinetics and equilibrium of biopolymer interactions. In this study, a single charged polypeptide is exposed to competing forces that drive it into a transmembrane protein pore versus forces that pull it outside. Using single-molecule electrophysiology, we provide compelling experimental evidence that the kinetic details of the polypeptide-pore interactions are substantially affected by high concentrations of less-penetrating polyethylene glycols (PEGs). At a polymer concentration above a critical value, the presence of these neutral macromolecular crowders increases the rate constant of association but decreases the rate constant of dissociation, resulting in a stronger polypeptide-pore interaction. Moreover, a larger-molecular weight PEG exhibits a lower rate constant of association but a higher rate constant of dissociation than those values corresponding to a smaller-molecular weight PEG. These outcomes are in accord with a lower diffusion constant of the polypeptide and higher depletion-attraction forces between the polypeptide and transmembrane protein pore under crowding and confinement conditions.
Collapse
Affiliation(s)
- Motahareh Ghahari Larimi
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Lauren Ashley Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
19
|
Cressiot B, Ouldali H, Pastoriza-Gallego M, Bacri L, Van der Goot FG, Pelta J. Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sens 2019; 4:530-548. [PMID: 30747518 DOI: 10.1021/acssensors.8b01636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nanopore electrical approach is a breakthrough in single molecular level detection of particles as small as ions, and complex as biomolecules. This technique can be used for molecule analysis and characterization as well as for the understanding of confined medium dynamics in chemical or biological reactions. Altogether, the information obtained from these kinds of experiments will allow us to address challenges in a variety of biological fields. The sensing, design, and manufacture of nanopores is crucial to realize these objectives. For some time now, aerolysin, a pore forming toxin, and its mutants have shown high potential in real time analytical chemistry, size discrimination of neutral polymers, oligosaccharides, oligonucleotides and peptides at monomeric resolution, sequence identification, chemical modification on DNA, potential biomarkers detection, and protein folding analysis. This review focuses on the results obtained with aerolysin nanopores on the fields of chemistry, biology, physics, and biotechnology. We discuss and compare as well the results obtained with other protein channel sensors.
Collapse
Affiliation(s)
- Benjamin Cressiot
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| | - Hadjer Ouldali
- LAMBE, Université
Cergy-Pontoise, Université d’Evry, CNRS, CEA, Université
Paris-Seine, 95000, Cergy, France
| | - Manuela Pastoriza-Gallego
- LAMBE, Université
Cergy-Pontoise, Université d’Evry, CNRS, CEA, Université
Paris-Seine, 95000, Cergy, France
| | - Laurent Bacri
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| | | | - Juan Pelta
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| |
Collapse
|
20
|
Talarimoghari M, Baaken G, Hanselmann R, Behrends JC. Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:77. [PMID: 29926213 DOI: 10.1140/epje/i2018-11687-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
We use two pore-forming proteins, alpha-hemolysin and aerolysin, to compare the polymer size-dependence of ionic current block by two types of ethyleneglycol polymers: 1) linear and 2) 3-arm star poly(ethylene glycol), both applied as a polydisperse mixture of average mass 1kDa under high salt conditions. The results demonstrate that monomer size sensitivity, as known for linear PEGs, is conserved for the star polymers with only subtle differences in the dependence of the residual conductance on monomer number. To explain this absence of a dominant effect of polymer architecture, we propose that PEG adsorbs to the inner pore wall in a collapsed, salted-out state, likely due to the effect of hydrophobic residues in the pore wall on the availability of water for hydration.
Collapse
Affiliation(s)
- Monasadat Talarimoghari
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
| | - Gerhard Baaken
- Ionera Technologies GmbH, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
| | - Ralf Hanselmann
- Institute for Macromolecular Chemistry, Stefan-Meier-Str. 31, 79104, Freiburg, Germany
- Freiburg Materials Research Centre, University of Freiburg, Stefan-Meier-Str. 19, 79104, Freiburg, Germany
| | - Jan C Behrends
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany.
- Freiburg Materials Research Centre, University of Freiburg, Stefan-Meier-Str. 19, 79104, Freiburg, Germany.
- Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
21
|
Yao Y, Butt HJ, Zhou J, Doi M, Floudas G. Capillary Imbibition of Polymer Mixtures in Nanopores. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute for Polymer
Research, 55128 Mainz, Germany
| | | | | | | | - George Floudas
- Max Planck Institute for Polymer
Research, 55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
22
|
Yao Y, Suzuki Y, Seiwert J, Steinhart M, Frey H, Butt HJ, Floudas G. Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Yasuhito Suzuki
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Jan Seiwert
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - George Floudas
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
23
|
Thakur AK, Larimi MG, Gooden K, Movileanu L. Aberrantly Large Single-Channel Conductance of Polyhistidine Arm-Containing Protein Nanopores. Biochemistry 2017; 56:4895-4905. [PMID: 28812882 DOI: 10.1021/acs.biochem.7b00577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There have been only a few studies reporting on the impact of polyhistidine affinity tags on the structure, function, and dynamics of proteins. Because of the relatively short size of the tags, they are often thought to have little or no effect on the conformation or activity of a protein. Here, using membrane protein design and single-molecule electrophysiology, we determined that the presence of a hexahistidine arm at the N-terminus of a truncated FhuA-based protein nanopore, leaving the C-terminus untagged, produces an unusual increase in the unitary conductance to ∼8 nS in 1 M KCl. To the best of our knowledge, this is the largest single-channel conductance ever recorded with a monomeric β-barrel outer membrane protein. The hexahistidine arm was captured by an anti-polyhistidine tag monoclonal antibody added to the side of the channel-forming protein addition, but not to the opposite side, documenting that this truncated FhuA-based protein nanopore inserts into a planar lipid bilayer with a preferred orientation. This finding is in agreement with the protein insertion in vivo, in which the large loops face the extracellular side of the membrane. The aberrantly large single-channel conductance, likely induced by a greater cross-sectional area of the pore lumen, along with the vectorial insertion into a lipid membrane, will have profound implications for further developments of engineered protein nanopores.
Collapse
Affiliation(s)
- Avinash Kumar Thakur
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University , 111 College Place, Syracuse, New York 13244-4100, United States
| | - Motahareh Ghahari Larimi
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Kristin Gooden
- Department of Physics and Astronomy, University of Missouri , 223 Physics Building, Columbia, Missouri 65211-7010, United States
| | - Liviu Movileanu
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University , 111 College Place, Syracuse, New York 13244-4100, United States.,Department of Biomedical and Chemical Engineering, Syracuse University , 329 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
24
|
Waduge P, Hu R, Bandarkar P, Yamazaki H, Cressiot B, Zhao Q, Whitford PC, Wanunu M. Nanopore-Based Measurements of Protein Size, Fluctuations, and Conformational Changes. ACS NANO 2017; 11:5706-5716. [PMID: 28471644 DOI: 10.1021/acsnano.7b01212] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proteins are structurally dynamic macromolecules, and it is challenging to quantify the conformational properties of their native state in solution. Nanopores can be efficient tools to study proteins in a solution environment. In this method, an electric field induces electrophoretic and/or electro-osmotic transport of protein molecules through a nanopore slightly larger than the protein molecule. High-bandwidth ion current measurement is used to detect the transit of each protein molecule. First, our measurements reveal a correlation between the mean current blockade amplitude and the radius of gyration for each protein. Next, we find a correlation between the shape of the current signal amplitude distributions and the protein fluctuation as obtained from molecular dynamics simulations. Further, the magnitude of the structural fluctuations, as probed by experiments and simulations, correlates with the ratio of α-helix to β-sheet content. We highlight the resolution of our measurements by resolving two states of calmodulin, a canonical protein that undergoes a conformational change in response to calcium binding.
Collapse
Affiliation(s)
| | - Rui Hu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | | | - Hirohito Yamazaki
- Graduate School of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | | | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
25
|
Jing P, Burris B, Zhang R. Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor. Biophys J 2017; 111:162-77. [PMID: 27410744 DOI: 10.1016/j.bpj.2016.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/09/2023] Open
Abstract
In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana.
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana
| | - Rong Zhang
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Gurnev PA, Stanley CB, Aksoyoglu MA, Hong K, Parsegian VA, Bezrukov SM. Poly(ethylene glycol)s in Semidilute Regime: Radius of Gyration in the Bulk and Partitioning into a Nanopore. Macromolecules 2017; 50:2477-2483. [PMID: 29033467 DOI: 10.1021/acs.macromol.6b02571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Using two approaches, small-angle neutron scattering (SANS) from bulk solutions and nanopore conductance-fluctuation analysis, we studied structural and dynamic features of poly(ethylene glycol) (PEG) water/salt solutions in the dilute and semidilute regimes. SANS measurements on PEG 3400 at the zero-average contrast yielded the single chain radius of gyration (Rg) over 1-30 wt %. We observed a small but statistically reliable decrease in Rg with increasing PEG concentration: at 30 wt % the chain contracts by a factor of 0.94. Analyzing conductance fluctuations of the α-hemolysin nanopore in the mixtures of PEG 200 with PEG 3400, we demonstrated that polymer partitioning into the nanopore is mostly due to PEG 200. Specifically, for a 1:1 wt/wt mixture the smaller polymer dominates to the extent that only about 1/25 of the nanopore volume is taken by the larger polymer. These findings advance our conceptual and quantitative understanding of nanopore polymer partitioning; they also support the main assumptions of the recent "polymers-pushing-polymers" model.
Collapse
Affiliation(s)
- Philip A Gurnev
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Christopher B Stanley
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - M Alphan Aksoyoglu
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - V Adrian Parsegian
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
27
|
Forstater JH, Briggs K, Robertson JWF, Ettedgui J, Marie-Rose O, Vaz C, Kasianowicz JJ, Tabard-Cossa V, Balijepalli A. MOSAIC: A Modular Single-Molecule Analysis Interface for Decoding Multistate Nanopore Data. Anal Chem 2016; 88:11900-11907. [PMID: 27797501 PMCID: PMC5516951 DOI: 10.1021/acs.analchem.6b03725] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biological and solid-state nanometer-scale pores are the basis for numerous emerging analytical technologies for use in precision medicine. We developed Modular Single-Molecule Analysis Interface (MOSAIC), an open source analysis software that improves the accuracy and throughput of nanopore-based measurements. Two key algorithms are implemented: ADEPT, which uses a physical model of the nanopore system to characterize short-lived events that do not reach their steady-state current, and CUSUM+, a version of the cumulative sum statistical method optimized for longer events that do. We show that ADEPT detects previously unreported conductance states that occur as double-stranded DNA translocates through a 2.4 nm solid-state nanopore and reveals new interactions between short single-stranded DNA and the vestibule of a biological pore. These findings demonstrate the utility of MOSAIC and the ADEPT algorithm, and offer a new tool that can improve the analysis of nanopore-based measurements.
Collapse
Affiliation(s)
- Jacob H. Forstater
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Joseph W. F. Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jessica Ettedgui
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Olivier Marie-Rose
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Canute Vaz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John J. Kasianowicz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | - Arvind Balijepalli
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
28
|
Xi D, Shang J, Fan E, You J, Zhang S, Wang H. Nanopore-Based Selective Discrimination of MicroRNAs with Single-Nucleotide Difference Using Locked Nucleic Acid-Modified Probes. Anal Chem 2016; 88:10540-10546. [PMID: 27734673 DOI: 10.1021/acs.analchem.6b02620] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The accurate discrimination of microRNAs (miRNAs) with highly similar sequences would greatly facilitate the screening and early diagnosis of diseases. In the present work, a locked nucleic acid (LNA)-modified probe was designed and used for α-hemolysin (α-HL) nanopore to selectively and specifically identify miRNAs. The hybridization of the LNA probe with the target miRNAs generated unique long-lived signals in the nanopore thus facilitated an accurate discrimination of miRNAs with similar sequences, even a single-nucleotide difference. Furthermore, the developed nanopore-based analysis with LNA probe could selectively detect target miRNAs in a natural serum background. This selective and sensitive approach may be highly valuable in the detection of clinically relevant biomarkers in complex samples.
Collapse
Affiliation(s)
- Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University , Linyi 276005, People's Republic of China
| | - Jizhen Shang
- Shandong Province Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, People's Republic of China
| | - Enguo Fan
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg , Freiburg D-79104, Germany
| | - Jinmao You
- Shandong Province Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, People's Republic of China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University , Linyi 276005, People's Republic of China
| | - Hua Wang
- Shandong Province Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, People's Republic of China
| |
Collapse
|
29
|
Lee J, Boersma A, Boudreau MA, Cheley S, Daltrop O, Li J, Tamagaki H, Bayley H. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry. ACS NANO 2016; 10:8843-50. [PMID: 27537396 PMCID: PMC5043417 DOI: 10.1021/acsnano.6b04663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 05/27/2023]
Abstract
Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level.
Collapse
Affiliation(s)
- Joongoo Lee
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Arnold
J. Boersma
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Marc A. Boudreau
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Stephen Cheley
- Department
of Pharmacology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Oliver Daltrop
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jianwei Li
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Hiroko Tamagaki
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Hagan Bayley
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
30
|
Guo B, Yao Z, Liu L, Wu HC. Revealing different aggregational states of a conjugated polymer in solution by a nanopore sensor. Chem Sci 2016; 7:5287-5293. [PMID: 30155179 PMCID: PMC6020615 DOI: 10.1039/c6sc00296j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 11/30/2022] Open
Abstract
Nanopores are effective and powerful tools for the analysis of conformational and aggregational states of conjugated polymers in solution.
The functionalities of conjugated polymers are determined not only by local molecular structure, but also by the mesoscale conformational and morphological states of the polymer chains. Simulation studies have successfully established the connections between molecular structure and conformational states of certain conjugated polymers. However, experimental tools that can accurately discriminate between different conformational and morphological states of conjugated polymers are still scarce. Here, we use a nanopore sensor to analyze different aggregational states of a polythiophene derivative by threading the polymer through the pore under applied potentials. When the fluorescence of the polythiophene is quenched by pH tuning or the presence of Dy3+, the UV-vis and fluorescence spectra of the two solutions appear indistinguishable. However, threading the polymer molecules of these two solutions through an α-hemolysin nanopore affords entirely different translocation profiles owing to their different aggregational states. We further substantiate the results by conducting aggregational interconversion experiments and TEM measurements. This work has clearly indicated that nanopores are promising tools for the analysis of aggregational changes of conjugated polymers and may open new avenues for the investigation of aggregational states of biomacromolecules in the context of early disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Bingyuan Guo
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China . ; ; Tel: +86-10-88235745
| | - Zhiyi Yao
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China . ; ; Tel: +86-10-88235745
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China . ; ; Tel: +86-10-88235745
| | - Hai-Chen Wu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China . ; ; Tel: +86-10-88235745.,Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
31
|
Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin. Proc Natl Acad Sci U S A 2016; 113:9003-8. [PMID: 27466408 DOI: 10.1073/pnas.1602716113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of "polymers pushing polymers" is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores.
Collapse
|
32
|
Couoh-Cardel S, Hsueh YC, Wilkens S, Movileanu L. Yeast V-ATPase Proteolipid Ring Acts as a Large-conductance Transmembrane Protein Pore. Sci Rep 2016; 6:24774. [PMID: 27098228 PMCID: PMC4838861 DOI: 10.1038/srep24774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
The vacuolar H+ -ATPase (V-ATPase) is a rotary motor enzyme that acidifies intracellular organelles and the extracellular milieu in some tissues. Besides its canonical proton-pumping function, V-ATPase’s membrane sector, Vo, has been implicated in non-canonical functions including membrane fusion and neurotransmitter release. Here, we report purification and biophysical characterization of yeast V-ATPase c subunit ring (c-ring) using electron microscopy and single-molecule electrophysiology. We find that yeast c-ring forms dimers mediated by the c subunits’ cytoplasmic loops. Electrophysiology measurements of the c-ring reconstituted into a planar lipid bilayer revealed a large unitary conductance of ~8.3 nS. Thus, the data support a role of V-ATPase c-ring in membrane fusion and neuronal communication.
Collapse
Affiliation(s)
- Sergio Couoh-Cardel
- Department of Biochemistry &Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | - Yi-Ching Hsueh
- Department of Physics, Syracuse University, 201 Physics Bldg., Syracuse, New York 13244-1130, USA
| | - Stephan Wilkens
- Department of Biochemistry &Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Bldg., Syracuse, New York 13244-1130, USA.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA.,The Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York 13244-1200, USA
| |
Collapse
|
33
|
Rukhlya EG, Yarysheva LM, Volynskii AL, Bakeev NF. Effects of tensile strain on the peculiarities of PEO penetration into the nanoporous structure of PET deformed via the crazing mechanism. Phys Chem Chem Phys 2016; 18:9396-404. [PMID: 26979240 DOI: 10.1039/c5cp07842c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Solvent crazing involves the development of a highly dispersed fibrillar-porous structure with dimensions of pores and craze fibrils of about 2-20 nm, and crazing by itself can be treated as a universal method for the development of nanoscale porosity. The penetration and release of poly(ethylene oxide) macromolecules into and from the crazes during the development of the nanoporous structure of poly(ethylene terephthalate) have been studied. In particular, PET has been deformed in dilute or semidilute (unentangled as well as entangled) solutions of PEO (a Mw of 4 and 40 kDa) via the mechanism of solvent crazing. Hydrodynamic coil radii Rh, blob sizes ξ, and concentration ranges (crossover and entanglement concentrations) have been determined for the PEO solutions. The evolution of the craze structure (change in porosity W and pore diameters d) has been described as a function of the tensile strain of PET during its drawing in an adsorption-active medium and in the PEO solutions. PEO has been shown to penetrate into the nanoporous structure of the crazes under the conditions corresponding to Rh≤d and ξ < d. It has been shown that coagulation processes in the structure of crazed PET, PEO adsorption at the highly developed surface of PET, and the mechanism of PEO transport in the nanopores are equally important factors affecting the direction of the macromolecule mass transfer in the nanopores (penetration or release) and PEO content variation as a function of PET tensile strain.
Collapse
Affiliation(s)
- E G Rukhlya
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1, Moscow 119234, Russia.
| | | | | | | |
Collapse
|
34
|
Semisynthetic protein nanoreactor for single-molecule chemistry. Proc Natl Acad Sci U S A 2015; 112:13768-73. [PMID: 26504203 DOI: 10.1073/pnas.1510565112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach.
Collapse
|
35
|
Wolfe AJ, Mohammad MM, Thakur AK, Movileanu L. Global redesign of a native β-barrel scaffold. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:19-29. [PMID: 26456555 DOI: 10.1016/j.bbamem.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 11/30/2022]
Abstract
One persistent challenge in membrane protein design is accomplishing extensive modifications of proteins without impairing their functionality. A truncation derivative of the ferric hydroxamate uptake component A (FhuA), which featured the deletion of the 160-residue cork domain and five large extracellular loops, produced the conversion of a non-conductive, monomeric, 22-stranded β-barrel protein into a large-conductance protein pore. Here, we show that this redesigned β-barrel protein tolerates an extensive alteration in the internal surface charge, encompassing 25 negative charge neutralizations. By using single-molecule electrophysiology, we noted that a commonality of various truncation FhuA protein pores was the occurrence of 33% blockades of the unitary current at very high transmembrane potentials. We determined that these current transitions were stimulated by their interaction with an external cationic polypeptide, which occurred in a fashion dependent on the surface charge of the pore interior as well as the polypeptide characteristics. This study shows promise for extensive engineering of a large monomeric β-barrel protein pore in molecular biomedical diagnosis, therapeutics, and biosensor technology.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA
| | - Mohammad M Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Avinash K Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA; The Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
36
|
Cressiot B, Braselmann E, Oukhaled A, Elcock AH, Pelta J, Clark PL. Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore. ACS NANO 2015; 9:9050-61. [PMID: 26302243 PMCID: PMC4835817 DOI: 10.1021/acsnano.5b03053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To evaluate the physical parameters governing translocation of an unfolded protein across a lipid bilayer, we studied protein transport through aerolysin, a passive protein channel, at the single-molecule level. The protein model used was the passenger domain of pertactin, an autotransporter virulence protein. Transport of pertactin through the aerolysin nanopore was detected as transient partial current blockades as the unfolded protein partially occluded the aerolysin channel. We compared the dynamics of entry and transport for unfolded pertactin and a covalent end-to-end dimer of the same protein. For both the monomer and the dimer, the event frequency of current blockades increased exponentially with the applied voltage, while the duration of each event decreased exponentially as a function of the electrical potential. The blockade time was twice as long for the dimer as for the monomer. The calculated activation free energy includes a main enthalpic component that we attribute to electrostatic interactions between pertactin and the aerolysin nanopore (despite the low Debye length), plus an entropic component due to confinement of the unfolded chain within the narrow pore. Comparing our experimental results to previous studies and theory suggests that unfolded proteins cross the membrane by passing through the nanopore in a somewhat compact conformation according to the "blob" model of Daoud and de Gennes.
Collapse
Affiliation(s)
- Benjamin Cressiot
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Esther Braselmann
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | | | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Juan Pelta
- LAMBE UMR 8587 CNRS, University of Évry-Val-d'Essonne, Évry, France
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
37
|
Baaken G, Halimeh I, Bacri L, Pelta J, Oukhaled A, Behrends JC. High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore. ACS NANO 2015; 9:6443-6449. [PMID: 26028280 DOI: 10.1021/acsnano.5b02096] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electrophysiological studies of the interaction of polymers with pores formed by bacterial toxins (1) provide a window on single molecule interaction with proteins in real time, (2) report on the behavior of macromolecules in confinement, and (3) enable label-free single molecule sensing. Using pores formed by the staphylococcal toxin α-hemolysin (aHL), a particularly pertinent observation was that, under high salt conditions (3-4 M KCl), the current through the pore is blocked for periods of hundreds of microseconds to milliseconds by poly(ethylene glycol) (PEG) oligomers (degree of polymerization approximately 10-60). Notably, this block showed monomeric sensitivity on the degree of polymerization of individual oligomers, allowing the construction of size or mass spectra from the residual current values. Here, we show that the current through the pore formed by aerolysin (AeL) from Aeromonas hydrophila is also blocked by PEG but with drastic differences in the voltage-dependence of the interaction. In contrast to aHL, AeL strongly binds PEG at high transmembrane voltages. This fact, which is likely related to AeL's highly charged pore wall, allows discrimination of polymer sizes with particularly high resolution. Multiple applications are now conceivable with this pore to screen various nonionic or charged polymers.
Collapse
Affiliation(s)
- Gerhard Baaken
- ‡Ionera Technologies GmbH, Hermann Herder Strasse 7, 79104 Freiburg, Germany
| | - Ibrahim Halimeh
- ‡Ionera Technologies GmbH, Hermann Herder Strasse 7, 79104 Freiburg, Germany
| | - Laurent Bacri
- §Laboratoire LAMBE, Équipe Polymères aux Interfaces, LAMBE UMR 8587 CNRS, Évry and Cergy University, Cergy-Pontoise 95011 cedex, France
| | - Juan Pelta
- §Laboratoire LAMBE, Équipe Polymères aux Interfaces, LAMBE UMR 8587 CNRS, Évry and Cergy University, Cergy-Pontoise 95011 cedex, France
| | - Abdelghani Oukhaled
- §Laboratoire LAMBE, Équipe Polymères aux Interfaces, LAMBE UMR 8587 CNRS, Évry and Cergy University, Cergy-Pontoise 95011 cedex, France
| | - Jan C Behrends
- ∥Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- ⊥Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
38
|
Cheneke B, van den Berg B, Movileanu L. Quasithermodynamic contributions to the fluctuations of a protein nanopore. ACS Chem Biol 2015; 10:784-94. [PMID: 25479108 PMCID: PMC4372101 DOI: 10.1021/cb5008025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Proteins undergo thermally activated conformational fluctuations among two or more substates, but a quantitative inquiry on their kinetics is persistently challenged by numerous factors, including the complexity and dynamics of various interactions, along with the inability to detect functional substates within a resolvable time scale. Here, we analyzed in detail the current fluctuations of a monomeric β-barrel protein nanopore of known high-resolution X-ray crystal structure. We demonstrated that targeted perturbations of the protein nanopore system, in the form of loop-deletion mutagenesis, accompanying alterations of electrostatic interactions between long extracellular loops, produced modest changes of the differential activation free energies calculated at 25 °C, ΔΔG(⧧), in the range near the thermal energy but substantial and correlated modifications of the differential activation enthalpies, ΔΔH(⧧), and entropies, ΔΔS(⧧). This finding indicates that the local conformational reorganizations of the packing and flexibility of the fluctuating loops lining the central constriction of this protein nanopore were supplemented by changes in the single-channel kinetics. These changes were reflected in the enthalpy-entropy reconversions of the interactions between the loop partners with a compensating temperature, TC, of ∼300 K, and an activation free energy constant of ∼41 kJ/mol. We also determined that temperature has a much greater effect on the energetics of the equilibrium gating fluctuations of a protein nanopore than other environmental parameters, such as the ionic strength of the aqueous phase as well as the applied transmembrane potential, likely due to ample changes in the solvation activation enthalpies. There is no fundamental limitation for applying this approach to other complex, multistate membrane protein systems. Therefore, this methodology has major implications in the area of membrane protein design and dynamics, primarily by revealing a better quantitative assessment on the equilibrium transitions among multiple well-defined and functionally distinct substates of protein channels and pores.
Collapse
Affiliation(s)
- Belete
R. Cheneke
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Bert van den Berg
- Institute
for Cellular and Molecular Biosciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Structural
Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, United States
- Syracuse
Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
39
|
Cao C, Ying YL, Gu Z, Long YT. Enhanced resolution of low molecular weight poly(ethylene glycol) in nanopore analysis. Anal Chem 2014; 86:11946-50. [PMID: 25457124 DOI: 10.1021/ac504233s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A design with conjugation of DNA hairpin structure to the poly(ethylene glycol) molecule was presented to enhance the temporal resolution of low molecular weight poly(ethylene glycol) in nanopore studies. By the virtue of this design, detection of an individual PEG with molecular weight as low as 140 Da was achieved at the single-molecule level in solution, which provides a novel strategy for characterization of an individual small molecule within a nanopore. Furthermore, we found that the current duration time of poly(ethylene glycol) was scaled with the relative molecular weight, which has a potential application in single-molecule detection.
Collapse
Affiliation(s)
- Chan Cao
- Key Laboratory for Advanced Materials & Department of Chemistry, East China University of Science and Technology , Shanghai 200237, P. R. China
| | | | | | | |
Collapse
|
40
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
41
|
Grosse W, Psakis G, Mertins B, Reiss P, Windisch D, Brademann F, Bürck J, Ulrich A, Koert U, Essen LO. Structure-based engineering of a minimal porin reveals loop-independent channel closure. Biochemistry 2014; 53:4826-38. [PMID: 24988371 DOI: 10.1021/bi500660q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Porins, like outer membrane protein G (OmpG) of Escherichia coli, are ideal templates among ion channels for protein and chemical engineering because of their robustness and simple architecture. OmpG shows fast transitions between open and closed states, which were attributed to loop 6 (L6). As flickering limits single-channel-based applications, we pruned L6 by either 8 or 12 amino acids. While the open probabilities of both L6 variants resemble that of native OmpG, their gating frequencies were reduced by 63 and 81%, respectively. Using the 3.2 Å structure of the shorter L6 variant in the open state, we engineered a minimal porin (220 amino acids), where all remaining extramembranous loops were truncated. Unexpectedly, this minimized porin still exhibited gating, but it was 5-fold less frequent than in OmpG. The residual gating of the minimal pore is hence independent of L6 rearrangements and involves narrowing of the ion conductance pathway most probably driven by global stretching-flexing deformations of the membrane-embedded β-barrel.
Collapse
Affiliation(s)
- Wolfgang Grosse
- Department of Chemistry, Philipps-University Marburg , Hans-Meerwein-Straße, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Panja D, Barkema GT, Kolomeisky AB. Through the eye of the needle: recent advances in understanding biopolymer translocation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:413101. [PMID: 24025200 DOI: 10.1088/0953-8984/25/41/413101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In recent years polymer translocation, i.e., transport of polymeric molecules through nanometer-sized pores and channels embedded in membranes, has witnessed strong advances. It is now possible to observe single-molecule polymer dynamics during the motion through channels with unprecedented spatial and temporal resolution. These striking experimental studies have stimulated many theoretical developments. In this short theory-experiment review, we discuss recent progress in this field with a strong focus on non-equilibrium aspects of polymer dynamics during the translocation process.
Collapse
Affiliation(s)
- Debabrata Panja
- Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands. Institute for Theoretical Physics, Universiteit van Amsterdam, Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands
| | | | | |
Collapse
|
43
|
Abstract
In vitro methods have enabled the rapid and efficient evolution of proteins and successful generation of novel and highly functional proteins. However, the available methods consider only globular proteins (e.g., antibodies, enzymes) and not membrane proteins despite the biological and pharmaceutical importance of the latter. In this study, we report the development of a method called liposome display that can evolve the properties of membrane proteins entirely in vitro. This method, which involves in vitro protein synthesis inside liposomes, which are cell-sized phospholipid vesicles, was applied to the pore-forming activity of α-hemolysin, a membrane protein derived from Staphylococcus aureus. The obtained α-hemolysin mutant possessed only two point mutations but exhibited a 30-fold increase in its pore-forming activity compared with the WT. Given the ability to synthesize various membrane proteins and modify protein synthesis and functional screening conditions, this method will allow for the rapid and efficient evolution of a wide range of membrane proteins.
Collapse
|
44
|
Niedzwiecki’ DJ, Iyer R, Borer PN, Movileanu L. Sampling a biomarker of the human immunodeficiency virus across a synthetic nanopore. ACS NANO 2013; 7:3341-50. [PMID: 23445080 PMCID: PMC3634884 DOI: 10.1021/nn400125c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
One primary goal in nanobiotechnology is designing new methodologies for molecular biomedical diagnosis at stages much earlier than currently possible and without use of expensive reagents and sophisticated equipment. In this work, we show the proof of principle for single-molecule detection of the nucleocapsid protein 7 (NCp7), a protein biomarker of the HIV-1 virus, using synthetic nanopores and the resistive-pulse technique. The biosensing mechanism relied upon specific interactions between NCp7 and aptamers of stem-loop 3 (SL3) in the packaging domain of the retroviral RNA genome. One critical step of this study was the choice of the optimal size of the nanopores for accurate, label-free determinations of the dissociation constant of the NCp7 protein-SL3 RNA aptamer complex. Therefore, we systematically investigated the NCp7 protein-SL3 RNA aptamer complex employing two categories of nanopores in a silicon nitride membrane: (i) small, whose internal diameter was smaller than 6 nm, and (ii) large, whose internal diameter was in the range of 7 to 15 nm. Here, we demonstrate that only the use of nanopores with an internal diameter that is smaller than or comparable with the largest cross-sectional size of the NCp7-SL3 aptamer complex enables accurate measurement of the dissociation constant between the two interacting partners. Notably, this determination can be accomplished without the need for prior nanopore functionalization. Moreover, using small solid-state nanopores, we demonstrate the ability to detect drug candidates that inhibit the binding interactions between NCp7 and SL3 RNA by using a test case of N-ethylmaleimide.
Collapse
Affiliation(s)
| | - Raghuvaran Iyer
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244-4100, USA
| | - Philip N. Borer
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244-4100, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
45
|
Holland WC, Litaker RW, Tomas CR, Kibler SR, Place AR, Davenport ED, Tester PA. Differences in the toxicity of six Gambierdiscus (Dinophyceae) species measured using an in vitro human erythrocyte lysis assay. Toxicon 2013; 65:15-33. [PMID: 23313447 DOI: 10.1016/j.toxicon.2012.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
This study examined the toxicity of six Gambierdiscus species (Gambierdiscus belizeanus, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri, Gambierdiscus ribotype 2 and Gambierdiscus ruetzleri) using a human erythrocyte lysis assay. In all, 56 isolates were tested. The results showed certain species were significantly more toxic than others. Depending on the species, hemolytic activity consistently increased by ∼7-40% from log phase growth to late log - early stationary growth phase and then declined in mid-stationary growth phase. Increasing growth temperatures from 20 to 31 °C for clones of G. caribaeus showed only a slight increase in hemolytic activity between 20 and 27 °C. Hemolytic activity in the G. carolinianus isolates from different regions grown over the same 20-31 °C range remained constant. These data suggest that growth temperature is not a significant factor in modulating the inter-isolate and interspecific differences in hemolytic activity. The hemolytic activity of various isolates measured repeatedly over a 2 year period remained constant, consistent with the hemolytic compounds being constitutively produced and under strong genetic control. Depending on species, greater than 60-90% of the total hemolytic activity was initially associated with the cell membranes but diffused into solution over a 24 h assay incubation period at 4 °C. These findings suggest that hemolytic compounds produced by Gambierdiscus isolates were held in membrane bound vesicles as reported for brevetoxins produced by Karenia brevis. Gambierdiscus isolates obtained from other parts of the world exhibited hemolytic activities comparable to those found in the Caribbean and Gulf of Mexico confirming the range of toxicities is similar among Gambierdiscus species worldwide. Experiments using specific inhibitors of the MTX pathway and purified MTX, Gambierdiscus whole cell extracts, and hydrophilic cell extracts containing MTX, were consistent with MTX as the primary hemolytic compound produced by Gambierdiscus species. While the results from inhibition studies require validation by LC-MS analysis, the available data strongly suggest differences in hemolytic activity observed in this study reflect maitotoxicity.
Collapse
Affiliation(s)
- William C Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, 101 Pivers Island Road, Beaufort, NC 28516, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Fennouri A, Przybylski C, Pastoriza-Gallego M, Bacri L, Auvray L, Daniel R. Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore. ACS NANO 2012; 6:9672-9678. [PMID: 23046010 DOI: 10.1021/nn3031047] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glycosaminoglycans are biologically active anionic carbohydrates that are among the most challenging biopolymers with regards to their structural analysis and functional assessment. The potential of newly introduced biosensors using protein nanopores that have been mainly described for nucleic acids and protein analysis to date, has been here applied to this polysaccharide-based third class of bioactive biopolymer. This nanopore approach has been harnessed in this study to analyze the hyaluronic acid glycosamiglycan and its depolymerization-derived oligosaccharides. The translocation of a glycosaminoglycan is reported using aerolysin protein nanopore. Nanopore translocation of hyaluronic acid oligosaccharides was evidenced by the direct detection of translocated molecules accumulated into the arrival compartment using high-resolution mass spectrometry. Anionic oligosaccharides of various polymerization degrees were discriminated through measurement of the dwelling time and translocation frequency. This molecular sizing capability of the protein nanopore device allowed the real-time recording of the enzymatic cleavage of hyaluronic acid polysaccharide. The time-resolved detection of enzymatically produced oligosaccharides was carried out to monitor the depolymerization enzyme reaction at the single-molecule level.
Collapse
Affiliation(s)
- Aziz Fennouri
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry Val d'Essonne, Bd François Mitterrand, 91025 Evry Cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Niedzwiecki D, Mohammad M, Movileanu L. Inspection of the engineered FhuA ΔC/Δ4L protein nanopore by polymer exclusion. Biophys J 2012; 103:2115-24. [PMID: 23200045 PMCID: PMC3512039 DOI: 10.1016/j.bpj.2012.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/03/2012] [Accepted: 10/10/2012] [Indexed: 12/11/2022] Open
Abstract
Extensive engineering of protein nanopores for biotechnological applications using native scaffolds requires further inspection of their internal geometry and size. Recently, we redesigned ferric hydroxamate uptake component A (FhuA), a 22-β-stranded protein containing an N-terminal 160-residue cork domain (C). The cork domain and four large extracellular loops (4L) were deleted to obtain an unusually stiff engineered FhuA ΔC/Δ4L nanopore. We employed water-soluble poly(ethylene glycols) and dextran polymers to examine the interior of FhuA ΔC/Δ4L. When this nanopore was reconstituted into a synthetic planar lipid bilayer, addition of poly(ethylene glycols) produced modifications in the single-channel conductance, allowing for the evaluation of the nanopore diameter. Here, we report that FhuA ΔC/Δ4L features an approximate conical internal geometry with the cis entrance smaller than the trans entrance, in accord with the asymmetric nature of the crystal structure of the wild-type FhuA protein. Further experiments with impermeable dextran polymers indicated an average internal diameter of ~2.4 nm, a conclusion we arrived at based upon the polymer-induced alteration of the access resistance contribution to the nanopore's total resistance. Molecular insights inferred from this work represent a platform for future protein engineering of FhuA that will be employed for specific tasks in biotechnological applications.
Collapse
Affiliation(s)
| | | | - Liviu Movileanu
- Department of Physics, Syracuse University, Syracuse, New York
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York
| |
Collapse
|
48
|
Liu J, Wolfe AJ, Eren E, Vijayaraghavan J, Indic M, van den Berg B, Movileanu L. Cation selectivity is a conserved feature in the OccD subfamily of Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2908-16. [PMID: 22824298 DOI: 10.1016/j.bbamem.2012.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 01/03/2023]
Abstract
To achieve the uptake of small, water-soluble nutrients, Pseudomonas aeruginosa, a pathogenic Gram-negative bacterium, employs substrate-specific channels located within its outer membrane. In this paper, we present a detailed description of the single-channel characteristics of six members of the outer membrane carboxylate channel D (OccD) subfamily. Recent structural studies showed that the OccD proteins share common features, such as a closely related, monomeric, 18-stranded β-barrel conformation and large extracellular loops, which are folded back into the channel lumen. Here, we report that the OccD proteins displayed single-channel activity with a unitary conductance covering an unusually broad range, between 20 and 670pS, as well as a diverse gating dynamics. Interestingly, we found that cation selectivity is a conserved trait among all members of the OccD subfamily, bringing a new distinction between the members of the OccD subfamily and the anion-selective OccK channels. Conserved cation selectivity of the OccD channels is in accord with an increased specificity and selectivity of these proteins for positively charged, carboxylate-containing substrates.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Cheneke BR, Indic M, van den Berg B, Movileanu L. An outer membrane protein undergoes enthalpy- and entropy-driven transitions. Biochemistry 2012; 51:5348-58. [PMID: 22680931 DOI: 10.1021/bi300332z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
β-Barrel membrane proteins often fluctuate among various open substates, yet the nature of these transitions is not fully understood. Using temperature-dependent, single-molecule electrophysiology analysis, along with rational protein design, we show that OccK1, a member of the outer membrane carboxylate channel from Pseudomonas aeruginosa, features a discrete gating dynamics comprising both enthalpy-driven and entropy-driven current transitions. OccK1 was chosen for the analysis of these transitions, because it is a monomeric transmembrane β-barrel of a known high-resolution crystal structure and displays three distinguishable, time-resolvable open substates. Native and loop-deletion OccK1 proteins showed substantial changes in the activation enthalpies and entropies of the channel transitions, but modest alterations in the equilibrium free energies, confirming that the system never departs from equilibrium. Moreover, some current fluctuations of OccK1 indicated a counterintuitive, negative activation enthalpy, which was compensated by a significant decrease in the activation entropy. Temperature scanning of the single-channel properties of OccK1 exhibited a thermally induced switch of the energetically most favorable open substate at the lowest examined temperature of 4 °C. Therefore, such a semiquantitative assessment of the current fluctuation dynamics not only demonstrates the complexity of channel gating but also reveals distinct functional traits of a β-barrel outer membrane protein under different temperature circumstances.
Collapse
Affiliation(s)
- Belete R Cheneke
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | | | | | | |
Collapse
|
50
|
Liu J, Eren E, Vijayaraghavan J, Cheneke BR, Indic M, van den Berg B, Movileanu L. OccK channels from Pseudomonas aeruginosa exhibit diverse single-channel electrical signatures but conserved anion selectivity. Biochemistry 2012; 51:2319-30. [PMID: 22369314 DOI: 10.1021/bi300066w] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that utilizes substrate-specific outer membrane (OM) proteins for the uptake of small, water-soluble nutrients employed in the growth and function of the cell. In this paper, we present for the first time a comprehensive single-channel examination of seven members of the OM carboxylate channel K (OccK) subfamily. Recent biochemical, functional, and structural characterization of the OccK proteins revealed their common features, such as a closely related, monomeric, 18-stranded β-barrel conformation with a kidney-shaped transmembrane pore and the presence of a basic ladder within the channel lumen. Here, we report that the OccK proteins exhibited fairly distinct unitary conductance values, in a much broader range than previously expected, which includes low (~40-100 pS) and medium (~100-380 pS) conductance. These proteins showed diverse single-channel dynamics of current gating transitions, revealing one-open substate (OccK3), two-open substate (OccK4-OccK6), and three-open substate (OccK1, OccK2, and OccK7) kinetics with functionally distinct conformations. Interestingly, we discovered that anion selectivity is a conserved trait among the members of the OccK subfamily, confirming the presence of a net pool of positively charged residues within their central constriction. Moreover, these results are in accord with an increased specificity and selectivity of these protein channels for negatively charged, carboxylate-containing substrates. Our findings might ignite future functional examinations and full atomistic computational studies for unraveling a mechanistic understanding of the passage of small molecules across the lumen of substrate-specific, β-barrel OM proteins.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Physics, Syracuse University, Syracuse, New York 13244-1130, United States
| | | | | | | | | | | | | |
Collapse
|