1
|
Fenyk S, Dixon CH, Gittens WH, Townsend PD, Sharples GJ, Pålsson LO, Takken FLW, Cann MJ. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange. J Biol Chem 2015; 291:1137-47. [PMID: 26601946 PMCID: PMC4714197 DOI: 10.1074/jbc.m115.698589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA.
Collapse
Affiliation(s)
- Stepan Fenyk
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Christopher H Dixon
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - William H Gittens
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Philip D Townsend
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Gary J Sharples
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Lars-Olof Pålsson
- the Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom and
| | - Frank L W Takken
- the Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Martin J Cann
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| |
Collapse
|
2
|
Machado MR, Pantano S. Exploring LacI-DNA dynamics by multiscale simulations using the SIRAH force field. J Chem Theory Comput 2015; 11:5012-23. [PMID: 26574286 DOI: 10.1021/acs.jctc.5b00575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lac repressor protein (LacI) together with its target regulatory sequence are a common model for studying DNA looping and its implications on transcriptional control in bacteria. Owing to the molecular size of this system, standard all-atom (AA) simulations are prohibitive for achieving relevant biological time scales. As an alternative, multiscale models, which combine AA descriptions at particular regions with coarse-grained (CG) representations of the remaining components, were used to address this computational challenge while preserving the relevant details of the system. In this work, we implement a new multiscale approach based on the SIRAH force field to gain deeper insights into the dynamics of the LacI-DNA system. Our methodology allows for a dual resolution treatment of the solute and solvent, explicitly representing the protein, DNA, and solvent environment without compromising the AA region. Starting from the P1 loop configuration in an undertwisted conformation, we were able to observe the transition to the more stable overtwisted state. Additionally, a detailed characterization of the conformational space sampled by the DNA loop was done. In agreement with experimental and theoretical evidence, we observed the transient formation of kinks at the loop, which were stabilized by the presence of counterions at the minor groove. We also show that the loop's intrinsic flexibility can account for reported FRET measurements and bent conformations required to bind the CAP transcription factor.
Collapse
Affiliation(s)
- Matias R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo , Montevideo, Uruguay , 11400
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo , Montevideo, Uruguay , 11400
| |
Collapse
|
3
|
Revalee JD, Blab GA, Wilson HD, Kahn JD, Meiners JC. Tethered particle motion reveals that LacI·DNA loops coexist with a competitor-resistant but apparently unlooped conformation. Biophys J 2014; 106:705-15. [PMID: 24507611 DOI: 10.1016/j.bpj.2013.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/26/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022] Open
Abstract
The lac repressor protein (LacI) efficiently represses transcription of the lac operon in Escherichia coli by binding to two distant operator sites on the bacterial DNA and causing the intervening DNA to form a loop. We employed single-molecule tethered particle motion to observe LacI-mediated loop formation and breakdown in DNA constructs that incorporate optimized operator binding sites and intrinsic curvature favorable to loop formation. Previous bulk competition assays indirectly measured the loop lifetimes in these optimized DNA constructs as being on the order of days; however, we measured these same lifetimes to be on the order of minutes for both looped and unlooped states. In a range of single-molecule DNA competition experiments, we found that the resistance of the LacI-DNA complex to competitive binding is a function of both the operator strength and the interoperator sequence. To explain these findings, we present what we believe to be a new kinetic model of loop formation and DNA competition. In this proposed new model, we hypothesize a new unlooped state in which the unbound DNA-binding domain of the LacI protein interacts nonspecifically with nonoperator DNA adjacent to the operator site at which the second LacI DNA-binding domain is bound.
Collapse
Affiliation(s)
- Joel D Revalee
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| | - Gerhard A Blab
- Debye Institute, Molecular Biophysics, Utrecht University, Utrecht, The Netherlands
| | - Henry D Wilson
- LSA Biophysics, University of Michigan, Ann Arbor, Michigan
| | - Jason D Kahn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Jens-Christian Meiners
- Department of Physics, University of Michigan, Ann Arbor, Michigan; LSA Biophysics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
4
|
Johnson S, van de Meent JW, Phillips R, Wiggins CH, Lindén M. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 2014; 42:10265-77. [PMID: 25120267 PMCID: PMC4176382 DOI: 10.1093/nar/gku563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Jan-Willem van de Meent
- Department of Statistics, Columbia University, 1255 Amsterdam Avenue MC 4690, New York, New York 10027
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Chris H Wiggins
- Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd, 500 W. 120th St. MC 4701, New York, New York 10027
| | - Martin Lindén
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden Department of Cell and Molecular Biology, Uppsala University, Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
5
|
Biton YY, Kumar S, Dunlap D, Swigon D. Lac repressor mediated DNA looping: Monte Carlo simulation of constrained DNA molecules complemented with current experimental results. PLoS One 2014; 9:e92475. [PMID: 24800809 PMCID: PMC4011716 DOI: 10.1371/journal.pone.0092475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/23/2014] [Indexed: 11/30/2022] Open
Abstract
Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor.
Collapse
Affiliation(s)
- Yoav Y. Biton
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Sandip Kumar
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David Dunlap
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
6
|
Miller JT, Lazarus A, Audoly B, Reis PM. Shapes of a suspended curly hair. PHYSICAL REVIEW LETTERS 2014; 112:068103. [PMID: 24580710 DOI: 10.1103/physrevlett.112.068103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 06/03/2023]
Abstract
We investigate how natural curvature affects the configuration of a thin elastic rod suspended under its own weight, as when a single strand of hair hangs under gravity. We combine precision desktop experiments, numerics, and theoretical analysis to explore the equilibrium shapes set by the coupled effects of elasticity, natural curvature, nonlinear geometry, and gravity. A phase diagram is constructed in terms of the control parameters of the system, namely the dimensionless curvature and weight, where we identify three distinct regions: planar curls, localized helices, and global helices. We analyze the stability of planar configurations, and describe the localization of helical patterns for long rods, near their free end. The observed shapes and their associated phase boundaries are then rationalized based on the underlying physical ingredients.
Collapse
Affiliation(s)
- J T Miller
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Lazarus
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - B Audoly
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190 Institut Jean Le Rond d'Alembert, F-75005 Paris, France
| | - P M Reis
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Johnson S, Chen YJ, Phillips R. Poly(dA:dT)-rich DNAs are highly flexible in the context of DNA looping. PLoS One 2013; 8:e75799. [PMID: 24146776 PMCID: PMC3795714 DOI: 10.1371/journal.pone.0075799] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/19/2013] [Indexed: 01/31/2023] Open
Abstract
Large-scale DNA deformation is ubiquitous in transcriptional regulation in prokaryotes and eukaryotes alike. Though much is known about how transcription factors and constellations of binding sites dictate where and how gene regulation will occur, less is known about the role played by the intervening DNA. In this work we explore the effect of sequence flexibility on transcription factor-mediated DNA looping, by drawing on sequences identified in nucleosome formation and ligase-mediated cyclization assays as being especially favorable for or resistant to large deformations. We examine a poly(dA:dT)-rich, nucleosome-repelling sequence that is often thought to belong to a class of highly inflexible DNAs; two strong nucleosome positioning sequences that share a set of particular sequence features common to nucleosome-preferring DNAs; and a CG-rich sequence representative of high G+C-content genomic regions that correlate with high nucleosome occupancy in vivo. To measure the flexibility of these sequences in the context of DNA looping, we combine the in vitro single-molecule tethered particle motion assay, a canonical looping protein, and a statistical mechanical model that allows us to quantitatively relate the looping probability to the looping free energy. We show that, in contrast to the case of nucleosome occupancy, G+C content does not positively correlate with looping probability, and that despite sharing sequence features that are thought to determine nucleosome affinity, the two strong nucleosome positioning sequences behave markedly dissimilarly in the context of looping. Most surprisingly, the poly(dA:dT)-rich DNA that is often characterized as highly inflexible in fact exhibits one of the highest propensities for looping that we have measured. These results argue for a need to revisit our understanding of the mechanical properties of DNA in a way that will provide a basis for understanding DNA deformation over the entire range of biologically relevant scenarios that are impacted by DNA deformability.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Yi-Ju Chen
- Department of Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Nurse NP, Jimenez-Useche I, Smith IT, Yuan C. Clipping of flexible tails of histones H3 and H4 affects the structure and dynamics of the nucleosome. Biophys J 2013; 104:1081-8. [PMID: 23473491 DOI: 10.1016/j.bpj.2013.01.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/31/2012] [Accepted: 01/14/2013] [Indexed: 01/21/2023] Open
Abstract
Förster resonance energy transfer was used to monitor the dynamic conformations of mononucleosomes under different chromatin folding conditions to elucidate the role of the flexible N-terminal regions of H3 and H4 histones. The H3 tail was shown to partake in intranucleosomal interactions by restricting the DNA breathing motion and compacting the nucleosome. The H3 tail effects were mostly independent of the ionic strength and valency of the ions. The H4 tail was shown to not greatly affect the nucleosome conformation, but did slightly influence the relative population of the preferred conformation. The role of the H4 tail varied depending on the valency and ionic strength, suggesting that electrostatic forces play a primary role in H4 tail interactions. Interestingly, despite the H4 tail's lack of influence, when H3 and H4 tails were simultaneously clipped, a more dramatic effect was seen than when only H3 or H4 tails were clipped. The combinatorial effect of H3 and H4 tail truncation suggests a potential mechanism by which various combinations of histone tail modifications can be used to control accessibility of DNA-binding proteins to nucleosomal DNA.
Collapse
Affiliation(s)
- Nathan P Nurse
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
9
|
Gowetski DB, Kodis EJ, Kahn JD. Rationally designed coiled-coil DNA looping peptides control DNA topology. Nucleic Acids Res 2013; 41:8253-65. [PMID: 23825092 PMCID: PMC3783159 DOI: 10.1093/nar/gkt553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Artificial DNA looping peptides were engineered to study the roles of protein and DNA flexibility in controlling the geometry and stability of protein-mediated DNA loops. These LZD (leucine zipper dual-binding) peptides were derived by fusing a second, C-terminal, DNA-binding region onto the GCN4 bZip peptide. Two variants with different coiled-coil lengths were designed to control the relative orientations of DNA bound at each end. Electrophoretic mobility shift assays verified formation of a sandwich complex containing two DNAs and one peptide. Ring closure experiments demonstrated that looping requires a DNA-binding site separation of 310 bp, much longer than the length needed for natural loops. Systematic variation of binding site separation over a series of 10 constructs that cyclize to form 862-bp minicircles yielded positive and negative topoisomers because of two possible writhed geometries. Periodic variation in topoisomer abundance could be modeled using canonical DNA persistence length and torsional modulus values. The results confirm that the LZD peptides are stiffer than natural DNA looping proteins, and they suggest that formation of short DNA loops requires protein flexibility, not unusual DNA bendability. Small, stable, tunable looping peptides may be useful as synthetic transcriptional regulators or components of protein–DNA nanostructures.
Collapse
Affiliation(s)
- Daniel B Gowetski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | | | | |
Collapse
|
10
|
Olson WK, Grosner MA, Czapla L, Swigon D. Structural insights into the role of architectural proteins in DNA looping deduced from computer simulations. Biochem Soc Trans 2013; 41:559-64. [PMID: 23514154 PMCID: PMC3746319 DOI: 10.1042/bst20120341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial gene expression is regulated by DNA elements that often lie far apart along the genomic sequence, but come close together during genetic processing. The intervening residues form loops, which are organized by the binding of various proteins. For example, the Escherichia coli Lac repressor protein binds DNA operators, separated by 92 or 401 bp, and suppresses the formation of gene products involved in the metabolism of lactose. The system also includes several highly abundant architectural proteins, such as the histone-like (heat-unstable) HU protein, which severely deform the double helix upon binding. In order to gain a better understanding of how the naturally stiff DNA double helix forms the short loops detected in vivo, we have developed new computational methods to study the effects of various non-specific binding proteins on the three-dimensional configurational properties of DNA sequences. The present article surveys the approach that we use to generate ensembles of spatially constrained protein-decorated DNA structures (minicircles and Lac repressor-mediated loops) and presents some of the insights gained from the correspondence between computation and experiment about the potential contributions of architectural and regulatory proteins to DNA looping and gene expression.
Collapse
Affiliation(s)
- Wilma K Olson
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, U.S.A.
| | | | | | | |
Collapse
|
11
|
Czapla L, Grosner MA, Swigon D, Olson WK. Interplay of protein and DNA structure revealed in simulations of the lac operon. PLoS One 2013; 8:e56548. [PMID: 23457581 PMCID: PMC3572996 DOI: 10.1371/journal.pone.0056548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
Collapse
Affiliation(s)
- Luke Czapla
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michael A. Grosner
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
12
|
Goodson KA, Wang Z, Haeusler AR, Kahn JD, English DS. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET. J Phys Chem B 2013; 117:4713-22. [PMID: 23406418 DOI: 10.1021/jp308930c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The E. coli Lac repressor (LacI) tetramer binds simultaneously to a promoter-proximal DNA binding site (operator) and an auxiliary operator, resulting in a DNA loop, which increases repression efficiency. Induction of the lac operon by allolactose reduces the affinity of LacI for DNA, but induction does not completely prevent looping in vivo. Our previous work on the conformations of LacI loops used a hyperstable model DNA construct, 9C14, that contains a sequence directed bend flanked by operators. Single-molecule fluorescence resonance energy transfer (SM-FRET) on a dual fluorophore-labeled LacI-9C14 loop showed that it adopts a single, stable, high-FRET V-shaped LacI conformation. Ligand-induced changes in loop geometry can affect loop stability, and the current work assesses loop population distributions for LacI-9C14 complexes containing the synthetic inducer IPTG. SM-FRET confirms that the high-FRET LacI-9C14 loop is only partially destabilized by saturating IPTG. LacI titration experiments and FRET fluctuation analysis suggest that the addition of IPTG induces loop conformational dynamics and re-equilibration between loop population distributions that include a mixture of looped states that do not exhibit high-efficiency FRET. The results show that repression by looping even at saturating IPTG should be considered in models for regulation of the operon. We propose that persistent DNA loops near the operator function biologically to accelerate rerepression upon exhaustion of inducer.
Collapse
Affiliation(s)
- Kathy A Goodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
13
|
Jimenez-Useche I, Yuan C. The effect of DNA CpG methylation on the dynamic conformation of a nucleosome. Biophys J 2012; 103:2502-12. [PMID: 23260052 DOI: 10.1016/j.bpj.2012.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/19/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022] Open
Abstract
DNA methylation is an important epigenetic mark that is known to induce chromatin condensation and gene silencing. We used a time-domain fluorescence lifetime measurement to quantify the effects of DNA hypermethylation on the conformation and dynamics of a nucleosome. Nucleosomes reconstituted on an unmethylated and a methylated DNA both exhibit dynamic conformations under physiological conditions. The DNA end breathing motion and the H2A-H2B dimer destabilization dominate the dynamic behavior of nucleosomes at low to medium ionic strength. Extensive DNA CpG methylation, surprisingly, does not help to restrain the DNA breathing motion, but facilitates the formation of a more open nucleosome conformation. The presence of the divalent cation, Mg(2+), essential for chromatin compaction, and the methyl donor molecule SAM, required for DNA methyltransferase reaction, facilitate the compaction of both types of nucleosomes. The difference between the unmethylated and the methylated nucleosome persists within a broad range of salt concentrations, but vanishes under high magnesium concentrations. Reduced DNA backbone rigidity due to the presence of methyl groups is believed to contribute to the observed structural and dynamic differences. The observation of this study suggests that DNA methylation alone does not compact chromatin at the nucleosomal level and provides molecular details to understand the regulatory role of DNA methylation in gene expression.
Collapse
|
14
|
Johnson S, Lindén M, Phillips R. Sequence dependence of transcription factor-mediated DNA looping. Nucleic Acids Res 2012; 40:7728-38. [PMID: 22718983 PMCID: PMC3439888 DOI: 10.1093/nar/gks473] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA is subject to large deformations in a wide range of biological processes. Two key examples illustrate how such deformations influence the readout of the genetic information: the sequestering of eukaryotic genes by nucleosomes and DNA looping in transcriptional regulation in both prokaryotes and eukaryotes. These kinds of regulatory problems are now becoming amenable to systematic quantitative dissection with a powerful dialogue between theory and experiment. Here, we use a single-molecule experiment in conjunction with a statistical mechanical model to test quantitative predictions for the behavior of DNA looping at short length scales and to determine how DNA sequence affects looping at these lengths. We calculate and measure how such looping depends upon four key biological parameters: the strength of the transcription factor binding sites, the concentration of the transcription factor, and the length and sequence of the DNA loop. Our studies lead to the surprising insight that sequences that are thought to be especially favorable for nucleosome formation because of high flexibility lead to no systematically detectable effect of sequence on looping, and begin to provide a picture of the distinctions between the short length scale mechanics of nucleosome formation and looping.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
15
|
Rusling DA, Laurens N, Pernstich C, Wuite GJL, Halford SE. DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations. Nucleic Acids Res 2012; 40:4977-87. [PMID: 22362745 PMCID: PMC3367207 DOI: 10.1093/nar/gks183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology.
Collapse
Affiliation(s)
- David A Rusling
- The DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | |
Collapse
|
16
|
Haeusler AR, Goodson KA, Lillian TD, Wang X, Goyal S, Perkins NC, Kahn JD. FRET studies of a landscape of Lac repressor-mediated DNA loops. Nucleic Acids Res 2012; 40:4432-45. [PMID: 22307389 PMCID: PMC3378866 DOI: 10.1093/nar/gks019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA looping mediated by the Lac repressor is an archetypal test case for modeling protein and DNA flexibility. Understanding looping is fundamental to quantitative descriptions of gene expression. Systematic analysis of LacI•DNA looping was carried out using a landscape of DNA constructs with lac operators bracketing an A-tract bend, produced by varying helical phasings between operators and the bend. Fluorophores positioned on either side of both operators allowed direct Förster resonance energy transfer (FRET) detection of parallel (P1) and antiparallel (A1, A2) DNA looping topologies anchored by V-shaped LacI. Combining fluorophore position variant landscapes allows calculation of the P1, A1 and A2 populations from FRET efficiencies and also reveals extended low-FRET loops proposed to form via LacI opening. The addition of isopropyl-β-d-thio-galactoside (IPTG) destabilizes but does not eliminate the loops, and IPTG does not redistribute loops among high-FRET topologies. In some cases, subsequent addition of excess LacI does not reduce FRET further, suggesting that IPTG stabilizes extended or other low-FRET loops. The data align well with rod mechanics models for the energetics of DNA looping topologies. At the peaks of the predicted energy landscape for V-shaped loops, the proposed extended loops are more stable and are observed instead, showing that future models must consider protein flexibility.
Collapse
Affiliation(s)
- Aaron R Haeusler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Adbul Rahim NA, Pelet S, Kamm RD, So PTC. Methodological considerations for global analysis of cellular FLIM/FRET measurements. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:026013. [PMID: 22463045 PMCID: PMC3382354 DOI: 10.1117/1.jbo.17.2.026013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 12/18/2011] [Accepted: 12/27/2011] [Indexed: 05/29/2023]
Abstract
Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.
Collapse
Affiliation(s)
- Nur Aida Adbul Rahim
- Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Serge Pelet
- Massachusetts Institute of Technology, Department of Biological Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Roger D. Kamm
- Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- Massachusetts Institute of Technology, Department of Biological Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Peter T. C. So
- Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- Massachusetts Institute of Technology, Department of Biological Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
18
|
Hirsh AD, Lillian TD, Lionberger TA, Perkins NC. DNA modeling reveals an extended lac repressor conformation in classic in vitro binding assays. Biophys J 2011; 101:718-26. [PMID: 21806940 DOI: 10.1016/j.bpj.2011.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/03/2011] [Accepted: 06/21/2011] [Indexed: 10/17/2022] Open
Abstract
Protein-mediated DNA looping, such as that induced by the lactose repressor (LacI) of Escherichia coli, is a well-known gene regulation mechanism. Although researchers have given considerable attention to DNA looping by LacI, many unanswered questions about this mechanism, including the role of protein flexibility, remain. Recent single-molecule observations suggest that the two DNA-binding domains of LacI are capable of splaying open about the tetramerization domain into an extended conformation. We hypothesized that if recent experiments were able to reveal the extended conformation, it is possible that such structures occurred in previous studies as well. In this study, we tested our hypothesis by reevaluating two classic in vitro binding assays using a computational rod model of DNA. The experiments and computations evaluate the looping of both linear DNA and supercoiled DNA minicircles over a broad range of DNA interoperator lengths. The computed energetic minima align well with the experimentally observed interoperator length for optimal loop stability. Of equal importance, the model reveals that the most stable loops for linear DNA occur when LacI adopts the extended conformation. In contrast, for DNA minicircles, optimal stability may arise from either the closed or the extended protein conformation depending on the degree of supercoiling and the interoperator length.
Collapse
Affiliation(s)
- Andrew D Hirsh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
19
|
KAHN JASOND, CHEONG RAYMOND, MEHTA RUCHIA, EDELMAN LAURENCEM, MORGAN MICHAELA. FLEXIBILITY AND CONTROL OF PROTEIN–DNA LOOPS. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048006000276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein–DNA loops are essential for efficient transcriptional repression and activation. The geometry and stability of the archetypal Lac repressor tetramer (LacI)–DNA loop were investigated using designed hyperstable loops containing lac operators bracketing a sequence-directed bend. Electrophoretic mobility shift assays, DNA cyclization, and bulk and single-molecule fluorescence resonance energy transfer (FRET) demonstrate that the DNA sequence controls whether the LacI–DNA loop forms a compact loop with positive writhe or an open loop with little writhe. Monte Carlo methods for simulation of DNA ring closure were extended to DNA loops, including treatment of variable protein hinge angles. The observed distribution of topoisomer products upon cyclization provides a strong constraint on possible models. The experiments and modeling imply that LacI–DNA can adopt a wide range of geometries but has a strong intrinsic preference for an open form. The flexibility of LacI helps explain in vivo observations that DNA looping is less sensitive to DNA length and shape than that expected from the physical properties of DNA. While DNA cyclization suggests two pools of precursor loops for the 9C14 construct, single-molecule FRET demonstrates a single population. This discrepancy suggests that the LacI–DNA structure is strongly influenced by flanking DNA.
Collapse
Affiliation(s)
- JASON D. KAHN
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - RAYMOND CHEONG
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - RUCHI A. MEHTA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - LAURENCE M. EDELMAN
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - MICHAEL A. MORGAN
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| |
Collapse
|
20
|
Ko YT, Bickel U, Huang J. Polyethylenimine/oligonucleotide polyplexes investigated by fluorescence resonance energy transfer and fluorescence anisotropy. Oligonucleotides 2011; 21:109-14. [PMID: 21417932 DOI: 10.1089/oli.2010.0271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To advance knowledge on polyplex structure and composition, fluorescence resonance energy transfer (FRET) and anisotropy measurements were applied to polyplexes of rhodamine-labeled polyethylenimine (PEI) and fluorescein-labeled double-stranded oligodeoxynucleotide (ODN). About 25 kDa PEI was compared with low-molecular-weight PEI of 2.7 kDa. FRET reached maxima at amine to phosphate (N/P) ratios of 2 and 3 for 2.7 kDa and 25 kDa PEI, respectively, with similar average distances between donor and acceptor dye molecules in polyplexes. Anisotropy measurements allowed estimating the bound fractions of PEI and ODN. At N/P = 6, all ODN was bound, but only 58% of PEI 25 kDa and 45% of PEI 2.7 kDa. In conclusion, the higher molecular weight of PEI may conformationally restrict the availability of amino groups for charge interaction with phosphate groups in ODN. Moreover, significant fractions of both types of PEI remain free in solution at N/P ratios frequently used for transfection. FRET and anisotropy measurements provide effective tools for probing polyplex compositions and designing optimized delivery systems.
Collapse
Affiliation(s)
- Young Tag Ko
- Department of Pharmaceutical Engineering, Sangji University , Wonju, South Korea.
| | | | | |
Collapse
|
21
|
Bond LM, Peters JP, Becker NA, Kahn JD, Maher LJ. Gene repression by minimal lac loops in vivo. Nucleic Acids Res 2010; 38:8072-82. [PMID: 21149272 PMCID: PMC3001091 DOI: 10.1093/nar/gkq755] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 01/25/2023] Open
Abstract
The inflexibility of double-stranded DNA with respect to bending and twisting is well established in vitro. Understanding apparent DNA physical properties in vivo is a greater challenge. Here, we exploit repression looping with components of the Escherichia coli lac operon to monitor DNA flexibility in living cells. We create a minimal system for testing the shortest possible DNA repression loops that contain an E. coli promoter, and compare the results to prior experiments. Our data reveal that loop-independent repression occurs for certain tight operator/promoter spacings. When only loop-dependent repression is considered, fits to a thermodynamic model show that DNA twisting limits looping in vivo, although the apparent DNA twist flexibility is 2- to 4-fold higher than in vitro. In contrast, length-dependent resistance to DNA bending is not observed in these experiments, even for the shortest loops constraining <0.4 persistence lengths of DNA. As observed previously for other looping configurations, loss of the nucleoid protein heat unstable (HU) markedly disables DNA looping in vivo. Length-independent DNA bending energy may reflect the activities of architectural proteins and the structure of the DNA topological domain. We suggest that the shortest loops are formed in apical loops rather than along the DNA plectonemic superhelix.
Collapse
Affiliation(s)
- Laura M. Bond
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Jason D. Kahn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| |
Collapse
|
22
|
Abstract
Lactose repressor protein (LacI) controls transcription of the genes involved in lactose metabolism in bacteria. Essential to optimal LacI-mediated regulation is its ability to bind simultaneously to two operators, forming a loop on the intervening DNA. Recently, several lines of evidence (both theoretical and experimental) have suggested various possible loop structures associated with different DNA binding topologies and LacI tetramer structural conformations (adopted by flexing about the C-terminal tetramerization domain). We address, specifically, the role of protein opening in loop formation by employing the single-molecule tethered particle motion method on LacI protein mutants chemically cross-linked at different positions along the cleft between the two dimers. Measurements on the wild-type and uncross-linked LacI mutants led to the observation of two distinct levels of short tether length, associated with two different DNA looping structures. Restricting conformational flexibility of the protein by chemical cross-linking induces pronounced effects. Crosslinking the dimers at the level of the N-terminal DNA binding head (E36C) completely suppresses looping, whereas cross-linking near the C-terminal tetramerization domain (Q231C) results in changes of looping geometry detected by the measured tether length distributions. These observations lead to the conclusion that tetramer opening plays a definite role in at least a subset of LacI/DNA loop conformations.
Collapse
|
23
|
Towles KB, Beausang JF, Garcia HG, Phillips R, Nelson PC. First-principles calculation of DNA looping in tethered particle experiments. Phys Biol 2009; 6:025001. [PMID: 19571369 PMCID: PMC3298194 DOI: 10.1088/1478-3975/6/2/025001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We calculate the probability of DNA loop formation mediated by regulatory proteins such as Lac repressor (LacI), using a mathematical model of DNA elasticity. Our model is adapted to calculating quantities directly observable in tethered particle motion (TPM) experiments, and it accounts for all the entropic forces present in such experiments. Our model has no free parameters; it characterizes DNA elasticity using information obtained in other kinds of experiments. It assumes a harmonic elastic energy function (or wormlike chain type elasticity), but our Monte Carlo calculation scheme is flexible enough to accommodate arbitrary elastic energy functions. We show how to compute both the 'looping J factor' (or equivalently, the looping free energy) for various DNA construct geometries and LacI concentrations, as well as the detailed probability density function of bead excursions. We also show how to extract the same quantities from recent experimental data on TPM, and then compare to our model's predictions. In particular, we present a new method to correct observed data for finite camera shutter time and other experimental effects. Although the currently available experimental data give large uncertainties, our first-principles predictions for the looping free energy change are confirmed to within about 1 k(B)T, for loops of length around 300 basepairs. More significantly, our model successfully reproduces the detailed distributions of bead excursion, including their surprising three-peak structure, without any fit parameters and without invoking any alternative conformation of the LacI tetramer. Indeed, the model qualitatively reproduces the observed dependence of these distributions on tether length (e.g., phasing) and on LacI concentration (titration). However, for short DNA loops (around 95 basepairs) the experiments show more looping than is predicted by the harmonic-elasticity model, echoing other recent experimental results. Because the experiments we study are done in vitro, this anomalously high looping cannot be rationalized as resulting from the presence of DNA-bending proteins or other cellular machinery. We also show that it is unlikely to be the result of a hypothetical 'open' conformation of the LacI tetramer.
Collapse
Affiliation(s)
- Kevin B Towles
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John F Beausang
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hernan G Garcia
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Philip C Nelson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Concentration and length dependence of DNA looping in transcriptional regulation. PLoS One 2009; 4:e5621. [PMID: 19479049 PMCID: PMC2682762 DOI: 10.1371/journal.pone.0005621] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/06/2009] [Indexed: 11/19/2022] Open
Abstract
In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage), to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least) two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the for looping.
Collapse
|
25
|
Abstract
We study a model of protein searching for a target, using facilitated diffusion, on a DNA molecule confined in a finite volume. The model includes three distinct pathways for facilitated diffusion: (a) sliding--in which the protein diffuses along the contour of the DNA, (b) jumping--where the protein travels between two sites along the DNA by three-dimensional diffusion and finally (c) intersegmental transfer--which allows the protein to move from one site to another by transiently binding both at the same time. The typical search time is calculated using scaling arguments which are verified numerically. Our results suggest that the inclusion of intersegmental transfer (i) decreases the search time considerably, (ii) makes the search time much more robust to variations in the parameters of the model and (iii) that the optimal search time occurs in a regime very different than that found for models which ignore intersegmental transfers. The behavior we find is rich and shows surprising dependences, for example on the DNA length.
Collapse
Affiliation(s)
- Michael Sheinman
- Department of Physics, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | |
Collapse
|
26
|
Lillian TD, Goyal S, Kahn JD, Meyhöfer E, Perkins NC. Computational analysis of looping of a large family of highly bent DNA by LacI. Biophys J 2008; 95:5832-42. [PMID: 18931251 PMCID: PMC2599832 DOI: 10.1529/biophysj.108.142471] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/05/2008] [Indexed: 11/18/2022] Open
Abstract
Sequence-dependent intrinsic curvature of DNA influences looping by regulatory proteins such as LacI and NtrC. Curvature can enhance stability and control shape, as observed in LacI loops formed with three designed sequences with operators bracketing an A-tract bend. We explore geometric, topological, and energetic effects of curvature with an analysis of a family of highly bent sequences, using the elastic rod model from previous work. A unifying straight-helical-straight representation uses two phasing parameters to describe sequences composed of two straight segments that flank a common helically supercoiled segment. We exercise the rod model over this two-dimensional space of phasing parameters to evaluate looping behaviors. This design space is found to comprise two subspaces that prefer parallel versus anti-parallel binding topologies. The energetic cost of looping varies from 4 to 12 kT. Molecules can be designed to yield distinct binding topologies as well as hyperstable or hypostable loops and potentially loops that can switch conformations. Loop switching could be a mechanism for control of gene expression. Model predictions for linking numbers and sizes of LacI-DNA loops can be tested using multiple experimental approaches, which coupled with theory could address whether proteins or DNA provide the observed flexibility of protein-DNA loops.
Collapse
Affiliation(s)
- Todd D Lillian
- Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
27
|
Wong OK, Guthold M, Erie DA, Gelles J. Interconvertible lac repressor-DNA loops revealed by single-molecule experiments. PLoS Biol 2008; 6:e232. [PMID: 18828671 PMCID: PMC2553838 DOI: 10.1371/journal.pbio.0060232] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 08/13/2008] [Indexed: 11/18/2022] Open
Abstract
At many promoters, transcription is regulated by simultaneous binding of a protein to multiple sites on DNA, but the structures and dynamics of such transcription factor-mediated DNA loops are poorly understood. We directly examined in vitro loop formation mediated by Escherichia coli lactose repressor using single-molecule structural and kinetics methods. Small (∼150 bp) loops form quickly and stably, even with out-of-phase operator spacings. Unexpectedly, repeated spontaneous transitions between two distinct loop structures were observed in individual protein–DNA complexes. The results imply a dynamic equilibrium between a novel loop structure with the repressor in its crystallographic “V” conformation and a second structure with a more extended linear repressor conformation that substantially lessens the DNA bending strain. The ability to switch between different loop structures may help to explain how robust transcription regulation is maintained even though the mechanical work required to form a loop may change substantially with metabolic conditions. Some proteins that regulate DNA transcription do so by binding simultaneously to two separated sites on the DNA molecule, forming a DNA loop. Although such loops are common, many of their features are poorly characterized. Of particular interest is the question of how some proteins accommodate the formation of loops of different sizes, particularly when the loops are small and thus require strong bending (and, in some cases, twisting) of the DNA to form. We observed the shape and behavior of individual DNA molecules bent into tight loops by Lac repressor, a transcription-regulating protein from the bacterium Escherichia coli. Loops were formed in DNA molecules with repressor-binding sites on opposite faces of the DNA double helix almost as readily as in those with sites on the same side, suggesting that the repressor is highly flexible. The DNA can switch back and forth between a tighter and a looser loop structure “on the fly” during the lifetime of a single loop, further evidence that Lac repressor is capable of adopting different shapes that may serve to minimize DNA bending or twisting in loops. The ability of the repressor to readily switch between different loop shapes may allow it to maintain effective control of transcription across situations in which the difficulty of bending or twisting DNA changes substantially. A large-scale conformational change in a transcription factor protein allows DNA loops to dynamically switch between alternative conformations that may contribute to robust transcription regulation.
Collapse
Affiliation(s)
- Oi Kwan Wong
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Dorothy A Erie
- Department of Chemistry and Curriculum Applied and Materials Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Subach F, Kirsanova O, Liquier J, Gromova ES. Resolution of the EcoRII restriction endonuclease-DNA complex structure in solution using fluorescence spectroscopy. Biophys Chem 2008; 138:107-14. [PMID: 18814946 DOI: 10.1016/j.bpc.2008.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/06/2008] [Accepted: 09/07/2008] [Indexed: 11/27/2022]
Abstract
The X-ray structure for the type IIE EcoRII restriction endonuclease has been resolved [X.E. Zhou, Y. Wang, M. Reuter, M. Mucke, D.H. Kruger, E.J. Meehan and L. Chen. Crystal structure of type IIE restriction endonuclease EcoRII reveals an autoinhibition mechanism by a novel effector-binding fold. J. Mol. Biol. 335 (2004) 307-319.], but the structure of the R.EcoRII-DNA complex is still unknown. The aim of this article was to examine the structure of the pre-reactive R.EcoRII-DNA complex in solution by fluorescence spectroscopy. The structure for the R.EcoRII-DNA complex was resolved by determining the fluorescence resonance energy transfer (FRET) between two fluorescent dyes, covalently attached near the EcoRII recognition sites, that were located at opposite ends of a lengthy two-site DNA molecule. Analysis of the FRET data from the two-site DNA revealed a likely model for the arrangement of the two EcoRII recognition sites relative to each other in the R.EcoRII-DNA complex in the presence of Ca(2+) ions. According to this model, the R.EcoRII binds the two-site DNA and forms a DNA loop in which the EcoRII recognition sites are 20+/-10 A distant to each other and situated at an angle of 70+/-10 degrees.
Collapse
Affiliation(s)
- Fedor Subach
- Department of Chemistry, Moscow State University, Moscow, 119991, Russia
| | | | | | | |
Collapse
|
29
|
Normanno D, Vanzi F, Pavone FS. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping. Nucleic Acids Res 2008; 36:2505-13. [PMID: 18310101 PMCID: PMC2377426 DOI: 10.1093/nar/gkn071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 02/05/2008] [Indexed: 11/12/2022] Open
Abstract
Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between -0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI-DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes.
Collapse
Affiliation(s)
- Davide Normanno
- LENS, European Laboratory for Non-linear Spectroscopy, Università degli Studi di Firenze, Via N. Carrara 1, I-50019 Sesto Fiorentino (FI), Italy.
| | | | | |
Collapse
|
30
|
Taraban M, Zhan H, Whitten AE, Langley DB, Matthews KS, Swint-Kruse L, Trewhella J. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. J Mol Biol 2007; 376:466-81. [PMID: 18164724 DOI: 10.1016/j.jmb.2007.11.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/16/2007] [Accepted: 11/20/2007] [Indexed: 11/30/2022]
Abstract
We present here the results of a series of small-angle X-ray scattering studies aimed at understanding the role of conformational changes and structural flexibility in DNA binding and allosteric signaling in a bacterial transcription regulator, lactose repressor protein (LacI). Experiments were designed to detect possible conformational changes that occur when LacI binds either DNA or the inducer IPTG, or both. Our studies included the native LacI dimer of homodimers and a dimeric variant (R3), enabling us to probe conformational changes within the homodimers and distinguish them from those involving changes in the homodimer-homodimer relationships. The scattering data indicate that removal of operator DNA (oDNA) from R3 results in an unfolding and extension of the hinge helix that connects the LacI regulatory and DNA-binding domains. In contrast, only very subtle conformational changes occur in the R3 dimer-oDNA complex upon IPTG binding, indicative of small adjustments in the orientations of domains and/or subdomains within the structure. The binding of IPTG to native (tetrameric) LacI-oDNA complexes also appears to facilitate a modest change in the average homodimer-homodimer disposition. Notably, the crystal structure of the native LacI-oDNA complex differs significantly from the average solution conformation. The solution scattering data are best fit by an ensemble of structures that includes (1) approximately 60% of the V-shaped dimer of homodimers observed in the crystal structure and (2) approximately 40% of molecules with more "open" forms, such as those generated when the homodimers move with respect to each other about the tetramerization domain. In gene regulation, such a flexible LacI would be beneficial for the interaction of its two DNA-binding domains, positioned at the tips of the V, with the required two of three LacI operators needed for full repression.
Collapse
Affiliation(s)
- Marc Taraban
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Efficiency of resonance energy transfer in homo-oligomeric complexes of proteins. J Biol Phys 2007; 33:109-27. [PMID: 19669544 DOI: 10.1007/s10867-007-9046-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022] Open
Abstract
A theoretical model is proposed for the apparent efficiency of fluorescence (Förster) resonance energy transfer (FRET) in mixtures of free monomers and homo-oligomeric protein complexes of uniform size. The model takes into account possible pathways for transfer of optical excitations from single donors to multiple acceptors and from multiple donors (non-simultaneously) to single acceptors. This necessary departure from the standard theory has been suggested in the literature, but it has only been successfully implemented for a few particular cases, such as for particular geometries of the oligomers. The predictions of the present theoretical model differ significantly from those of the standard theory, with the exception of the case of dimers, for which agreement is observed. This model therefore provides new insights into the FRET behavior of oligomers comprising more than two monomers, and also suggests means for determining the size of oligomeric protein complexes as well as the proportion of associated and unassociated monomers.
Collapse
|
32
|
Goyal S, Lillian T, Blumberg S, Meiners JC, Meyhöfer E, Perkins NC. Intrinsic curvature of DNA influences LacR-mediated looping. Biophys J 2007; 93:4342-59. [PMID: 17766355 PMCID: PMC2098735 DOI: 10.1529/biophysj.107.112268] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-mediated DNA looping is a common mechanism for regulating gene expression. Loops occur when a protein binds to two operators on the same DNA molecule. The probability of looping is controlled, in part, by the basepair sequence of inter-operator DNA, which influences its structural properties. One structural property is the intrinsic or stress-free curvature. In this article, we explore the influence of sequence-dependent intrinsic curvature by exercising a computational rod model for the inter-operator DNA as applied to looping of the LacR-DNA complex. Starting with known sequences for the inter-operator DNA, we first compute the intrinsic curvature of the helical axis as input to the rod model. The crystal structure of the LacR (with bound operators) then defines the requisite boundary conditions needed for the dynamic rod model that predicts the energetics and topology of the intervening DNA loop. A major contribution of this model is its ability to predict a broad range of published experimental data for highly bent (designed) sequences. The model successfully predicts the loop topologies known from fluorescence resonance energy transfer measurements, the linking number distribution known from cyclization assays with the LacR-DNA complex, the relative loop stability known from competition assays, and the relative loop size known from gel mobility assays. In addition, the computations reveal that highly curved sequences tend to lower the energetic cost of loop formation, widen the energy distribution among stable and meta-stable looped states, and substantially alter loop topology. The inclusion of sequence-dependent intrinsic curvature also leads to nonuniform twist and necessitates consideration of eight distinct binding topologies from the known crystal structure of the LacR-DNA complex.
Collapse
Affiliation(s)
- Sachin Goyal
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | |
Collapse
|
33
|
Saiz L, Vilar JM. Multilevel deconstruction of the In vivo behavior of looped DNA-protein complexes. PLoS One 2007; 2:e355. [PMID: 17406679 PMCID: PMC1831498 DOI: 10.1371/journal.pone.0000355] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 03/14/2007] [Indexed: 11/28/2022] Open
Abstract
Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.
Collapse
Affiliation(s)
- Leonor Saiz
- Integrative Biological Modeling Laboratory, Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jose M.G. Vilar
- Integrative Biological Modeling Laboratory, Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Garcia HG, Grayson P, Han L, Inamdar M, Kondev J, Nelson PC, Phillips R, Widom J, Wiggins PA. Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 2007; 85:115-30. [PMID: 17103419 PMCID: PMC3496788 DOI: 10.1002/bip.20627] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanical properties of DNA play a critical role in many biological functions. For example, DNA packing in viruses involves confining the viral genome in a volume (the viral capsid) with dimensions that are comparable to the DNA persistence length. Similarly, eukaryotic DNA is packed in DNA-protein complexes (nucleosomes), in which DNA is tightly bent around protein spools. DNA is also tightly bent by many proteins that regulate transcription, resulting in a variation in gene expression that is amenable to quantitative analysis. In these cases, DNA loops are formed with lengths that are comparable to or smaller than the DNA persistence length. The aim of this review is to describe the physical forces associated with tightly bent DNA in all of these settings and to explore the biological consequences of such bending, as increasingly accessible by single-molecule techniques.
Collapse
Affiliation(s)
- Hernan G. Garcia
- Department of Physics, California Institute of Technology, Pasadena, CA 91125
| | - Paul Grayson
- Department of Physics, California Institute of Technology, Pasadena, CA 91125
| | - Lin Han
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Mandar Inamdar
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Jané Kondev
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Philip C. Nelson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Rob Phillips
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Paul A. Wiggins
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| |
Collapse
|
35
|
Zhang Y, McEwen AE, Crothers DM, Levene SD. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping. PLoS One 2006; 1:e136. [PMID: 17205140 PMCID: PMC1762422 DOI: 10.1371/journal.pone.0000136] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 11/30/2006] [Indexed: 11/19/2022] Open
Abstract
Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58-156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes.
Collapse
Affiliation(s)
- Yongli Zhang
- Departments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| | - Abbye E. McEwen
- Institute of Biomedical Sciences and Technology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Donald M. Crothers
- Departments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Stephen D. Levene
- Institute of Biomedical Sciences and Technology, University of Texas at Dallas, Richardson, Texas, United States of America
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Vanzi F, Broggio C, Sacconi L, Pavone FS. Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion. Nucleic Acids Res 2006; 34:3409-20. [PMID: 16835309 PMCID: PMC1524907 DOI: 10.1093/nar/gkl393] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The tethered particle motion (TPM) allows the direct detection of activity of a variety of biomolecules at the single molecule level. First pioneered for RNA polymerase, it has recently been applied also to other enzymes. In this work we employ TPM for a systematic investigation of the kinetics of DNA looping by wild-type Lac repressor (wt-LacI) and by hinge mutants Q60G and Q60 + 1. We implement a novel method for TPM data analysis to reliably measure the kinetics of loop formation and disruption and to quantify the effects of the protein hinge flexibility and of DNA loop strain on such kinetics. We demonstrate that the flexibility of the protein hinge has a profound effect on the lifetime of the looped state. Our measurements also show that the DNA bending energy plays a minor role on loop disruption kinetics, while a strong effect is seen on the kinetics of loop formation. These observations substantiate the growing number of theoretical studies aimed at characterizing the effects of DNA flexibility, tension and torsion on the kinetics of protein binding and dissociation, strengthening the idea that these mechanical factors in vivo may play an important role in the modulation of gene expression regulation.
Collapse
Affiliation(s)
- Francesco Vanzi
- LENS-European Laboratory for Nonlinear Spectroscopy, University of Florence, Italy.
| | | | | | | |
Collapse
|
37
|
Gao M, Sotomayor M, Villa E, Lee EH, Schulten K. Molecular mechanisms of cellular mechanics. Phys Chem Chem Phys 2006; 8:3692-706. [PMID: 16896432 DOI: 10.1039/b606019f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanical forces play an essential role in cellular processes as input, output, and signals. Various protein complexes in the cell are designed to handle, transform and use such forces. For instance, proteins of muscle and the extracellular matrix can withstand considerable stretching forces, hearing-related and mechanosensory proteins can transform weak mechanical stimuli into electrical signals, and regulatory proteins are suited to forcing DNA into loops to control gene expression. Here we review the structure-function relationship of four protein complexes with well defined and representative mechanical functions. The first example is titin, a protein that confers passive elasticity on muscle. The second system is the elastic extracellular matrix protein, fibronectin, and its cellular receptor integrin. The third protein system is the transduction apparatus in hearing and other mechanical senses, likely containing cadherin and ankyrin repeats. The last system is the lac repressor protein, which regulates gene expression by looping DNA. This review focuses on atomic level descriptions of the physical mechanisms underlying the various mechanical functions of the stated proteins.
Collapse
Affiliation(s)
- Mu Gao
- Beckman Institute, Department of Physics, Center for Biophysics and Computational Biology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
38
|
Swigon D, Coleman BD, Olson WK. Modeling the Lac repressor-operator assembly: the influence of DNA looping on Lac repressor conformation. Proc Natl Acad Sci U S A 2006; 103:9879-84. [PMID: 16785444 PMCID: PMC1502547 DOI: 10.1073/pnas.0603557103] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR-DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50-180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure.
Collapse
Affiliation(s)
- David Swigon
- Departments of Chemistry and Chemical Biology and
- Mechanics and Materials Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08854; and
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260
- To whom correspondence may be addressed. E-mail:
, , or
| | - Bernard D. Coleman
- Mechanics and Materials Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08854; and
- To whom correspondence may be addressed. E-mail:
, , or
| | - Wilma K. Olson
- Departments of Chemistry and Chemical Biology and
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|
39
|
Balaeff A, Mahadevan L, Schulten K. Modeling DNA loops using the theory of elasticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:031919. [PMID: 16605570 DOI: 10.1103/physreve.73.031919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Indexed: 05/08/2023]
Abstract
An elastic rod model of a protein-bound DNA loop is adapted for application in multi-scale simulations of protein-DNA complexes. The classical Kirchhoff system of equations which describes the equilibrium structure of the elastic loop is modified to account for the intrinsic twist and curvature, anisotropic bending properties, and electrostatic charge of DNA. The effects of bending anisotropy and electrostatics are studied for the DNA loop clamped by the lac repressor protein. For two possible lengths of the loop, several topologically different conformations are predicted and extensively analyzed over the broad range of model parameters describing DNA bending and electrostatic properties. The scope and applications of the model in already accomplished and in future multi-scale studies of protein-DNA complexes are discussed.
Collapse
Affiliation(s)
- Alexander Balaeff
- Beckman Institute, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
40
|
Williams SL, Parkhurst LK, Parkhurst LJ. Changes in DNA bending and flexing due to tethered cations detected by fluorescence resonance energy transfer. Nucleic Acids Res 2006; 34:1028-35. [PMID: 16481311 PMCID: PMC1369283 DOI: 10.1093/nar/gkj498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Local DNA deformation arises from an interplay among sequence-related base stacking, intrastrand phosphate repulsion, and counterion and water distribution, which is further complicated by the approach and binding of a protein. The role of electrostatics in this complex chemistry was investigated using tethered cationic groups that mimic proximate side chains. A DNA duplex was modified with one or two centrally located deoxyuracils substituted at the 5-position with either a flexible 3-aminopropyl group or a rigid 3-aminopropyn-1-yl group. End-to-end helical distances and duplex flexibility were obtained from measurements of the time-resolved Förster resonance energy transfer between 5′- and 3′-linked dye pairs. A novel analysis utilized the first and second moments of the G(t) function, which encompasses only the energy transfer process. Duplex flexibility is altered by the presence of even a single positive charge. In contrast, the mean 5′–3′ distance is significantly altered by the introduction of two adjacently tethered cations into the double helix but not by a single cation: two adjacent aminopropyl groups decrease the 5′–3′ distance while neighboring aminopropynyl groups lengthen the helix.
Collapse
Affiliation(s)
| | | | - Lawrence J. Parkhurst
- To whom correspondence should be addressed. Tel: +1 402 472 3501; Fax: +1 402 472 9402;
| |
Collapse
|
41
|
Abstract
The lack of a rigorous analytical theory for DNA looping has caused many DNA-loop-mediated phenomena to be interpreted using theories describing the related process of DNA cyclization. However, distinctions in the mechanics of DNA looping versus cyclization can have profound quantitative effects on the thermodynamics of loop closure. We have extended a statistical mechanical theory recently developed for DNA cyclization to model DNA looping, taking into account protein flexibility. Notwithstanding the underlying theoretical similarity, we find that the topological constraint of loop closure leads to the coexistence of multiple classes of loops mediated by the same protein structure. These loop topologies are characterized by dramatic differences in twist and writhe; because of the strong coupling of twist and writhe within a loop, DNA looping can exhibit a complex overall helical dependence in terms of amplitude, phase, and deviations from uniform helical periodicity. Moreover, the DNA-length dependence of optimal looping efficiency depends on protein elasticity, protein geometry, and the presence of intrinsic DNA bends. We derive a rigorous theory of loop formation that connects global mechanical and geometric properties of both DNA and protein and demonstrates the importance of protein flexibility in loop-mediated protein-DNA interactions.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
42
|
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26:1781-802. [PMID: 16222654 PMCID: PMC2486339 DOI: 10.1002/jcc.20289] [Citation(s) in RCA: 12445] [Impact Index Per Article: 655.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.
Collapse
Affiliation(s)
- James C Phillips
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Morgan MA, Okamoto K, Kahn JD, English DS. Single-molecule spectroscopic determination of lac repressor-DNA loop conformation. Biophys J 2005; 89:2588-96. [PMID: 16085773 PMCID: PMC1366758 DOI: 10.1529/biophysj.105.067728] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli lactose repressor protein (LacI) provides a classic model for understanding protein-induced DNA looping. LacI has a C-terminal four-helix bundle tetramerization domain that may act as a flexible hinge. In previous work, several DNA constructs, each containing two lac operators bracketing a sequence-induced bend, were designed to stabilize different possible looping geometries. The resulting hyperstable LacI-DNA loops exist as both a compact "closed" form with a V-shaped repressor and also a more "open" form with an extended hinge. The "9C14" construct was of particular interest because footprinting, electrophoretic mobility shift, and ring closure experiments suggested that it forms both geometries. Previous fluorescence resonance energy transfer (FRET) measurements gave an efficiency of energy transfer (ET) of 70%, confirming the existence of a closed form. These measurements could not determine whether open form or intermediate geometries are populated or the timescale of interconversion. We have now applied single-molecule FRET to Cy3, Cy5 double-labeled LacI-DNA loops diffusing freely in solution. By using multiple excitation wavelengths and by carefully examining the behavior of the zero-ET peak during titration with LacI, we show that the LacI-9C14 loop exists exclusively in a single closed form exhibiting essentially 100% ET.
Collapse
Affiliation(s)
- Michael A Morgan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
44
|
Semsey S, Virnik K, Adhya S. A gamut of loops: meandering DNA. Trends Biochem Sci 2005; 30:334-41. [PMID: 15950878 DOI: 10.1016/j.tibs.2005.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/29/2005] [Accepted: 04/22/2005] [Indexed: 11/18/2022]
Abstract
Nucleoprotein complexes comprising short DNA loops (150 base pairs or less) are involved in a wide variety of DNA transactions (e.g. transcription regulation, replication and recombination) in both prokaryotes and eukaryotes, and also can be useful in designing nanostructures. In these higher-order nucleoprotein complexes, proteins bound to spatially separated sites on a DNA interact with each other by looping out the relatively stiff intervening DNA. Recent technological developments have enabled determination of DNA trajectories in a few DNA-loop-containing regulatory complexes. Results show that, in a given system, a specific DNA trajectory is preferred over others.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | | | | |
Collapse
|
45
|
Becker NA, Kahn JD, Maher LJ. Bacterial repression loops require enhanced DNA flexibility. J Mol Biol 2005; 349:716-30. [PMID: 15893770 DOI: 10.1016/j.jmb.2005.04.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 04/04/2005] [Accepted: 04/16/2005] [Indexed: 11/15/2022]
Abstract
The Escherichia coli lac operon provides a classic paradigm for understanding regulation of gene transcription. It is now appreciated that lac promoter repression involves cooperative binding of the bidentate lac repressor tetramer to pairs of lac operators via DNA looping. We have adapted components of this system to create an artificial assay of DNA flexibility in E.coli. This approach allows for systematic study of endogenous and exogenous proteins as architectural factors that enhance apparent DNA flexibility in vivo. We show that inducer binding does not completely remove repression loops but it does alter their geometries. Deletion of the E.coli HU protein drastically destabilizes small repression loops, an effect that can be partially overcome by expression of a heterologous mammalian HMG protein. These results emphasize that the inherent torsional inflexibility of DNA restrains looping and must be modulated in vivo.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
46
|
Villa E, Balaeff A, Schulten K. Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. Proc Natl Acad Sci U S A 2005; 102:6783-8. [PMID: 15863616 PMCID: PMC1100768 DOI: 10.1073/pnas.0409387102] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Indexed: 11/18/2022] Open
Abstract
A multiscale simulation of a complex between the lac repressor protein (LacI) and a 107-bp-long DNA segment is reported. The complex between the repressor and two operator DNA segments is described by all-atom molecular dynamics; the size of the simulated system comprises either 226,000 or 314,000 atoms. The DNA loop connecting the operators is modeled as a continuous elastic ribbon, described mathematically by the nonlinear Kirchhoff differential equations with boundary conditions obtained from the coordinates of the terminal base pairs of each operator. The forces stemming from the looped DNA are included in the molecular dynamics simulations; the loop structure and the forces are continuously recomputed because the protein motions during the simulations shift the operators and the presumed termini of the loop. The simulations reveal the structural dynamics of the LacI-DNA complex in unprecedented detail. The multiple domains of LacI exhibit remarkable structural stability during the simulation, moving much like rigid bodies. LacI is shown to absorb the strain from the looped DNA mainly through its mobile DNA-binding head groups. Even with large fluctuating forces applied, the head groups tilt strongly and keep their grip on the operator DNA, while the remainder of the protein retains its V-shaped structure. A simulated opening of the cleft of LacI by 500-pN forces revealed the interactions responsible for locking LacI in the V-conformation.
Collapse
Affiliation(s)
- Elizabeth Villa
- Theoretical and Computational Biophysics Group, Beckman Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
47
|
Raicu V, Jansma D, Miller R, Friesen J. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem J 2005; 385:265-77. [PMID: 15352875 PMCID: PMC1134695 DOI: 10.1042/bj20040226] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 08/04/2004] [Accepted: 09/07/2004] [Indexed: 12/20/2022]
Abstract
We describe a fluorescence resonance energy transfer (FRET)-based method for finding in living cells the fraction of a protein population (alpha(T)) forming complexes, and the average number (n) of those protein molecules in each complex. The method relies both on sensitized acceptor emission and on donor de-quenching (by photobleaching of the acceptor molecules), coupled with full spectral analysis of the differential fluorescence signature, in order to quantify the donor/acceptor energy transfer. The approach and sensitivity limits are well suited for in vivo microscopic investigations. This is demonstrated using a scanning laser confocal microscope to study complex formation of the sterile 2 alpha-factor receptor protein (Ste2p), labelled with green, cyan, and yellow fluorescent proteins (GFP, CFP, and YFP respectively), in budding yeast Saccharomyces cerevisiae. A theoretical model is presented that relates the efficiency of energy transfer in protein populations (the apparent FRET efficiency, E(app)) to the energy transferred in a single donor/acceptor pair (E, the true FRET efficiency). We determined E by using a new method that relies on E(app) measurements for two donor/acceptor pairs, Ste2p-CFP/Ste2p-YFP and Ste2p-GFP/Ste2p-YFP. From E(app) and E we determined alpha(T) approximately 1 and n approximately 2 for Ste2 proteins. Since the Ste2p complexes are formed in the absence of the ligand in our experiments, we conclude that the alpha-factor pheromone is not necessary for dimerization.
Collapse
Key Words
- green fluorescent protein (gfp) variants
- photobleaching
- saccharomyces cerevisiae
- sterile 2 alpha factor receptor protein (ste2p)
- stoichiometry
- a, acceptor (of energy)
- αa, the fraction of interacting acceptor molecules
- [a]d, the concentration of a in complexes with d
- [a]t, the total concentration of a
- βd, the donor-bleaching coefficient or the fraction of donors remaining after irradiation (βd=0 for complete bleaching)
- bfp, blue fluorescent protein
- cfp, cyan fluorescent protein
- d, donor
- αd, the fraction of donors that form oligomers with acceptors
- [d]a, the concentration of d in complexes with a
- [d]t, the total concentration of d
- dic, differential interference contrast
- e, true fret efficiency
- eapp, apparent fret efficiency
- fret, fluorescence resonance energy transfer
- gfp, green fluorescent protein
- gpcr, g protein-coupled receptor
- kdpd is the donor fluorescence after photobleaching
- r, inter-chromophore distance
- ste2p, sterile 2 α-factor receptor protein
- yfp, yellow fluorescent protein
Collapse
Affiliation(s)
- Valerică Raicu
- *Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Toronto, Ontario M5G 1L6, Canada
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- ‡Department of Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - David B. Jansma
- *Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - R. J. Dwayne Miller
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- ‡Department of Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - James D. Friesen
- *Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
48
|
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005. [DOI: 10.1002/jcc.20289 http://www.ks.uiuc.edu/research/namd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Lilja AE, Jenssen JR, Kahn JD. Geometric and dynamic requirements for DNA looping, wrapping and unwrapping in the activation of E.coli glnAp2 transcription by NtrC. J Mol Biol 2004; 342:467-78. [PMID: 15327947 DOI: 10.1016/j.jmb.2004.07.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 07/06/2004] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
Transcriptional activation by the E.coli NtrC protein can occur via DNA looping between a DNA-bound activator and the target sigma(54) RNA polymerase. NtrC forms an octamer on DNA that is capable of binding two DNA molecules. Its ATPase activity is required for open complex formation. Geometric requirements for activation were assessed using a library of DNA bending sequences created by random ligation of A-tract oligonucleotides, as well as several designed sequences. Thirty random or designed sequences with a variety of DNA lengths and bending geometries were cloned in plasmids, and the library was used to replace the spacer between the NtrC binding sites and the core glnAp2 promoter. The activity of each promoter construct under nitrogen limitation was determined in vivo, in a lambda phage lacZ reporter system integrated as a single-copy lysogen to avoid titrating NtrC or polymerase. A wide variety of bending geometries was found to support a similar level of transcriptional activation ( approximately 3-4-fold). Computer modeling of the DNA trajectories suggests that the most inactive promoters have short spacer DNA and the NtrC sites on the opposite side of the helix as the wild-type sites; otherwise, the loop can form effectively. Flexibility and multivalency of the NtrC-Esigma(54) interaction apparently provides substantial independence from DNA stiffness constraints, and in general activation requires less efficient looping than repression. However, none of the random templates were as active as wild-type promoter. Subsidiary activator binding sites in the wild-type were found to be required for full activity, but, surprisingly, these sites could not be functionally replaced by strong binding sites. This suggests that one or more protomers in the NtrC octamer must form and then release contacts with DNA in order to complete the ATPase cycle and act as an AAA(+) activator of the Esigma(54). This dynamic DNA wrapping around the NtrC octamer is proposed to be necessary for efficient activation, and the wrapping may also reduce adventitious activation of other promoters.
Collapse
Affiliation(s)
- Anders E Lilja
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | | | | |
Collapse
|
50
|
Balaeff A, Mahadevan L, Schulten K. Structural basis for cooperative DNA binding by CAP and lac repressor. Structure 2004; 12:123-32. [PMID: 14725772 DOI: 10.1016/j.str.2003.12.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Catabolite gene activator protein (CAP) and lac repressor (LR) are celebrated transcription-regulating proteins that bind to DNA cooperatively forming a ternary complex with the promoter loop. Here we present a multiscale model of the ternary complex derived from crystal structures of the proteins and a continuous structure of the DNA loop built using the theory of elasticity. We predict that the loop is underwound in the binary complex with the LR, whereas in the ternary complex with the LR and CAP, the loop is overwound and extended due to an upstream relocation of a DNA binding hand of LR. The computed relocation distance matches the experimental observations and the energy balance of the system explains the cooperativity effect. Using the multiscale approach, we build an all-atom model of the ternary complex that suggests a series of further experimental investigations.
Collapse
Affiliation(s)
- Alexander Balaeff
- Center for Biophysics and Computational Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|