1
|
Garab G, Magyar M, Sipka G, Lambrev PH. New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light-adapted state of photosystem II. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5458-5471. [PMID: 37410874 DOI: 10.1093/jxb/erad252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Photosystem II (PSII) uses solar energy to oxidize water and delivers electrons to fix CO2. Although the structure at atomic resolution and the basic photophysical and photochemical functions of PSII are well understood, many important questions remain. The activity of PSII in vitro and in vivo is routinely monitored by recording the induction kinetics of chlorophyll a fluorescence (ChlF). According to the 'mainstream' model, the rise from the minimum level (Fo) to the maximum (Fm) of ChlF of dark-adapted PSII reflects the closure of all functionally active reaction centers, and the Fv/Fm ratio is equated with the maximum photochemical quantum yield of PSII (where Fv=Fm-Fo). However, this model has never been free of controversies. Recent experimental data from a number of studies have confirmed that the first single-turnover saturating flash (STSF), which generates the closed state (PSIIC), produces F1
Collapse
Affiliation(s)
- Győző Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Petar H Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
2
|
Magyar M, Sipka G, Han W, Li X, Han G, Shen JR, Lambrev PH, Garab G. Characterization of the Rate-Limiting Steps in the Dark-To-Light Transitions of Closed Photosystem II: Temperature Dependence and Invariance of Waiting Times during Multiple Light Reactions. Int J Mol Sci 2022; 24:ijms24010094. [PMID: 36613535 PMCID: PMC9820552 DOI: 10.3390/ijms24010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Rate-limiting steps in the dark-to-light transition of Photosystem II (PSII) were discovered by measuring the variable chlorophyll-a fluorescence transients elicited by single-turnover saturating flashes (STSFs). It was shown that in diuron-treated samples: (i) the first STSF, despite fully reducing the QA quinone acceptor molecule, generated only an F1(<Fm) fluorescence level; (ii) to produce the maximum (Fm) level, additional excitations were required, which, however, (iii) were effective only with sufficiently long Δτ waiting times between consecutive STSFs. Detailed studies revealed the gradual formation of the light-adapted charge-separated state, PSIIL. The data presented here substantiate this assignment: (i) the Δτ1/2 half-increment rise (or half-waiting) times of the diuron-treated isolated PSII core complexes (CCs) of Thermostichus vulcanus and spinach thylakoid membranes displayed similar temperature dependences between 5 and −80 °C, with substantially increased values at low temperatures; (ii) the Δτ1/2 values in PSII CC were essentially invariant on the Fk−to-Fk+1 (k = 1−4) increments both at 5 and at −80 °C, indicating the involvement of the same physical mechanism during the light-adaptation process of PSIIL. These data are in harmony with the earlier proposed role of dielectric relaxation processes in the formation of the light-adapted charge-separated state and in the variable chlorophyll-a fluorescence of PSII.
Collapse
Affiliation(s)
- Melinda Magyar
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
- Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
3
|
Sipka G, Nagy L, Magyar M, Akhtar P, Shen JR, Holzwarth AR, Lambrev PH, Garab G. Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. Open Biol 2022; 12:220297. [PMID: 36514981 PMCID: PMC9748786 DOI: 10.1098/rsob.220297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.
Collapse
Affiliation(s)
- G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - L. Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1, 6720 Szeged, Hungary
| | - M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - J.-R. Shen
- Institute of Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - A. R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim a.d. Ruhr, Germany
| | - P. H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
4
|
Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NK, Knox PP, Paschenko VZ. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2021; 147:197-209. [PMID: 33389445 PMCID: PMC7778420 DOI: 10.1007/s11120-020-00807-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 μM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 μM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.
Collapse
Affiliation(s)
- Marina G Strakhovskaya
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russian Federation.
| | - Eugene P Lukashev
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Boris N Korvatovskiy
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Ekaterina G Kholina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Nuranija Kh Seifullina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Peter P Knox
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Vladimir Z Paschenko
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
5
|
Serdenko TV, Barabash YM, Knox PP, Seifullina NK. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria. NANOSCALE RESEARCH LETTERS 2016; 11:286. [PMID: 27271854 PMCID: PMC4896891 DOI: 10.1186/s11671-016-1502-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one-to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism.
Collapse
Affiliation(s)
- T V Serdenko
- Department of Physics of Biological Systems, Institute of Physics NAS Ukraine, Prospect Nauky, 46, 03028, Kyiv, Ukraine.
| | - Y M Barabash
- Department of Physics of Biological Systems, Institute of Physics NAS Ukraine, Prospect Nauky, 46, 03028, Kyiv, Ukraine
| | - P P Knox
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, Leninskie Gory, 1, 119991, Moscow, Russia
| | - N Kh Seifullina
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, Leninskie Gory, 1, 119991, Moscow, Russia
| |
Collapse
|
6
|
Boiko V, Dovbeshko G, Dolgov L, Kiisk V, Sildos I, Loot A, Gorelik V. Angular shaping of fluorescence from synthetic opal-based photonic crystal. NANOSCALE RESEARCH LETTERS 2015; 10:97. [PMID: 25852393 PMCID: PMC4385143 DOI: 10.1186/s11671-015-0781-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/23/2015] [Indexed: 06/01/2023]
Abstract
Spectral, angular, and temporal distributions of fluorescence as well as specular reflection were investigated for silica-based artificial opals. Periodic arrangement of nanosized silica globules in the opal causes a specific dip in the defect-related fluorescence spectra and a peak in the reflectance spectrum. The spectral position of the dip coincides with the photonic stop band. The latter is dependent on the size of silica globules and the angle of observation. The spectral shape and intensity of defect-related fluorescence can be controlled by variation of detection angle. Fluorescence intensity increases up to two times at the edges of the spectral dip. Partial photobleaching of fluorescence was observed. Photonic origin of the observed effects is discussed.
Collapse
Affiliation(s)
- Vitalii Boiko
- />Department of Physics of Biological System, Institute of Physics, NAS of Ukraine, Prospect Nauki 46, Kyiv, 03680 Ukraine
| | - Galyna Dovbeshko
- />Department of Physics of Biological System, Institute of Physics, NAS of Ukraine, Prospect Nauki 46, Kyiv, 03680 Ukraine
| | - Leonid Dolgov
- />Laboratory of Laser Spectroscopy, Institute of Physics, University of Tartu, Ravila 14c, Tartu, 50411 Estonia
| | - Valter Kiisk
- />Laboratory of Laser Spectroscopy, Institute of Physics, University of Tartu, Ravila 14c, Tartu, 50411 Estonia
| | - Ilmo Sildos
- />Laboratory of Laser Spectroscopy, Institute of Physics, University of Tartu, Ravila 14c, Tartu, 50411 Estonia
| | - Ardi Loot
- />Laboratory of Laser Spectroscopy, Institute of Physics, University of Tartu, Ravila 14c, Tartu, 50411 Estonia
| | - Vladimir Gorelik
- />Raman Scattering Laboratory, P.N. Lebedev Physical Institute of the Russian Acad. Sci., Leninsky Prospect 53, Moscow, 119991 Russia
| |
Collapse
|
7
|
Chmeliov J, Bricker WP, Lo C, Jouin E, Valkunas L, Ruban AV, Duffy CDP. An ‘all pigment’ model of excitation quenching in LHCII. Phys Chem Chem Phys 2015; 17:15857-67. [DOI: 10.1039/c5cp01905b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work presents the first all-pigment microscopic model of a major light-harvesting complex of plants and the first attempt to capture the dissipative character of the known structure.
Collapse
Affiliation(s)
- Jevgenij Chmeliov
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- LT-10222 Vilnius
- Lithuania
| | - William P. Bricker
- Department of Energy
- Environmental and Chemical Engineering
- Washington University in St. Louis
- Saint Louis
- USA
| | - Cynthia Lo
- Department of Energy
- Environmental and Chemical Engineering
- Washington University in St. Louis
- Saint Louis
- USA
| | - Elodie Jouin
- The School of Biological and Chemical Sciences
- Queen Mary
- University of London
- London E1 4NS
- UK
| | - Leonas Valkunas
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- LT-10222 Vilnius
- Lithuania
| | - Alexander V. Ruban
- The School of Biological and Chemical Sciences
- Queen Mary
- University of London
- London E1 4NS
- UK
| | | |
Collapse
|
8
|
Christophorov LN, Kharkyanen VN, Berezetskaya NM. Molecular self-organization: A single molecule aspect. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Husu I, Giustini M, Colafemmina G, Palazzo G, Mallardi A. Effects of the measuring light on the photochemistry of the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2011; 108:133-142. [PMID: 21785991 DOI: 10.1007/s11120-011-9666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.
Collapse
Affiliation(s)
- Ivan Husu
- Dipartimento di Chimica, Università La Sapienza, 00185, Rome, Italy
| | | | | | | | | |
Collapse
|
10
|
Manzo AJ, Goushcha AO, Berezetska NM, Kharkyanen VN, Scott GW. Charge Recombination Time Distributions in Photosynthetic Reaction Centers Exposed to Alternating Intervals of Photoexcitation and Dark Relaxation. J Phys Chem B 2011; 115:8534-44. [DOI: 10.1021/jp1115383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anthony J. Manzo
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
- Department of Physics, University of California, Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Alexander O. Goushcha
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
- Institute of Physics, National Acadamy of Science of Ukraine, Kyiv, Ukraine
| | | | | | - Gary W. Scott
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
11
|
Knox PP, Lukashev EP, Simanova AV, Krupyanskii YF, Loiko NG, El’-Registan GI, Rubin AB. The influence of alkylhydroxybenzenes on electron stabilization processes in the quinone acceptor portion of the reaction centers of the bacterium Rhodobacter sphaeroides. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Manzo AJ, Goushcha AO, Barabash YM, Kharkyanen VN, Scott GW. Equilibration kinetics in isolated and membrane-bound photosynthetic reaction centers upon illumination: a method to determine the photoexcitation rate. PHOTOSYNTHESIS RESEARCH 2009; 101:35-45. [PMID: 19578969 PMCID: PMC2714901 DOI: 10.1007/s11120-009-9461-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 06/09/2009] [Indexed: 05/28/2023]
Abstract
Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of I(exp), obeys a simple exponential law with the rate constant alphaI(exp) + k(rec), in which alpha is a parameter relating the light intensity, measured in mW/cm(2), to a corresponding theoretical rate in units of reciprocal seconds, and k(rec) is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the alpha parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer-Lambert-Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation.
Collapse
Affiliation(s)
- Anthony J. Manzo
- Department of Chemistry, UC Riverside, Riverside, CA 92521 USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alexander O. Goushcha
- Department of Chemistry, UC Riverside, Riverside, CA 92521 USA
- Institute of Physics, Nat. Acad. Sci. Ukraine, Kyiv, Ukraine
| | | | | | - Gary W. Scott
- Department of Chemistry, UC Riverside, Riverside, CA 92521 USA
| |
Collapse
|
13
|
Peculiarities of light propagation through the media of molecules with long-lived photoexcited states. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Knox PP, Krasilnikov PM, Heinnickel M, Rubin AB. Kinetics of pigment-acceptor interaction induced by continuous illumination in Synechocystis spaeroides photosystem I preparations cooled to 160 K in the dark and light. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Synergetic mechanisms of structural regulation of the electron transfer and other reactions of biological macromolecules. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2005.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Knox PP, Baptista MS, Uchoa AF, Zakharova NI. Effects of Oxygen, Heavy Water, and Glycerol on Electron Transfer in the Acceptor Part of Rhodobacter sphaeroides Reaction Centers. BIOCHEMISTRY (MOSCOW) 2005; 70:1268-73. [PMID: 16336188 DOI: 10.1007/s10541-005-0258-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The kinetics of electron transfer between primary and secondary quinone acceptors of the photosynthetic reaction center (RC) of the purple bacterium Rhodobacter sphaeroides wild type was studied at the wavelengths 400 and 450 nm. It was shown that removing of molecular oxygen from RC preparations slowed down the fast phase of the process from 4-4.5 microsec to tens of microseconds. Similar effects were observed after the incubation of RC in heavy water for 72 h or glycerol addition (90% v/v) to RC preparations. The observed effects are interpreted in terms of the influence of these agents on the hydrogen bond system of the RC. The state of this system can determine the formation of different RC conformations that are characterized by different rates of electron transfer between quinone acceptors.
Collapse
Affiliation(s)
- P P Knox
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | | | |
Collapse
|
17
|
Agostiano A, Milano F, Trotta M. Trapping of a long-living charge separated state of photosynthetic reaction centers in proteoliposomes of negatively charged phospholipids. PHOTOSYNTHESIS RESEARCH 2005; 83:53-61. [PMID: 16143907 DOI: 10.1007/s11120-004-3197-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 09/13/2004] [Indexed: 05/04/2023]
Abstract
Reaction centers from the purple bacterium Rhodobacter sphaeroides strain R-26.1 were purified and reconstituted in proteoliposomes formed by the anionic phospholipids phosphatidylglycerol, phosphatidylserine and phosphatidylinositol and by the zwitterionic phospholipid phosphatidylcholine by size-exclusion chromatography in the dark and under illumination. We report the large stabilizing effect induced by anionic phospholipids on the protein charge separated state which results trapped in a long-living (up to tens of minutes) state with a yield up to 80%. This fully reversible state is formed in oxygenic conditions regardless the presence of the secondary quinone QB and its lifetime and relative yield increase at low pH. In proteoliposomes formed with QA-depleted reaction centers (RCs) the resulting protein is very light-sensitive and the long living charge separated state is not observed. The data collected in negatively charged proteoliposomes are discussed in terms of the electrostatic effect on the primary quinone acceptor and compared with similar long living species reported in literature and obtained in anionic, zwitterionic, and non-ionic detergents.
Collapse
Affiliation(s)
- Angela Agostiano
- Istituto per i Processi Chimico-Fisici, Sezione di Bari, Università di Bari, Via Orabona 4, Bari, 70126, Italy
| | | | | |
Collapse
|