1
|
Firnau MB, Plotz G, Zeuzem S, Brieger A. Key role of phosphorylation sites in ATPase domain and Linker region of MLH1 for DNA binding and functionality of MutLα. Sci Rep 2023; 13:12503. [PMID: 37532794 PMCID: PMC10397344 DOI: 10.1038/s41598-023-39750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
MutLα is essential for human DNA mismatch repair (MMR). It harbors a latent endonuclease, is responsible for recruitment of process associated proteins and is relevant for strand discrimination. Recently, we demonstrated that the MMR function of MutLα is regulated by phosphorylation of MLH1 at serine (S) 477. In the current study, we focused on S87 located in the ATPase domain of MLH1 and on S446, S456 and S477 located in its linker region. We analysed the phosphorylation-dependent impact of these amino acids on DNA binding, MMR ability and thermal stability of MutLα. We were able to demonstrate that phosphorylation at S87 of MLH1 inhibits DNA binding of MutLα. In addition, we detected that its MMR function seems to be regulated predominantly via phosphorylation of serines in the linker domain, which are also partially involved in the regulation of DNA binding. Furthermore, we found that the thermal stability of MutLα decreased in relation to its phosphorylation status implying that complete phosphorylation might lead to instability and degradation of MLH1. In summary, we showed here, for the first time, a phosphorylation-dependent regulation of DNA binding of MutLα and hypothesized that this might significantly impact its functional regulation during MMR in vivo.
Collapse
Affiliation(s)
- May-Britt Firnau
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Guido Plotz
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stefan Zeuzem
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Angela Brieger
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
2
|
Goswami S. Interplay of potassium channel, gastric parietal cell and proton pump in gastrointestinal physiology, pathology and pharmacology. Minerva Gastroenterol (Torino) 2021; 68:289-305. [PMID: 34309336 DOI: 10.23736/s2724-5985.21.02964-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gastric acid secretion plays a pivotal role in the physiology of gastrointestinal tract. The functioning of the system encompasses a P2 ATPase pump (which shuttles electroneutral function at low pH) along with different voltage sensitive/neutral ion channels, cytosolic proteins, acid sensor receptors as well hormonal regulators. The increased acid secretion is a pathological marker of several diseases like peptic ulcer, gastroesophageal reflux disease (GERD), chronic gastritis, and the bug Helicobacter pylori (H. pylori) has also a critical role, which altogether affects the patient's quality of life. This review comprehensively describes about the nature of potassium ion channel and its mediators, the different clinical strategy to control acid rebound, and some basic experimental observations performed to study the interplay of ion channels, pumps, as well as mediators during acid secretion. Different aspects of regulation of gastric acid secretion have been focused either in terms of physiology of secretion or molecular interactions. The importance of H pylori infection and its treatment have also been discussed. Furthermore, the relevance of calcium signaling during acid secretion has been reviewed. The entire theme will make anyone to understand in details about the gastric secretion machinery in general.
Collapse
Affiliation(s)
- Suchandra Goswami
- Smt. Vidyawati College of Pharmacy, Gora Machhiya, Jhansi, Uttar Pradesh, India -
| |
Collapse
|
3
|
Hossain KR, Li X, Zhang T, Paula S, Cornelius F, Clarke RJ. Polarity of the ATP binding site of the Na +,K +-ATPase, gastric H +,K +-ATPase and sarcoplasmic reticulum Ca 2+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183138. [PMID: 31790695 DOI: 10.1016/j.bbamem.2019.183138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022]
Abstract
A fluorescence ratiometric method utilizing the probe eosin Y is presented for estimating the ATP binding site polarity of P-type ATPases in different conformational states. The method has been calibrated by measurements in a series of alcohols and tested using complexation of eosin Y with methyl-β-cyclodextrin. The results obtained with the Na+,K+-, H+,K+- and sarcoplasmic reticulum Ca2+-ATPases indicate that the ATP binding site, to which eosin is known to bind, is significantly more polar in the case of the Na+,K+- and H+,K+-ATPases compared to the Ca2+-ATPase. This result was found to be consistent with docking calculations of eosin with the E2 conformational state of the Na+,K+-ATPase and the Ca2+-ATPase. Fluorescence experiments showed that eosin binds significantly more strongly to the E1 conformation of the Na+,K+-ATPase than the E2 conformation, but in the case of the Ca2+-ATPase both fluorescence experiments and docking calculations showed no significant difference in binding affinity between the two conformations. This result could be due to the fact that, in contrast to the Na+,K+- and H+,K+-ATPases, the E2-E1 transition of the Ca2+-ATPase does not involve the movement of a lysine-rich N-terminal tail which may affect the overall enzyme conformation. Consistent with this hypothesis, the eosin affinity of the E1 conformation of the Na+,K+-ATPase was significantly reduced after N-terminal truncation. It is suggested that changes in conformational entropy of the N-terminal tail of the Na+, K+- and the H+,K+-ATPases during the E2-E1 transition could affect the thermodynamic stability of the E1 conformation and hence its ATP binding affinity.
Collapse
Affiliation(s)
- K R Hossain
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - X Li
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - T Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - S Paula
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - F Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - R J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Garcia A, Lev B, Hossain KR, Gorman A, Diaz D, Pham THN, Cornelius F, Allen TW, Clarke RJ. Cholesterol depletion inhibits Na +,K +-ATPase activity in a near-native membrane environment. J Biol Chem 2019; 294:5956-5969. [PMID: 30770471 PMCID: PMC6463725 DOI: 10.1074/jbc.ra118.006223] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Cholesterol's effects on Na+,K+-ATPase reconstituted in phospholipid vesicles have been extensively studied. However, previous studies have reported both cholesterol-mediated stimulation and inhibition of Na+,K+-ATPase activity. Here, using partial reaction kinetics determined via stopped-flow experiments, we studied cholesterol's effect on Na+,K+-ATPase in a near-native environment in which purified membrane fragments were depleted of cholesterol with methyl-β-cyclodextrin (mβCD). The mβCD-treated Na+,K+-ATPase had significantly reduced overall activity and exhibited decreased observed rate constants for ATP phosphorylation (ENa3+ → E2P, i.e. phosphorylation by ATP and Na+ occlusion from the cytoplasm) and K+ deocclusion with subsequent intracellular Na+ binding (E2K2+ → E1Na3+). However, cholesterol depletion did not affect the observed rate constant for K+ occlusion by phosphorylated Na+,K+-ATPase on the extracellular face and subsequent dephosphorylation (E2P → E2K2+). Thus, partial reactions involving cation binding and release at the protein's intracellular side were most dependent on cholesterol. Fluorescence measurements with the probe eosin indicated that cholesterol depletion stabilizes the unphosphorylated E2 state relative to E1, and the cholesterol depletion-induced slowing of ATP phosphorylation kinetics was consistent with partial conversion of Na+,K+-ATPase into the E2 state, requiring a slow E2 → E1 transition before the phosphorylation. Molecular dynamics simulations of Na+,K+-ATPase in membranes with 40 mol % cholesterol revealed cholesterol interaction sites that differ markedly among protein conformations. They further indicated state-dependent effects on membrane shape, with the E2 state being likely disfavored in cholesterol-rich bilayers relative to the E1P state because of a greater hydrophobic mismatch. In summary, cholesterol extraction from membranes significantly decreases Na+,K+-ATPase steady-state activity.
Collapse
Affiliation(s)
- Alvaro Garcia
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Bogdan Lev
- the School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Khondker R Hossain
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Amy Gorman
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; the Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Dil Diaz
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Flemming Cornelius
- the Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Toby W Allen
- the School of Science, RMIT University, Melbourne, VIC 3001, Australia; the Department of Chemistry, University of California, Davis, California 95616
| | - Ronald J Clarke
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Adenylyl cyclase 6 is required for maintaining acid-base homeostasis. Clin Sci (Lond) 2018; 132:1779-1796. [PMID: 29941522 DOI: 10.1042/cs20180060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Adenylyl cyclase (AC) isoform 6 (AC6) is highly expressed throughout the renal tubule and collecting duct (CD), catalyzes the synthesis of cAMP and contributes to various aspects of renal transport. Several proteins involved in acid-base homeostasis are regulated by cAMP. In the present study, we assess the relative contribution of AC6 to overall acid-base regulation using mice with global deletion of AC6 (AC6-/-) or newly generated mice lacking AC6 in the renal tubule and CD (AC6loxloxPax8Cre). Higher energy expenditure in AC6-/- relative to wild-type (WT) mice, was associated with lower urinary pH, mild alkalosis in conjunction with elevated blood HCO3- concentrations, and significantly higher renal abundance of the H+-ATPase B1 subunit. In contrast with WT mice, AC6-/- mice have a less pronounced increase in urinary pH after 8 days of HCO3- challenge, which is associated with increased blood pH and HCO3- concentrations. Immunohistochemistry demonstrated that AC6 was expressed in intercalated cells (IC), but subcellular distribution of the H+-ATPase B1 subunit, pendrin, and the anion exchangers 1 and 2 in AC6-/- mice was normal. In the AC6-/- mice, H+-ATPase B1 subunit levels after HCO3- challenge were greater, which correlated with a higher number of type A IC. In contrast with the AC6-/- mice, AC6loxloxPax8Cre mice had normal urinary pH under baseline conditions but higher blood HCO3- than controls after HCO3- challenge. In conclusion, AC6 is required for maintaining normal acid-base homeostasis and energy expenditure. Under baseline conditions, renal AC6 is redundant for acid-base balance but becomes important under alkaline conditions.
Collapse
|
6
|
Diaz D, Clarke RJ. Evolutionary Analysis of the Lysine-Rich N-terminal Cytoplasmic Domains of the Gastric H +,K +-ATPase and the Na +,K +-ATPase. J Membr Biol 2018; 251:653-666. [PMID: 30056551 DOI: 10.1007/s00232-018-0043-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
The catalytic α-subunits of both the Na+,K+-ATPase and the gastric H+,K+-ATPase possess lysine-rich N-termini which project into the cytoplasm. Due to conflicting experimental results, it is currently unclear whether the N-termini play a role in ion pump function or regulation, and, if they do, by what mechanism. Comparison of the lysine frequencies of the N-termini of both proteins with those of all of their extramembrane domains showed that the N-terminal lysine frequencies are far higher than one would expect simply from exposure to the aqueous solvent. The lysine frequency was found to vary significantly between different vertebrate classes, but this is due predominantly to a change in N-terminal length. As evidenced by a comparison between fish and mammals, an evolutionary trend towards an increase of the length of the N-terminus of the H+,K+-ATPase on going from an ancestral fish to mammals could be identified. This evolutionary trend supports the hypothesis that the N-terminus is important in ion pump function or regulation. In placental mammals, one of the lysines is replaced by serine (Ser-27), which is a target for protein kinase C. In most other animal species, a lysine occupies this position and hence no protein kinase C target is present. Interaction with protein kinase C is thus not the primary role of the lysine-rich N-terminus. The disordered structure of the N-terminus may, via increased flexibility, facilitate interaction with another binding partner, e.g. the surrounding membrane, or help to stabilise particular enzyme conformations via the increased entropy it produces.
Collapse
Affiliation(s)
- Dil Diaz
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia. .,The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
Brar KS, Gao Y, El-Mallakh RS. Are endogenous cardenolides controlled by atrial natriuretic peptide. Med Hypotheses 2016; 92:21-5. [PMID: 27241248 DOI: 10.1016/j.mehy.2016.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/16/2016] [Indexed: 11/17/2022]
Abstract
Endogenous cardenolides are digoxin-like substances and ouabain-like substances that have been implicated in the pathogenesis of hypertension and mood disorders in clinical and pre-clinical studies. Regulatory signals for endogenous cardenolides are still unknown. These endogenous compounds are believed to be produced by the adrenal gland in the periphery and the hypothalamus in the central nervous system, and constitute part of an hormonal axis that may regulate the catalytic activity of the α subunit of Na(+)/K(+)-ATPase. A review of literature suggests that there is great overlap in physiological environments that are associated with either elevations or reductions in the levels of atrial natriuretic peptide (ANP) and endogenous cardenolides. This suggests that these two factors may share a common regulatory signal or perhaps that ANP may be involved in the regulation of endogenous cardenolides.
Collapse
Affiliation(s)
- Kanwarjeet S Brar
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
8
|
P2C-Type ATPases and Their Regulation. Mol Neurobiol 2015; 53:1343-1354. [DOI: 10.1007/s12035-014-9076-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
|
9
|
Rb(+) occlusion stabilized by vanadate in gastric H(+)/K(+)-ATPase at 25°C. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:316-22. [PMID: 20826127 DOI: 10.1016/j.bbamem.2010.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/13/2010] [Accepted: 08/31/2010] [Indexed: 11/20/2022]
Abstract
Despite its similarity with the Na(+)/K(+)-ATPase, it has not been possible so far to isolate a K(+)-occluded state in the H(+)/K(+)-ATPase at room temperature. We report here results on the time course of formation of a state containing occluded Rb(+) (as surrogate for K(+)) in H(+)/K(+)-ATPase from gastric vesicles at 25°C. Alamethicin (a pore-forming peptide) showed to be a suitable agent to open vesicles, allowing a more efficient removal of Rb(+) ions from the intravesicular medium than C(12)E(8) (a non-ionic detergent). In the presence of vanadate and Mg(2+), the time course of [(86)Rb]Rb(+) uptake displayed a fast phase due to Rb(+) occlusion. The specific inhibitor of the H(+)/K(+)-ATPase SCH28080 significantly reduces the amount of Rb(+) occluded in the vanadate-H(+)/K(+)-ATPase complex. Occluded Rb(+) varies with [Rb(+)] according to a hyperbolic function with K(0.5)=0.29±0.06mM. The complex between the Rb(+)-occluded state and vanadate proved to be very stable even after removal of free Mg(2+) with EDTA. Our results yield a stoichiometry lower than one occluded Rb(+) per phosphorylation site, which might be explained assuming that, unlike for the Na(+)/K(+)-ATPase, Mg(2+)-vanadate is unable to recruit all the Rb(+)-bound to the Rb(+)-occluded form of the Rb(+)-vanadate-H(+)/K(+)-ATPase complex.
Collapse
|
10
|
Poulsen H, Morth P, Egebjerg J, Nissen P. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase. FEBS Lett 2010; 584:2589-95. [PMID: 20412804 DOI: 10.1016/j.febslet.2010.04.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 01/11/2023]
Abstract
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na(+),K(+)- and H(+),K(+)-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.
Collapse
Affiliation(s)
- Hanne Poulsen
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Aarhus University, Department of Molecular Biology, Denmark.
| | | | | | | |
Collapse
|
11
|
Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 2009; 298:F12-21. [PMID: 19640897 DOI: 10.1152/ajprenal.90723.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The H(+)-K(+)-ATPases are ion pumps that use the energy of ATP hydrolysis to transport protons (H(+)) in exchange for potassium ions (K(+)). These enzymes consist of a catalytic alpha-subunit and a regulatory beta-subunit. There are two catalytic subunits present in the kidney, the gastric or HKalpha(1) isoform and the colonic or HKalpha(2) isoform. In this review we discuss new information on the physiological function, regulation, and structure of the renal H(+)-K(+)-ATPases. Evaluation of enzymatic functions along the nephron and collecting duct and studies in HKalpha(1) and HKalpha(2) knockout mice suggest that the H(+)-K(+)-ATPases may function to transport ions other than protons and potassium. These reports and recent studies in mice lacking both HKalpha(1) and HKalpha(2) suggest important roles for the renal H(+)-K(+)-ATPases in acid/base balance as well as potassium and sodium homeostasis. Molecular modeling studies based on the crystal structure of a related enzyme have made it possible to evaluate the structures of HKalpha(1) and HKalpha(2) and provide a means to study the specific cation transport properties of H(+)-K(+)-ATPases. Studies to characterize the cation specificity of these enzymes under different physiological conditions are necessary to fully understand the role of the H(+)-K(+) ATPases in renal physiology.
Collapse
Affiliation(s)
- Michelle L Gumz
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
12
|
Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev 2009; 61:9-38. [PMID: 19325075 PMCID: PMC2763610 DOI: 10.1124/pr.108.000711] [Citation(s) in RCA: 392] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Endogenous cardiotonic steroids (CTS), also called digitalis-like factors, have been postulated to play important roles in health and disease for nearly half a century. Recent discoveries, which include the specific identification of endogenous cardenolide (endogenous ouabain) and bufadienolide (marinobufagenin) CTS in humans along with the delineation of an alternative mechanism by which CTS can signal through the Na(+)/K(+)-ATPase, have increased the interest in this field substantially. Although CTS were first considered important in the regulation of renal sodium transport and arterial pressure, more recent work implicates these hormones in the regulation of cell growth, differentiation, apoptosis, and fibrosis, the modulation of immunity and of carbohydrate metabolism, and the control of various central nervous functions and even behavior. This review focuses on the physiological interactions between CTS and other regulatory systems that may be important in the pathophysiology of essential hypertension, preeclampsia, end-stage renal disease, congestive heart failure, and diabetes mellitus. Based on our increasing understanding of the regulation of CTS as well as the molecular mechanisms of these hormone increases, we also discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Y Bagrov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
13
|
Sazinsky MH, Agarwal S, Argüello JM, Rosenzweig AC. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase. Biochemistry 2006; 45:9949-55. [PMID: 16906753 DOI: 10.1021/bi0610045] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper homeostasis is maintained in part by membrane-bound P(1B)-type ATPases that are found in all organisms and drive the transport of this essential, yet toxic, metal ion across cellular membranes. CopA from Archaeoglobus fulgidus is a hyperthermophilic member of this ATPase subfamily and is homologous to the human Wilson and Menkes disease ATPases. To gain insight into Cu(+)-ATPase function, the structure of the CopA actuator domain (A-domain) was determined to 1.65 A resolution. The CopA A-domain functions to couple ATP hydrolysis in the ATP binding domain (ATPBD) with structural rearrangements of critical transmembrane segments. Its fold is quite similar to that of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1) A-domain, with the exception of an external loop region. On the basis of sequence and structural comparisons, specific residues that probably interact with the CopA ATPBD have been identified. Comparisons to the Wilson and Menkes disease A-domains reveal the presence of an additional loop that may be associated with regulatory functions in eukaryotic Cu(+)-ATPases. Finally, several mutations in the Wilson and Menkes disease ATPases occur in the A-domain, and their likely effects on function can be inferred from the CopA A-domain structure.
Collapse
Affiliation(s)
- Matthew H Sazinsky
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The Na+, K+-ATPase or Na+, K+-pump plays a critical role in ion homeostasis and many cellular events. The Na+, K+-pump activity is regulated by serine/threonine phosphorylation, the role of tyrosine kinases in the regulation, however, is obscure. We now present novel evidence showing that tyrosine phosphorylation activates the Na+, K+-pump in cortical neurons. The electrogenic activity of the Na+, K+-pump was measured using whole-cell voltage clamp. A tonic activity was revealed by an inward current induced by the specific inhibitor ouabain or strophanthidin; an outward current due to activation of the pump was triggered by raising extracellular K+. The inward and outward currents were attenuated by the tyrosine kinase inhibitor genistein, herbimycin A, or lavendustin A, while blocking tyrosine phosphatases increased the pump current. Down-regulation of the pump current was also seen with the Src inhibitor PP1 and intracellularly applied anti-Lyn or anti-Yes antibody. Consistently, intracellular application of Lyn kinase up-regulated the pump current. Immunoprecipitation and western blotting showed tyrosine phosphorylation and a direct interaction between Lyn and the alpha3 subunit of the Na+, K+-pump. The tyrosine phosphorylation of the alpha3 subunit was reduced by serum deprivation. These data suggest that the Na+, K+-ATPase activity in central neurons is regulated by specific Src tyrosine kinases via a protein-protein mechanism and may play a role in apoptosis.
Collapse
Affiliation(s)
- Xue Qing Wang
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
15
|
Sterling H, Lin DH, Chen YJ, Wei Y, Wang ZJ, Lai J, Wang WH. PKC expression is regulated by dietary K intake and mediates internalization of SK channels in the CCD. Am J Physiol Renal Physiol 2004; 286:F1072-8. [PMID: 15130898 PMCID: PMC2822469 DOI: 10.1152/ajprenal.00425.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used Western blot analysis and immunocytochemistry to determine the effect of dietary K intake on the expression of protein kinase C (PKC) isoforms in the kidney. Western blot has demonstrated that conventional PKC isoforms (alpha and beta), novel PKC isoforms (delta, epsilon, and eta), and atypical PKC isoforms (zeta) are expressed in the renal cortex and outer medulla. Moreover, a low K intake significantly increases the expression of PKC-epsilon in the renal cortex and outer medulla but does not change the expression of PKC-alpha, PKC-beta, PKC-delta, PKC-eta, and PKC-zeta. Also, immunocytochemistry shows that PKC-epsilon isoform is expressed in the cortical collecting duct (CCD) and outer medullary collecting duct (OMCD) and that the intensity of PKC-epsilon staining is higher in the kidney from rats on a K-deficient diet than those on a control diet. Also, we used the patch-clamp technique to study the role of PKC in mediating internalization of ROMK (Kir 1.1)-like small-conductance K (SK) channels induced by phenylarsine oxide (PAO), an agent that inhibits protein tyrosine phosphatase and has been shown to stimulate the internalization of the SK channel in the CCD (Sterling H, Lin DH, Qu RM, Dong K, Herbert SC, and Wang WH. J Biol Chem 277: 4317-4323, 2002). Inhibition of PKC with calphostin C and GF-109203x had no significant effect on channel activity but abolished the inhibitory effect of PAO on SK channels. In conclusion, a low K intake increases the expression of PKC-epsilon isoform in the renal cortex and outer medulla, and PKC is involved in mediating the internalization of SK channels in the CCD induced by stimulation of protein tyrosine kinase activity.
Collapse
Affiliation(s)
- Hyacinth Sterling
- Dept. of Pharmacology, BSB Rm. 537, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | |
Collapse
|