1
|
Dang DK, Einkauf JD, Ma X, Custelcean R, Ma YZ, Zimmerman PM, Bryantsev VS. Photoisomerization mechanism of iminoguanidinium receptors from spectroscopic methods and quantum chemical calculations. Phys Chem Chem Phys 2024; 26:24008-24020. [PMID: 39246286 DOI: 10.1039/d4cp02747g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The hydrazone functional group, when coupled with a pyridyl substituent, offers a unique class of widely tunable photoswitches, whose E-to-Z photoisomerization equilibria can be controlled through intramolecular hydrogen bonding between the N-H hydrazone donor and the pyridyl acceptor. However, little is known about the photoisomerization mechanism in this class of compounds. To address this issue, we report a pyridine-appended iminoguanidinium photoswitch that is functionally related to acylhydrazones and provides insight into the photoisomerization processes between the E and Z configurations. The E-to-Z photoisomerization of the E-2-pyridyl-iminoguanidinium cation (2PyMIG) in DMSO, prepared as the bromide salt, was quantified by 1H NMR, and probed in real time with ultrafast laser spectroscopy. The photoisomerization process occurs on a picosecond timescale, resulting in low fluorescence yields. The multiconfigurational reaction path found with the growing string method features a small barrier (4.3 or 6.5 kcal mol-1) that the E isomer in the π-π* state must overcome to reach the minimum energy conical intersection (MECI) connecting the E and Z isomers of 2PyMIG. While two possible pathways exist depending on the orientation of the pyridine ring, both exhibit the same qualitative features along the path and at their MECIs, involving simultaneous changes in the CCNN and CNNC dihedral angles. Furthermore, the ground state barrier for pyridine ring rotation is readily accessible, thus a low barrier pathway to the experimentally observed Z isomer exists for both MECIs leading to a transition from the E isomer to photoproduct. Combining multiconfigurational reaction path calculations using growing string method with time-resolved fluorescence spectroscopy provided crucial insights into the photoisomerization process of 2PyMIG, resulting in both the computational and experimental results pointing to rapid photoisomerization via a surface crossing between the singlet π-π* and the ground states.
Collapse
Affiliation(s)
- Duy-Khoi Dang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| | - Xinyou Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| |
Collapse
|
2
|
Javed A, Lüttig J, Sanders SE, Sessa F, Gardiner AT, Joffre M, Ogilvie JP. Broadband rapid-scanning phase-modulated Fourier transform electronic spectroscopy. OPTICS EXPRESS 2024; 32:28035-28047. [PMID: 39538627 DOI: 10.1364/oe.530991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 11/16/2024]
Abstract
We present a phase-modulated approach for ultrabroadband Fourier transform electronic spectroscopy. To overcome the bandwidth limitations and spatial chirp introduced by acousto-optic modulators (AOMs), pulses from a 1 µm laser are modulated using AOMs prior to continuum generation. This phase modulation is transferred to the continuum generated in a yttrium aluminum garnet crystal. Separately generated phase-modulated continua in two arms of a Mach-Zehnder interferometer interfere with the difference of their modulation frequencies, enabling physical under-sampling of the signal and the suppression of low-frequency noise. By interferometrically tracking the relative time delay of the continua, we perform continuous, rapid-scanning Fourier transform electronic spectroscopy with a high signal-to-noise ratio and spectral resolution. As proof of principle, we measure the linear absorption and fluorescence excitation spectra of a laser dye and various biological samples.
Collapse
|
3
|
Harada M, Yatsuhashi T, Sakota K. Alignment of fibrous J-aggregates and the resulting macroscopic optical anisotropy observed in static solution. J Chem Phys 2024; 160:134901. [PMID: 38568948 DOI: 10.1063/5.0199220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
J-aggregates, which are supramolecular assemblies that exhibit unique optical properties owing to their excitonic interactions, have potential applications in artificial light-harvesting systems and fluorescence biosensing. Although J-aggregates are formed in solution, in situ observations of their structures and behaviors in solution remain scarce. In this study, we investigated the J-aggregates of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiIC18(3)] in methanol/water (M/W) binary solvents using fluorescence imaging as well as polarized absorption and fluorescence measurements to explore the relationship between their structure and macroscopic optical properties under static conditions. Fluorescence images revealed that the DiIC18(3) J-aggregates have fibrous structures in the M/W = 44/56 (v/v) binary solvent. We measured the polarization-angle dependence of the fluorescence intensity of the fibrous J-aggregates to determine the direction of their transition dipole moment. Furthermore, the J-band absorbance was dependent on the polarization angle of the linearly polarized incident light, even in the absence of an external force such as that generated by a flow or stirring, indicating that the J-aggregates "spontaneously" aligned in solution. We also monitored the time evolution of the degree of alignment of the fibrous J-aggregates, which revealed that the formation and elongation of the fibers induced their alignment, resulting in the observed macroscopic optical anisotropy in solution.
Collapse
Affiliation(s)
- Mio Harada
- Division of Molecular Material Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tomoyuki Yatsuhashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kenji Sakota
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
4
|
Frehan SK, Dsouza L, Li X, Eríc V, Jansen TLC, Mul G, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Huijser A. Photon Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of Chlorobium tepidum and the Role of Supramolecular Dynamics. J Phys Chem B 2023; 127:7581-7589. [PMID: 37611240 PMCID: PMC10493955 DOI: 10.1021/acs.jpcb.3c05282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/09/2023] [Indexed: 08/25/2023]
Abstract
The antenna complex of green sulfur bacteria, the chlorosome, is one of the most efficient supramolecular systems for efficient long-range exciton transfer in nature. Femtosecond transient absorption experiments provide new insight into how vibrationally induced quantum overlap between exciton states supports highly efficient long-range exciton transfer in the chlorosome of Chlorobium tepidum. Our work shows that excitation energy is delocalized over the chlorosome in <1 ps at room temperature. The following exciton transfer to the baseplate occurs in ∼3 to 5 ps, in line with earlier work also performed at room temperature, but significantly faster than at the cryogenic temperatures used in previous studies. This difference can be attributed to the increased vibrational motion at room temperature. We observe a so far unknown impact of the excitation photon energy on the efficiency of this process. This dependency can be assigned to distinct optical domains due to structural disorder, combined with an exciton trapping channel competing with exciton transfer toward the baseplate. An oscillatory transient signal damped in <1 ps has the highest intensity in the case of the most efficient exciton transfer to the baseplate. These results agree well with an earlier computational finding of exciton transfer driven by low-frequency rotational motion of molecules in the chlorosome. Such an exciton transfer process belongs to the quantum coherent regime, for which the Förster theory for intermolecular exciton transfer does not apply. Our work hence strongly indicates that structural flexibility is important for efficient long-range exciton transfer in chlorosomes.
Collapse
Affiliation(s)
- Sean K. Frehan
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Lolita Dsouza
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Xinmeng Li
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Vesna Eríc
- Zernike
Institute of Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute of Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Guido Mul
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Alfred R. Holzwarth
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Annemarie Huijser
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Lüttig J, Mueller S, Malý P, Krich JJ, Brixner T. Higher-Order Multidimensional and Pump-Probe Spectroscopies. J Phys Chem Lett 2023; 14:7556-7573. [PMID: 37589504 DOI: 10.1021/acs.jpclett.3c01694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Transient absorption and coherent two-dimensional spectroscopy are widely established methods for the investigation of ultrafast dynamics in quantum systems. Conventionally, they are interpreted in the framework of perturbation theory at the third order of interaction. Here, we discuss the potential of higher-(than-third-)order pump-probe and multidimensional spectroscopy to provide insight into excited multiparticle states and their dynamics. We focus on recent developments from our group. In particular, we demonstrate how phase cycling can be used in fluorescence-detected two-dimensional spectroscopy to isolate higher-order spectra that provide information about highly excited states such as the correlation of multiexciton states. We discuss coherently detected fifth-order 2D spectroscopy and its power to track exciton diffusion. Finally, we show how to extract higher-order signals even from ordinary pump-probe experiments, providing annihilation-free signals at high excitation densities and insight into multiexciton interactions.
Collapse
Affiliation(s)
- Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Mueller
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic
| | - Jacob J Krich
- Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Lüttig J, Rose PA, Malý P, Turkin A, Bühler M, Lambert C, Krich JJ, Brixner T. High-order pump-probe and high-order two-dimensional electronic spectroscopy on the example of squaraine oligomers. J Chem Phys 2023; 158:234201. [PMID: 37326161 DOI: 10.1063/5.0139090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/06/2023] [Indexed: 06/17/2023] Open
Abstract
Time-resolved spectroscopy is commonly used to study diverse phenomena in chemistry, biology, and physics. Pump-probe experiments and coherent two-dimensional (2D) spectroscopy have resolved site-to-site energy transfer, visualized electronic couplings, and much more. In both techniques, the lowest-order signal, in a perturbative expansion of the polarization, is of third order in the electric field, which we call a one-quantum (1Q) signal because in 2D spectroscopy it oscillates in the coherence time with the excitation frequency. There is also a two-quantum (2Q) signal that oscillates in the coherence time at twice the fundamental frequency and is fifth order in the electric field. We demonstrate that the appearance of the 2Q signal guarantees that the 1Q signal is contaminated by non-negligible fifth-order interactions. We derive an analytical connection between an nQ signal and (2n + 1)th-order contaminations of an rQ (with r < n) signal by studying Feynman diagrams of all contributions. We demonstrate that by performing partial integrations along the excitation axis in 2D spectra, we can obtain clean rQ signals free of higher-order artifacts. We exemplify the technique using optical 2D spectroscopy on squaraine oligomers, showing clean extraction of the third-order signal. We further demonstrate the analytical connection with higher-order pump-probe spectroscopy and compare both techniques experimentally. Our approach demonstrates the full power of higher-order pump-probe and 2D spectroscopy to investigate multi-particle interactions in coupled systems.
Collapse
Affiliation(s)
- Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter A Rose
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Arthur Turkin
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Bühler
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Jacob J Krich
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Yakovlev AG, Taisova AS, Fetisova ZG. Femtosecond Exciton Relaxation in Chlorosomes of the Photosynthetic Green Bacterium Chloroflexus aurantiacus. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:704-715. [PMID: 37331716 DOI: 10.1134/s0006297923050139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/20/2023]
Abstract
Process of photosynthesis in the green bacteria Chloroflexus (Cfx.) aurantiacus starts from absorption of light by chlorosomes, peripheral antennas consisting of thousands of bacteriochlorophyll c (BChl c) molecules combined into oligomeric structures. In this case, the excited states are formed in BChl c, energy of which migrates along the chlorosome towards the baseplate and further to the reaction center, where the primary charge separation occurs. Energy migration is accompanied by non-radiative electronic transitions between the numerous exciton states, that is, exciton relaxation. In this work, we studied dynamics of the exciton relaxation in Cfx. aurantiacus chlorosomes using differential femtosecond spectroscopy at cryogenic temperature (80 K). Chlorosomes were excited by 20-fs light pulses at wavelengths in the range from 660 to 750 nm, and differential (light-dark) absorption kinetics were measured at a wavelength of 755 nm. Mathematical analysis of the obtained data revealed kinetic components with characteristic times of 140, 220, and 320 fs, which are responsible for exciton relaxation. As the excitation wavelength decreased, the number and relative contribution of these components increased. Theoretical modelling of the obtained data was carried out based of the cylindrical model of BChl c. Nonradiative transitions between the groups of exciton bands were described by a system of kinetic equations. The model that takes into account energy and structural disorder of chlorosomes turned out to be the most adequate.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
8
|
Pershin SM, Katsnelson BG, Grishin MY, Lednev VN, Zavozin VA, Ostrovsky I. Laser Remote Sensing of Lake Kinneret by Compact Fluorescence LiDAR. SENSORS (BASEL, SWITZERLAND) 2022; 22:7307. [PMID: 36236406 PMCID: PMC9571087 DOI: 10.3390/s22197307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms in freshwater reservoirs became a steady phenomenon in recent decades, so instruments for monitoring water quality in real time are of high importance. Modern satellite remote sensing is a powerful technique for mapping large areas but cannot provide depth-resolved data on algal concentrations. As an alternative to satellite techniques, laser remote sensing is a perspective technique for depth-resolved studies of fresh or seawater. Recent progress in lasers and electronics makes it possible to construct compact and lightweight LiDARs (Light Detection and Ranging) that can be installed on small boats or drones. LiDAR sensing is an established technique; however, it is more common in studies of seas rather than freshwater reservoirs. In this study, we present an experimental verification of a compact LiDAR as an instrument for the shipborne depth profiling of chlorophyll concentration across the freshwater Lake Kinneret (Israel). Chlorophyll depth profiles of 3 m with a 1.5 m resolution were measured in situ, under sunlight conditions. A good correlation (R2 = 0.89) has been established between LiDAR signals and commercial algae profiler data. A non-monotonic algae depth distribution was observed along the boat route during daytime (Tiberias city-Jordan River mouth-Tiberias city). The impact of high algal concentration on water temperature laser remote sensing has been studied in detail to estimate the LiDAR capability of in situ simultaneous measurements of temperature and chlorophyll concentration.
Collapse
Affiliation(s)
- Sergey M. Pershin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Boris G. Katsnelson
- Department of Marine Geosciences, University of Haifa, Haifa 3498838, Israel
| | - Mikhail Ya. Grishin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vasily N. Lednev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Zavozin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ilia Ostrovsky
- Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, Migdal 1495001, Israel
| |
Collapse
|
9
|
Yakovlev AG, Taisova AS, Fetisova ZG. Femtosecond excited-state dynamics in chlorosomal carotenoids of the photosynthetic bacterium Chloroflexus aurantiacus revealed by near infrared pump-probe spectroscopy. Phys Chem Chem Phys 2021; 23:12761-12770. [PMID: 34042141 DOI: 10.1039/d1cp00927c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In photosynthetic green bacteria, chlorosomes provide light harvesting with high efficiency. Chlorosomal carotenoids (Cars) participate in light harvesting together with the main pigment, bacteriochlorophyll (BChl) c/d/e. In the present work, we studied the excited-state dynamics in Cars from Chloroflexus (Cfx.) aurantiacus chlorosomes by near infrared pump-probe spectroscopy with 25 fs temporal resolution at room temperature. The S2 state of Cars was excited at a wavelength of ∼520 nm, and the absorption changes were probed at 860-1000 nm where the excited state absorption (ESA) of the Cars S2 state occurred. Global analysis of the spectroscopy data revealed an ultrafast (∼15 fs) and large (>130 nm) red shift of the S2 ESA spectrum together with the well-known S2 → S1 IC (∼190 fs) and Cars → BChl c EET (∼120 fs). The S2 lifetime was found to be ∼74 fs. Our findings are in line with earlier results on the excited-state dynamics in Cars in vitro. To explain the extremely fast S2 dynamics, we have tentatively proposed two alternative schemes. The first scheme assumed the formation of a vibrational wavepacket in the S2 state, the motion of which caused a dynamical red shift of the S2 ESA spectrum. The second scheme assumed the presence of two potential minima in the S2 state and incoherent energy transfer between them.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Alexandra S Taisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Zoya G Fetisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| |
Collapse
|
10
|
Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148396. [PMID: 33581107 DOI: 10.1016/j.bbabio.2021.148396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/14/2023]
Abstract
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104-105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400-900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100-270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.
Collapse
|
11
|
Dumele O, Chen J, Passarelli JV, Stupp SI. Supramolecular Energy Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907247. [PMID: 32162428 DOI: 10.1002/adma.201907247] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Self-assembly is a bioinspired strategy to craft materials for renewable and clean energy technologies. In plants, the alignment and assembly of the light-harvesting protein machinery in the green leaf optimize the ability to efficiently convert light from the sun to form chemical bonds. In artificial systems, strategies based on self-assembly using noncovalent interactions offer the possibility to mimic this functional correlation among molecules to optimize photocatalysis, photovoltaics, and energy storage. One of the long-term objectives of the field described here as supramolecular energy materials is to learn how to design soft materials containing light-harvesting assemblies and catalysts to generate fuels and useful chemicals. Supramolecular energy materials also hold great potential in the design of systems for photovoltaics in which intermolecular interactions in self-assembled structures, for example, in electron donor and acceptor phases, maximize charge transport and avoid exciton recombination. Possible pathways to integrate organic and inorganic structures by templating strategies and electrodeposition to create materials relevant to energy challenges including photoconductors and supercapacitors are also described. The final topic discussed is the synthesis of hybrid perovskites in which organic molecules are used to modify both structure and functions, which may include chemical stability, photovoltaics, and light emission.
Collapse
Affiliation(s)
- Oliver Dumele
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Jiahao Chen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - James V Passarelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
12
|
Yakovlev AG, Taisova AS, Shuvalov VA, Fetisova ZG. Ultrafast excited-state dynamics in chlorosomes isolated from the photosynthetic filamentous green bacterium Chloroflexus aurantiacus. PHYSIOLOGIA PLANTARUM 2019; 166:12-21. [PMID: 30499123 DOI: 10.1111/ppl.12887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Bacteriochlorophyll (BChl) c pigments in the aggregated state are responsible for efficient light harvesting in chlorosomes of the filamentous anoxygenic photosynthetic bacterium, Chloroflexus (Cfx.) aurantiacus. Absorption of light creates excited states in the BChl c aggregates. After subpicosecond intrachlorosomal energy transfer, redistribution and relaxation, the excitation is transferred to the BChl a complexes and further to reaction centers on the picosecond time scale. In this work, the femtosecond excited state dynamics within BChl c oligomers of isolated Cfx. aurantiacus chlorosomes was studied by double difference pump-probe spectroscopy at room temperature. Difference (Alight - Adark ) spectra corresponding to excitation at 725 nm (blue side of the BChl c absorption band) were compared with those corresponding to excitation at 750 nm (red side of the BChl c absorption band). A very fast (time constant 70 ± 10 fs) rise kinetic component was found in the stimulated emission (SE) upon excitation at 725 nm. This component was absent at 750-nm excitation. These data were explained by the dynamical red shift of the SE due to excited state relaxation. The nature and mechanisms of the ultrafast excited state dynamics in chlorosomal BChl c aggregates are discussed.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russian Federation
| | - Alexandra S Taisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russian Federation
| | - Vladimir A Shuvalov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russian Federation
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Moscow, Russian Federation
| | - Zoya G Fetisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, 119991, Moscow, Russian Federation
| |
Collapse
|
13
|
Ranjbar Choubeh R, Koehorst RBM, Bína D, Struik PC, Pšenčík J, van Amerongen H. Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:147-154. [PMID: 30537470 DOI: 10.1016/j.bbabio.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/05/2023]
Abstract
During the millions of years of evolution, photosynthetic organisms have adapted to almost all terrestrial and aquatic habitats, although some environments are obviously more suitable for photosynthesis than others. Photosynthetic organisms living in low-light conditions require on the one hand a large light-harvesting apparatus to absorb as many photons as possible. On the other hand, the excitation trapping time scales with the size of the light-harvesting system, and the longer the distance over which the formed excitations have to be transferred, the larger the probability to lose excitations. Therefore a compromise between photon capture efficiency and excitation trapping efficiency needs to be found. Here we report results on the whole cells of the green sulfur bacterium Chlorobaculum tepidum. Its efficiency of excitation energy transfer and charge separation enables the organism to live in environments with very low illumination. Using fluorescence measurements with picosecond resolution, we estimate that despite a rather large size and complex composition of its light-harvesting apparatus, the quantum efficiency of its photochemistry is around ~87% at 20 °C, ~83% at 45 °C, and about ~81% at 77 K when part of the excitation energy is trapped by low-energy bacteriochlorophyll a molecules. The data are evaluated using target analysis, which provides further insight into the functional organization of the low-light adapted photosynthetic apparatus.
Collapse
Affiliation(s)
| | - Rob B M Koehorst
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands
| | - David Bína
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
14
|
Shoji S, Nomura Y, Tamiaki H. Heterodimers of zinc and free-base chlorophyll derivatives co-assembled in biomimetic chlorosomal J-aggregates. Photochem Photobiol Sci 2019; 18:555-562. [DOI: 10.1039/c8pp00468d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free-base chlorophyll derivatives covalently linked with their zinc complex accepted singlet excitation energy from chlorosomal self-aggregates in their co-assembly.
Collapse
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Yosaku Nomura
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| |
Collapse
|
15
|
Dostál J, Fennel F, Koch F, Herbst S, Würthner F, Brixner T. Direct observation of exciton-exciton interactions. Nat Commun 2018; 9:2466. [PMID: 29941915 PMCID: PMC6018121 DOI: 10.1038/s41467-018-04884-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton–exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio–temporal dynamics for a broad range of phenomena in which exciton interactions are present. Some photo-physical processes in multichromophore systems might get triggered only if two excitations are present. Here, the authors introduce exciton–exciton-interaction 2D spectroscopy, which is a non-linear optical method that can selectively track the time evolution of such effects.
Collapse
Affiliation(s)
- Jakub Dostál
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Franziska Fennel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Federico Koch
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stefanie Herbst
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany.
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany.
| |
Collapse
|
16
|
Ma Y, Zhou C, Doughty B, Easley DC, Deterding J, Ma B. Solvent Effect on the Photoinduced Structural Change of a Phosphorescent Molecular Butterfly. Chemistry 2017; 23:17734-17739. [DOI: 10.1002/chem.201703259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Ying‐Zhong Ma
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Chenkun Zhou
- Department of Chemical and Biomedical Engineering FAMU-FSU College of Engineering Tallahassee FL 32310 USA
| | - Benjamin Doughty
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Davis C. Easley
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Justin Deterding
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Biwu Ma
- Department of Chemical and Biomedical Engineering FAMU-FSU College of Engineering Tallahassee FL 32310 USA
- Materials Science and Engineering Program Florida State University Tallahassee FL 32306 USA
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306 USA
| |
Collapse
|
17
|
Orf GS, Collins AM, Niedzwiedzki DM, Tank M, Thiel V, Kell A, Bryant DA, Montaño GA, Blankenship RE. Polymer-Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6427-6438. [PMID: 28585832 DOI: 10.1021/acs.langmuir.7b01761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.
Collapse
Affiliation(s)
| | - Aaron M Collins
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Adam Kell
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gabriel A Montaño
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
18
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
19
|
Self-aggregation of synthetic chlorophyll-c derivative and effect of C17-acrylate residue on bridging green gap in chlorosomal model. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
McDonough TJ, Zhang L, Roy SS, Kearns NM, Arnold MS, Zanni MT, Andrew TL. Triplet exciton dissociation and electron extraction in graphene-templated pentacene observed with ultrafast spectroscopy. Phys Chem Chem Phys 2017; 19:4809-4820. [DOI: 10.1039/c6cp06454j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transient absorption measurements of pentacene, controlling molecular orientation (via graphene templating), fluence, and polarization, provide new evidence for charge generation.
Collapse
Affiliation(s)
| | - Lushuai Zhang
- Department of Materials Science and Engineering
- University of Wisconsin–Madison
- Madison
- USA
| | - Susmit Singha Roy
- Department of Materials Science and Engineering
- University of Wisconsin–Madison
- Madison
- USA
| | | | - Michael S. Arnold
- Department of Materials Science and Engineering
- University of Wisconsin–Madison
- Madison
- USA
| | - Martin T. Zanni
- Department of Chemistry
- University of Wisconsin–Madison
- Madison
- USA
| | - Trisha L. Andrew
- Department of Chemistry
- University of Wisconsin–Madison
- Madison
- USA
- Department of Materials Science and Engineering
| |
Collapse
|
21
|
Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat Chem 2016; 8:705-10. [PMID: 27325098 DOI: 10.1038/nchem.2525] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Absorption of sunlight is the first step in photosynthesis, which provides energy for the vast majority of organisms on Earth. The primary processes of photosynthesis have been studied extensively in isolated light-harvesting complexes and reaction centres, however, to understand fully the way in which organisms capture light it is crucial to also reveal the functional relationships between the individual complexes. Here we report the use of two-dimensional electronic spectroscopy to track directly the excitation-energy flow through the entire photosynthetic system of green sulfur bacteria. We unravel the functional organization of individual complexes in the photosynthetic unit and show that, whereas energy is transferred within subunits on a timescale of subpicoseconds to a few picoseconds, across the complexes the energy flows at a timescale of tens of picoseconds. Thus, we demonstrate that the bottleneck of energy transfer is between the constituents.
Collapse
|
23
|
Camacho R, Tubasum S, Southall J, Cogdell RJ, Sforazzini G, Anderson HL, Pullerits T, Scheblykin IG. Fluorescence polarization measures energy funneling in single light-harvesting antennas--LH2 vs conjugated polymers. Sci Rep 2015; 5:15080. [PMID: 26478272 PMCID: PMC4609963 DOI: 10.1038/srep15080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.
Collapse
Affiliation(s)
- Rafael Camacho
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Sumera Tubasum
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - June Southall
- Glasgow Biomedical Research Centre, University of Glasgow, G12 8QQ, United Kingdom
| | - Richard J Cogdell
- Glasgow Biomedical Research Centre, University of Glasgow, G12 8QQ, United Kingdom
| | - Giuseppe Sforazzini
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tõnu Pullerits
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Ivan G Scheblykin
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| |
Collapse
|
24
|
Han D, Du J, Kobayashi T, Miyatake T, Tamiaki H, Li Y, Leng Y. Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems. J Phys Chem B 2015; 119:12265-73. [PMID: 26307640 DOI: 10.1021/acs.jpcb.5b06214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongjia Han
- State
Key Laboratory of High Field Laser Physics, Shanghai Institute of
Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Juan Du
- State
Key Laboratory of High Field Laser Physics, Shanghai Institute of
Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Takayoshi Kobayashi
- Advanced
Ultrafast Laser Research Center, University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan
- JST, CREST, K’s Gobancho, 7 Gobancho,
Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Tomohiro Miyatake
- Department
of Materials Chemistry, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Hitoshi Tamiaki
- Department
of Bioscience and Biotechnology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yanyan Li
- State
Key Laboratory of High Field Laser Physics, Shanghai Institute of
Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yuxin Leng
- State
Key Laboratory of High Field Laser Physics, Shanghai Institute of
Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- FSA
Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Sawaya NPD, Huh J, Fujita T, Saikin SK, Aspuru-Guzik A. Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model. NANO LETTERS 2015; 15:1722-1729. [PMID: 25694170 DOI: 10.1021/nl504399d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorosomes are efficient light-harvesting antennas containing up to hundreds of thousands of bacteriochlorophyll molecules. With massively parallel computer hardware, we use a nonperturbative stochastic Schrödinger equation, while including an atomistically derived spectral density, to study excitonic energy transfer in a realistically sized chlorosome model. We find that fast short-range delocalization leads to robust long-range transfer due to the antennae's concentric-roll structure. Additionally, we discover anomalous behavior arising from different initial conditions, and outline general considerations for simulating excitonic systems on the nanometer to micrometer scale.
Collapse
Affiliation(s)
- Nicolas P D Sawaya
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | | | | |
Collapse
|
26
|
Jun S, Yang C, Kim TW, Isaji M, Tamiaki H, Ihee H, Kim J. Role of thermal excitation in ultrafast energy transfer in chlorosomes revealed by two-dimensional electronic spectroscopy. Phys Chem Chem Phys 2015; 17:17872-9. [DOI: 10.1039/c5cp01355k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional electronic spectroscopy reveals the role of thermal excitation in excitation energy transfer in chlorosomes.
Collapse
Affiliation(s)
- Sunhong Jun
- Department of Chemistry
- KAIST
- Daejeon 305-701
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Cheolhee Yang
- Department of Chemistry
- KAIST
- Daejeon 305-701
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Tae Wu Kim
- Department of Chemistry
- KAIST
- Daejeon 305-701
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Megumi Isaji
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Hyotcherl Ihee
- Department of Chemistry
- KAIST
- Daejeon 305-701
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Jeongho Kim
- Department of Chemistry
- Inha University
- Incheon 402-751
- Republic of Korea
| |
Collapse
|
27
|
Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode. Nat Commun 2014; 5:5561. [PMID: 25429787 DOI: 10.1038/ncomms6561] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023] Open
Abstract
Strong exciton-photon coupling is the result of a reversible exchange of energy between an excited state and a confined optical field. This results in the formation of polariton states that have energies different from the exciton and photon. We demonstrate strong exciton-photon coupling between light-harvesting complexes and a confined optical mode within a metallic optical microcavity. The energetic anti-crossing between the exciton and photon dispersions characteristic of strong coupling is observed in reflectivity and transmission with a Rabi splitting energy on the order of 150 meV, which corresponds to about 1,000 chlorosomes coherently coupled to the cavity mode. We believe that the strong coupling regime presents an opportunity to modify the energy transfer pathways within photosynthetic organisms without modification of the molecular structure.
Collapse
|
28
|
Fujita T, Huh J, Saikin SK, Brookes JC, Aspuru-Guzik A. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2014; 120:273-289. [PMID: 24504540 DOI: 10.1007/s11120-014-9978-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.
Collapse
Affiliation(s)
- Takatoshi Fujita
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA,
| | | | | | | | | |
Collapse
|
29
|
Dostál J, Vácha F, Pšenčík J, Zigmantas D. 2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome. J Phys Chem Lett 2014; 5:1743-1747. [PMID: 26270377 DOI: 10.1021/jz5005279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In green photosynthetic bacteria, the chlorosome baseplate mediates excitation energy transfer from the interior of the light-harvesting chlorosome toward the reaction centers. However, the electronic states of the baseplate remain unexplored, hindering the mechanistic understanding of the baseplate as an excitation energy collector and mediator. Here we use two-dimensional spectroscopy to study the excited state structure and internal energy relaxation in the baseplate of green sulfur bacterium Chlorobaculum tepidum. We resolved an exciton system with four energy states, indicating that the organization of the pigments in the baseplate is more complex than was thought before and constitutes at least four bacteriochlorophyll molecules in a close contact. Based on the finding that the energy of the baseplate states is in the same range as in the adjacent Fenna-Matthews-Olson complex, we propose a "lateral" energy transfer pathway, where excitation energy can flow through the photosynthetic unit via all the states of individual complexes.
Collapse
Affiliation(s)
- Jakub Dostál
- †Department of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- ‡Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - František Vácha
- §Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jakub Pšenčík
- ‡Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Donatas Zigmantas
- †Department of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
30
|
Jun S, Yang C, Isaji M, Tamiaki H, Kim J, Ihee H. Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2014; 5:1386-1392. [PMID: 26269984 DOI: 10.1021/jz500328w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorosomes are the most efficient photosynthetic light-harvesting complexes found in nature and consist of many bacteriochlorophyll (BChl) molecules self-assembled into supramolecular aggregates. Here we elucidate the presence and the origin of coherent oscillations in chlorosome at cryogenic temperature using 2D electronic spectroscopy. We observe coherent oscillations of multiple frequencies superimposed on the ultrafast amplitude decay of 2D spectra. Comparison of oscillatory features in the rephasing and nonrephasing 2D spectra suggests that an oscillation of 620 cm(-1) frequency arises from electronic coherence. However, this coherent oscillation can be enhanced by vibronic coupling with intermolecular vibrations of BChl aggregate, and thus it might originate from vibronic coherence rather than pure electronic coherence. Although the 620 cm(-1) oscillation dephases rapidly, the electronic (or vibronic) coherence may still take part in the initial step of energy transfer in chlorosome, which is comparably fast.
Collapse
Affiliation(s)
- Sunhong Jun
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Cheolhee Yang
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Megumi Isaji
- §Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- §Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jeongho Kim
- ∥Department of Chemistry, Inha University, Incheon 402-751, Republic of Korea
| | - Hyotcherl Ihee
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| |
Collapse
|
31
|
Dostál J, Mančal T, Vácha F, Pšenčík J, Zigmantas D. Unraveling the nature of coherent beatings in chlorosomes. J Chem Phys 2014; 140:115103. [DOI: 10.1063/1.4868557] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Huh J, Saikin SK, Brookes JC, Valleau S, Fujita T, Aspuru-Guzik A. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. J Am Chem Soc 2014; 136:2048-57. [PMID: 24405318 DOI: 10.1021/ja412035q] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria, the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level, we introduce an atomistic model that mimics a complete light-harvesting apparatus of green sulfur bacteria. The model contains approximately 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate, and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the transfer between collective excited states of pigments can result in robust energy funneling to the initial excitation conditions and temperature changes. Moreover, the same mechanism describes the coexistence of multiple time scales of excitation dynamics frequently observed in ultrafast optical experiments. While our findings support the hypothesis of supertransfer, the model reveals energy transport through multiple channels on different length scales.
Collapse
Affiliation(s)
- Joonsuk Huh
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | |
Collapse
|
33
|
Niedzwiedzki DM, Orf GS, Tank M, Vogl K, Bryant DA, Blankenship RE. Photophysical properties of the excited states of bacteriochlorophyll f in solvents and in chlorosomes. J Phys Chem B 2014; 118:2295-305. [PMID: 24410285 DOI: 10.1021/jp409495m] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteriochlorophyll f (BChl f) is a photosynthetic pigment predicted nearly 40 years ago as a fourth potential member of the Chlorobium chlorophyll family (BChl c, d, and e). However, this pigment still has not been found in a naturally occurring organism. BChl c, d, and e are utilized by anoxygenic green photosynthetic bacteria for assembly of chlorosomes--large light-harvesting complexes that allow those organisms to survive in habitats with extremely low light intensities. Recently, using genetic methods on two different strains of Chlorobaculum limnaeum that naturally produce BChl e, two research groups produced mutants that synthesize BChl f and assemble it into chlorosomes. In this study, we present detailed investigations on spectral and dynamic characteristics of singlet excited and triplet states of BChl f with the application of ultrafast time-resolved absorption and fluorescence spectroscopies. The studies were performed on isolated BChl f in various solvents, at different temperatures, and on BChl f-containing chlorosomes in order to uncover any unusual or unfavorable properties that stand behind the lack of appearance of this pigment in natural environments.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, ‡Departments of Biology and Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | | | | |
Collapse
|
34
|
Pšenčík J, Butcher SJ, Tuma R. Chlorosomes: Structure, Function and Assembly. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
35
|
Orf GS, Blankenship RE. Chlorosome antenna complexes from green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 116:315-31. [PMID: 23761131 DOI: 10.1007/s11120-013-9869-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment-pigment interactions as opposed to protein-pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.
Collapse
Affiliation(s)
- Gregory S Orf
- Departments of Chemistry and Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | | |
Collapse
|
36
|
Linnanto JM, Korppi-Tommola JEI. Exciton Description of Chlorosome to Baseplate Excitation Energy Transfer in Filamentous Anoxygenic Phototrophs and Green Sulfur Bacteria. J Phys Chem B 2013; 117:11144-61. [DOI: 10.1021/jp4011394] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juha M. Linnanto
- Department of Chemistry, P.O.
Box 35, University of Jyväskylä, FIN-40014, Finland
- University of Tartu, Institute of Physics, Riia 142,
EE-51014 Tartu, Estonia
| | | |
Collapse
|
37
|
Vengris M, Larsen DS, Valkunas L, Kodis G, Herrero C, Gust D, Moore T, Moore A, van Grondelle R. Separating annihilation and excitation energy transfer dynamics in light harvesting systems. J Phys Chem B 2013; 117:11372-82. [PMID: 23662680 DOI: 10.1021/jp403301c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dependence of excitation energy transfer kinetics on the electronic state of the acceptor (ground vs excited) has been resolved with a novel multipulse prePump-Pump-Probe spectroscopy. The primary energy transfer and annihilation dynamics in two model light-harvesting systems were explored: an artificially synthesized carotenoid-zinc-phthalocyanine dyad and a naturally occurring light-harvesting peridinin-chlorophyll protein complex from Amphidinium carterae. Both systems use carotenoid as the primary excitation energy donor with porphyrin chromophores as the acceptor molecules. The prePump-Pump-Probe transient signals were analyzed with Monte Carlo modeling to explicitly address the underlying step-by-step kinetics involved in both excitation migration and annihilation processes. Both energy transfer and annihilation dynamics were demonstrated to occur with approximately the same rate in both systems, regardless of the excitation status of the acceptor pigments. The possible reasons for these observations are discussed in the framework of the Förster energy transfer model.
Collapse
Affiliation(s)
- Mikas Vengris
- Quantum Electronics Department, Faculty of Physics, Vilnius University , Saulėtekio 9-III, 10222 Vilnius, Lithuania
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kassal I, Yuen-Zhou J, Rahimi-Keshari S. Does Coherence Enhance Transport in Photosynthesis? J Phys Chem Lett 2013; 4:362-367. [PMID: 26281724 DOI: 10.1021/jz301872b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent observations of coherence in photosynthetic complexes have led to the question of whether quantum effects can occur in vivo, not under femtosecond laser pulses but in incoherent sunlight and at steady state, and, if so, whether the coherence explains the high exciton transfer efficiency. We introduce the distinction between state coherence and process coherence and show that although some photosynthetic pathways are partially coherent processes, photosynthesis in nature proceeds through stationary states. This distinction allows us to rule out several mechanisms of transport enhancement in sunlight. In particular, although they are crucial for understanding exciton transport, neither wavelike motion nor microscopic coherence, on their own, enhance the efficiency. By contrast, two partially coherent mechanisms-ENAQT and supertransfer-can enhance transport even in sunlight and thus constitute motifs for the optimization of artificial sunlight harvesting. Finally, we clarify the importance of ultrafast spectroscopy in understanding incoherent processes.
Collapse
Affiliation(s)
- Ivan Kassal
- †Centre for Engineered Quantum Systems, ‡Centre for Quantum Computing and Communication Technology, and ¶School of Mathematics and Physics, The University of Queensland, St Lucia QLD 4072, Australia
| | - Joel Yuen-Zhou
- †Centre for Engineered Quantum Systems, ‡Centre for Quantum Computing and Communication Technology, and ¶School of Mathematics and Physics, The University of Queensland, St Lucia QLD 4072, Australia
| | - Saleh Rahimi-Keshari
- †Centre for Engineered Quantum Systems, ‡Centre for Quantum Computing and Communication Technology, and ¶School of Mathematics and Physics, The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
39
|
Shoji S, Hashishin T, Tamiaki H. Construction of Chlorosomal Rod Self-Aggregates in the Solid State on Any Substrates from Synthetic Chlorophyll Derivatives Possessing an Oligomethylene Chain at the 17-Propionate Residue. Chemistry 2012; 18:13331-41. [DOI: 10.1002/chem.201201935] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 11/09/2022]
|
40
|
Fujita T, Brookes JC, Saikin SK, Aspuru-Guzik A. Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria. J Phys Chem Lett 2012; 3:2357-2361. [PMID: 26292114 DOI: 10.1021/jz3008326] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorosomes are likely the largest and most efficient natural light-harvesting photosynthetic antenna systems. They are composed of large numbers of bacteriochlorophylls organized into supramolecular aggregates. We explore the microscopic origin of the fast excitation energy transfer in the chlorosome using the recently resolved structure and atomistic-detail simulations. Despite the dynamical disorder effects on the electronic transitions of the bacteriochlorophylls, our simulations show that the exciton delocalizes over the entire aggregate in about 200 fs. The memory effects associated to the dynamical disorder assist the exciton diffusion through the aggregates and enhance the diffusion coefficients as a factor of 2 as compared to the model without memory. Furthermore, exciton diffusion in the chlorosome is found to be highly anisotropic with the preferential transfer toward the baseplate, which is the next functional element in the photosynthetic system.
Collapse
Affiliation(s)
- Takatoshi Fujita
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jennifer C Brookes
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- ‡Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT
| | - Semion K Saikin
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alán Aspuru-Guzik
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
41
|
Dostál J, Mančal T, Augulis RN, Vácha F, Pšenčík J, Zigmantas D. Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes. J Am Chem Soc 2012; 134:11611-7. [DOI: 10.1021/ja3025627] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jakub Dostál
- Department of Chemical Physics, Lund University, Getingevägen 60, 221 00 Lund,
Sweden
- Faculty of Mathematics
and Physics, Charles University in Prague, Ke Karlovu 3, 121 16
Prague, Czech Republic
| | - Tomáš Mančal
- Faculty of Mathematics
and Physics, Charles University in Prague, Ke Karlovu 3, 121 16
Prague, Czech Republic
| | - Ramu-nas Augulis
- Department of Chemical Physics, Lund University, Getingevägen 60, 221 00 Lund,
Sweden
| | - František Vácha
- Faculty
of Science, University of South Bohemia, Branišovská
31, 370 05 České Budějovice, Czech Republic
| | - Jakub Pšenčík
- Faculty of Mathematics
and Physics, Charles University in Prague, Ke Karlovu 3, 121 16
Prague, Czech Republic
| | - Donatas Zigmantas
- Department of Chemical Physics, Lund University, Getingevägen 60, 221 00 Lund,
Sweden
| |
Collapse
|
42
|
Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nat Chem 2012; 4:655-62. [PMID: 22824898 DOI: 10.1038/nchem.1380] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/08/2012] [Indexed: 01/18/2023]
Abstract
Supramolecular assemblies that interact with light have recently garnered much interest as well-defined nanoscale materials for electronic excitation energy collection and transport. However, to control such complex systems it is essential to understand how their various parts interact and whether these interactions result in coherently shared excited states (excitons) or in diffusive energy transport between them. Here, we address this by studying a model system consisting of two concentric cylindrical dye aggregates in a light-harvesting nanotube. Through selective chemistry we are able to unambiguously determine the supramolecular origin of the observed excitonic transitions. These results required the development of a new theoretical model of the supramolecular structure of the assembly. Our results demonstrate that the two cylinders of the nanotube have distinct spectral responses and are best described as two separate, weakly coupled excitonic systems. Understanding such interactions is critical to the control of energy transfer on a molecular scale, a goal in various applications ranging from artificial photosynthesis to molecular electronics.
Collapse
|
43
|
Alster J, Polívka T, Arellano JB, Hříbek P, Vácha F, Hála J, Pšenčík J. Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin. PHOTOSYNTHESIS RESEARCH 2012; 111:193-204. [PMID: 21833799 DOI: 10.1007/s11120-011-9670-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.
Collapse
Affiliation(s)
- J Alster
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Praha, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
44
|
Martiskainen J, Linnanto J, Aumanen V, Myllyperkiö P, Korppi-Tommola J. Excitation Energy Transfer in Isolated Chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii. Photochem Photobiol 2012; 88:675-83. [DOI: 10.1111/j.1751-1097.2012.01098.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Garcia Costas AM, Tsukatani Y, Romberger SP, Oostergetel GT, Boekema EJ, Golbeck JH, Bryant DA. Ultrastructural analysis and identification of envelope proteins of "Candidatus Chloracidobacterium thermophilum" chlorosomes. J Bacteriol 2011; 193:6701-11. [PMID: 21965575 PMCID: PMC3232888 DOI: 10.1128/jb.06124-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022] Open
Abstract
Chlorosomes are sac-like, light-harvesting organelles that characteristically contain very large numbers of bacteriochlorophyll (BChl) c, d, or e molecules. These antenna structures occur in chlorophototrophs belonging to some members of the Chlorobi and Chloroflexi phyla and are also found in a recently discovered member of the phylum Acidobacteria, "Candidatus Chloracidobacterium thermophilum." "Ca. Chloracidobacterium thermophilum" is the first aerobic organism discovered to possess chlorosomes as light-harvesting antennae for phototrophic growth. Chlorosomes were isolated from "Ca. Chloracidobacterium thermophilum" and subjected to electron microscopic, spectroscopic, and biochemical analyses. The chlorosomes of "Ca. Chloracidobacterium thermophilum" had an average size of ∼100 by 30 nm. Cryo-electron microscopy showed that the BChl c molecules formed folded or twisted, sheet-like structures with a lamellar spacing of ∼2.3 nm. Unlike the BChls in the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum, concentric cylindrical nanotubes were not observed. Chlorosomes of "Ca. Chloracidobacterium thermophilum" contained a homolog of CsmA, the BChl a-binding, baseplate protein; CsmV, a protein distantly related to CsmI, CsmJ, and CsmX of C. tepidum, which probably binds a single [2Fe-2S] cluster; and five unique polypeptides (CsmR, CsmS, CsmT, CsmU, and a type II NADH dehydrogenase homolog). Although "Ca. Chloracidobacterium thermophilum" is an aerobe, energy transfer among the BChls in these chlorosomes was very strongly quenched in the presence of oxygen (as measured by quenching of fluorescence emission). The combined analyses showed that the chlorosomes of "Ca. Chloracidobacterium thermophilum" possess a number of unique features but also share some properties with the chlorosomes found in anaerobic members of other phyla.
Collapse
Affiliation(s)
| | | | | | - Gert T. Oostergetel
- Groningen Biomolecular Sciences and Biotechnology Institute, 9747 AG Groningen, The Netherlands
| | - Egbert J. Boekema
- Groningen Biomolecular Sciences and Biotechnology Institute, 9747 AG Groningen, The Netherlands
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
46
|
Sakakibara K, Hill JP, Ariga K. Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1288-308. [PMID: 21506267 DOI: 10.1002/smll.201002350] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Indexed: 05/19/2023]
Abstract
Controlling the organization of molecular building blocks at the nanometer level is of utmost importance, not only from the viewpoint of scientific curiosity, but also for the development of next-generation organic devices with electrical, optical, chemical, or biological functions. Self-assembly offers great potential for the manufacture of nanoarchitectures (nanostructures and nanopatterns) over large areas by using low-energy and inexpensive spontaneous processes. However, self-assembled structures in 3D media, such as solutions or solids, are not easily incorporated into current device-oriented nanotechnology. The scope of this review is therefore to introduce the expanding methodology for the construction of thin-film-based nanoarchitectures on solid surfaces and to try to address a general concept with emphasis on the availability of dynamic interfaces for the creation and manipulation of nanoarchitectures. In this review, the strategies for the construction of nanostructures, the control and manipulation of nanopatterns, and the application of nanoarchitectures are described; the construction strategies are categorized into three classes: i) π-conjugated molecular assembly in two dimensions, ii) bio-directed molecular assembly on surfaces, and iii) recent thin-film preparation technologies.
Collapse
Affiliation(s)
- Keita Sakakibara
- World Premier International Research Center for Materials, Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
47
|
Sengupta S, Uemura S, Patwardhan S, Huber V, Grozema FC, Siebbeles LDA, Baumeister U, Würthner F. Columnar Mesophases Based on Zinc Chlorophyll Derivatives Functionalized with Peripheral Dendron Wedges. Chemistry 2011; 17:5300-10. [DOI: 10.1002/chem.201002659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/23/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Sanchita Sengupta
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg (Germany), Fax: (+49) 931‐31‐84756
| | - Shinobu Uemura
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg (Germany), Fax: (+49) 931‐31‐84756
| | - Sameer Patwardhan
- OptoElectronic Materials Section, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft (The Netherlands)
| | - Valerie Huber
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg (Germany), Fax: (+49) 931‐31‐84756
| | - Ferdinand C. Grozema
- OptoElectronic Materials Section, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft (The Netherlands)
| | - Laurens D. A. Siebbeles
- OptoElectronic Materials Section, DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft (The Netherlands)
| | - Ute Baumeister
- Martin‐Luther‐Universität Halle‐Wittenberg, Institut für Chemie, Physikalische Chemie, von‐Danckelmann‐Platz 4, 06120 Halle (Germany)
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie and Röntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg (Germany), Fax: (+49) 931‐31‐84756
| |
Collapse
|
48
|
Kunieda M, Mizoguchi T, Tamiaki H. Diastereoselective Self-aggregation of Synthetic 3-(1-Hydroxyethyl)-bacteriopyrochlophyll-a as a Novel Photosynthetic Antenna Model Absorbing Near the Infrared Region¶. Photochem Photobiol 2011. [DOI: 10.1111/j.1751-1097.2004.tb09857.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Stradomska A, Knoester J. Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects? J Chem Phys 2011; 133:094701. [PMID: 20831327 DOI: 10.1063/1.3481654] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Absorption and linear dichroism spectra of self-assembled tubular aggregates of TPPS(4) porphyrin are studied theoretically with special emphasis on the low energy part of the spectra (the Q band region) where the coupling with intramolecular vibrations is pronounced. The model Hamiltonian includes both the excitonic coupling between four molecular electronic excited states contributing to the porphyrin Q and B bands as well as the intermediate-strength linear exciton-phonon coupling to one effective high-frequency molecular vibrational mode. Good agreement between the calculated and experimental spectra is obtained. The results allow us to identify the nature of the peaks observed in the Q band region of the aggregate's absorption spectrum; we show that the two most prominent peaks within the Q band originate from two different excitonic subbands. It is shown that the coupling between the Q and B bands plays an important role and the vibronic coupling affects the details of the absorption lineshape.
Collapse
Affiliation(s)
- Anna Stradomska
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, AG Groningen 9747, The Netherlands.
| | | |
Collapse
|
50
|
Shibata Y, Tateishi S, Nakabayashi S, Itoh S, Tamiaki H. Intensity Borrowing via Excitonic Couplings among Soret and Qy Transitions of Bacteriochlorophylls in the Pigment Aggregates of Chlorosomes, the Light-Harvesting Antennae of Green Sulfur Bacteria. Biochemistry 2010; 49:7504-15. [DOI: 10.1021/bi100607c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yutaka Shibata
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shingo Tateishi
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shosuke Nakabayashi
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|