1
|
Mahmud KAHA, Hasan F, Khan MI, Adnan A. Shock-Induced Damage Mechanism of Perineuronal Nets. Biomolecules 2021; 12:biom12010010. [PMID: 35053158 PMCID: PMC8774183 DOI: 10.3390/biom12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
The perineuronal net (PNN) region of the brain’s extracellular matrix (ECM) surrounds the neural networks within the brain tissue. The PNN is a protective net-like structure regulating neuronal activity such as neurotransmission, charge balance, and action potential generation. Shock-induced damage of this essential component may lead to neuronal cell death and neurodegenerations. The shock generated during a vehicle accident, fall, or improvised device explosion may produce sufficient energy to damage the structure of the PNN. The goal is to investigate the mechanics of the PNN in reaction to shock loading and to understand the mechanical properties of different PNN components such as glycan, GAG, and protein. In this study, we evaluated the mechanical strength of PNN molecules and the interfacial strength between the PNN components. Afterward, we assessed the PNN molecules’ damage efficiency under various conditions such as shock speed, preexisting bubble, and boundary conditions. The secondary structure altercation of the protein molecules of the PNN was analyzed to evaluate damage intensity under varying shock speeds. At a higher shock speed, damage intensity is more elevated, and hyaluronan (glycan molecule) is most likely to break at the rigid junction. The primary structure of the protein molecules is least likely to fail. Instead, the molecules’ secondary bonds will be altered. Our study suggests that the number of hydrogen bonds during the shock wave propagation is reduced, which leads to the change in protein conformations and damage within the PNN structure. As such, we found a direct connection between shock wave intensity and PNN damage.
Collapse
|
2
|
Structure-based identification of inhibitors disrupting the CD2-CD58 interactions. J Comput Aided Mol Des 2021; 35:337-353. [PMID: 33532888 DOI: 10.1007/s10822-020-00369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
The immune system has very intricate mechanisms of fighting against the invading infections which are accomplished by a sequential event of molecular interactions in the body. One of the crucial phenomena in this process is the recognition of T-cells by the antigen-presenting cells (APCs), which is initiated by the rapid interaction between both cell surface receptors, i.e., CD2 located on T-cells and CD58 located on APCs. Under various pathological conditions, which involve undesired immune response, inhibiting the CD2-CD58 interactions becomes a therapeutically relevant opportunity. Herein we present an extensive work to identify novel inhibiting agents of the CD2-CD58 interactions. Classical molecular dynamics (MD) simulations of the CD2-CD58 complex highlighted a series of crucial CD58 residues responsible for the interactions with CD2. Based on such results, a pharmacophore map, complementary to the CD2-binding site of CD58, was created and employed for virtual screening of ~ 300,000 available compounds. On the ~ 6000 compounds filtered from pharmacophore mapping, ADME screening leads to ~ 350 molecules. Molecular docking was then performed on these molecules, and fifteen compounds emerged with significant binding energy (< - 50 kcal/mol) for CD58. Finally, short MD simulations were performed in triplicate on each complex (i) to provide a microscopic view of the ligand binding and (ii) to rule out possibly weak binders of CD58 from the identified hits. At last, we suggest eight compounds for in vitro testing that were identified as promising hits to bind CD58 with a high binding affinity.
Collapse
|
3
|
Perthold JW, Oostenbrink C. GroScore: Accurate Scoring of Protein–Protein Binding Poses Using Explicit-Solvent Free-Energy Calculations. J Chem Inf Model 2019; 59:5074-5085. [DOI: 10.1021/acs.jcim.9b00687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Walther Perthold
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
4
|
Célerse F, Lagardère L, Derat E, Piquemal JP. Massively Parallel Implementation of Steered Molecular Dynamics in Tinker-HP: Comparisons of Polarizable and Non-Polarizable Simulations of Realistic Systems. J Chem Theory Comput 2019; 15:3694-3709. [DOI: 10.1021/acs.jctc.9b00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frédéric Célerse
- Laboratoire de Chimie Théorique, UMR 7616 CNRS, Sorbonne Université, 75005 Paris, France
- Institut Parisien de Chimie Moléculaire, UMR 8232 CNRS, Sorbonne Université, 75005 Paris, France
| | - Louis Lagardère
- Institut des Sciences du Calcul et des Données, Sorbonne Université, 75005 Paris, France
- Institut Parisien de Chimie Physique et Théorique, FR 2622 CNRS, Sorbonne Université, 75005 Paris, France
- Laboratoire de Chimie théorique, UMR 7616 CNRS, Sorbonne Université, 75005 Paris, France
| | - Etienne Derat
- Institut Parisien de Chimie Moléculaire, UMR 8232 CNRS, Sorbonne Université, 75005 Paris, France
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, UMR 7616 CNRS, Sorbonne Université, 75005 Paris, France
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
5
|
Xiao BL, Ning YN, Niu NN, Li D, Moosavi-Movahedi AA, Sheibani N, Hong J. Steered molecular dynamic simulations of conformational lock of Cu, Zn-superoxide dismutase. Sci Rep 2019; 9:4353. [PMID: 30867507 PMCID: PMC6416402 DOI: 10.1038/s41598-019-40892-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/25/2019] [Indexed: 01/01/2023] Open
Abstract
The conformational lock was a bio-thermodynamic theory to explain the characteristics of interfaces in oligomeric enzymes and their effects on catalytic activity. The previous studies on superoxide dismutases (Cu, Zn-SODs) showed that the dimeric structure contributed to the high catalytic efficiency and the stability. In this study, steered molecular dynamics simulations were used firstly to study the main interactions between two subunits of Cu, Zn-SODs. The decomposition process study showed that there were not only four pairs of hydrogen bonds but also twenty-five residue pairs participating hydrophobic interactions between A and B chains of SOD, and van der Waals interactions occupied a dominant position among these residue pairs. Moreover, the residue pairs of hydrogen bonds played a major role in maintaining the protein conformation. The analysis of the energy and conformational changes in the SMD simulation showed that there were two groups (two conformational locks) between A and B chains of SOD. The first group consisted of one hydrogen-bond residues pair and seven hydrophobic interactions residues pairs with a total average energy of −30.10 KJ/mol, and the second group of three hydrogen-bond residues pair and eighteen hydrophobic interactions residues pairs formed with a total average energy of −115.23 KJ/mol.
Collapse
Affiliation(s)
- Bao-Lin Xiao
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China
| | - Yan-Na Ning
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China
| | - Nan-Nan Niu
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China
| | - Di Li
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Enquelab Avenue, P.O. Box 13145-1384, Tehran, Iran
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences and Biomedical Engineering, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Jun Hong
- School of Life Sciences, Henan University, JinMing Road, Kaifeng, 475000, China. .,Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University JinMing Road, Kaifeng, 475000, China.
| |
Collapse
|
6
|
Leherte L, Petit A, Jacquemin D, Vercauteren DP, Laurent AD. Investigating cyclic peptides inhibiting CD2-CD58 interactions through molecular dynamics and molecular docking methods. J Comput Aided Mol Des 2018; 32:1295-1313. [PMID: 30368623 DOI: 10.1007/s10822-018-0172-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
The CD2-CD58 protein-protein interaction is known to favor the recognition of antigen presenting cells by T cells. The structural, energetics, and dynamical properties of three known cyclic CD58 ligands, named P6, P7, and RTD-c, are studied through molecular dynamics (MD) simulations and molecular docking calculations. The ligands are built so as to mimic the C and F β-strands of protein CD2, connected via turn inducers. The MD analyses focus on the location of the ligands with respect to the experimental binding site and on the direct and water-mediated hydrogen bonds (H bonds) they form with CD58. Ligand P6, with a sequence close to the experimental β-strands of CD2, presents characteristics that explain its higher experimental affinity, e.g., the lower mobility and flexibility at the CD58 surface, and the larger number and occurrence frequency of ligand-CD58 H bonds. For the two other ligands, the structural modifications lead to changes in the binding pattern with CD58 and its dynamics. In parallel, a large set of molecular docking calculations, carried out with various search spaces and docking algorithms, are compared to provide a consensus view of the preferred ligand binding modes. The analysis of the ligand side chain locations yields results that are consistent with the CD2-CD58 crystal structure and suggests various binding modes of the experimentally identified hot spot of the ligands, i.e., Tyr86. P6 is shown to form a number of contacts that are also present in the experimental CD2-CD58 structure.
Collapse
Affiliation(s)
- Laurence Leherte
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur MEdicine and Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - Axel Petit
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur MEdicine and Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Denis Jacquemin
- University of Nantes, CEISAM UMR CNRS 6230, UFR Sciences et Techniques, 2 Rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France.,Institut Universitaire de France, 103 Bd St Michel, 75005, Paris Cedex 5, France
| | - Daniel P Vercauteren
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur MEdicine and Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Adèle D Laurent
- University of Nantes, CEISAM UMR CNRS 6230, UFR Sciences et Techniques, 2 Rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France
| |
Collapse
|
7
|
Azadi S, Tafazzoli-Shadpour M, Omidvar R. Steered Molecular Dynamics Simulation Study of Quantified Effects of Point Mutation Induced by Breast Cancer on Mechanical Behavior of E-Cadherin. Mol Biol 2018. [DOI: 10.1134/s0026893318050047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Bełdowski P, Kruszewska N, Yuvan S, Dendzik Z, Goudoulas T, Gadomski A. Capstan-like mechanism in hyaluronan-phospholipid systems. Chem Phys Lipids 2018; 216:17-24. [PMID: 30144435 DOI: 10.1016/j.chemphyslip.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Functionality of articular cartilage results from complex interactions between its molecular components. Among many biomolecules, two are of prime importance for lubrication: hyaluronic acid (HA) and phospholipids (PL). The purpose of this study is to discuss a mechanism of interaction between these two components and how their synergies contribute to nanobiolubrication of articular cartilage. Preliminary molecular dynamics simulations have been performed to investigate these interactions by adopting a capstan-like mechanism of action. By applying a constant pulling force to both ends of a HA molecule, wrapped around a PL micelle, we viewed the rotation of the PL micelle. The simulations were performed upon two physicochemical constraints: force- and solvent-dependency. The results show the efficiency of rotation from intermolecular bond creation and annihilation. We found a direct relation between the available surface of the micelle and the magnitude of the force, which varies significantly through the unwinding. The movement of the attached molecules is characterized by a slide-to-roll relation, which is affected by the viscosity of the surrounding medium. As a consequence, two solvents were studied for specific force conditions and the molecular dynamics simulation exhibited double the slide-to-roll coefficient for the viscous solvent as compared to its low-viscosity limit.
Collapse
Affiliation(s)
- P Bełdowski
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland.
| | - N Kruszewska
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland.
| | - S Yuvan
- Department of Physics, East Carolina University, Greenville, NC 27858, USA
| | - Z Dendzik
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - T Goudoulas
- Technical University of Munich, School of Life Sciences Weihenstephan, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - A Gadomski
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland
| |
Collapse
|
9
|
Perthold JW, Oostenbrink C. Simulation of Reversible Protein-Protein Binding and Calculation of Binding Free Energies Using Perturbed Distance Restraints. J Chem Theory Comput 2017; 13:5697-5708. [PMID: 28898077 PMCID: PMC5688412 DOI: 10.1021/acs.jctc.7b00706] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Virtually
all biological processes depend on the interaction between
proteins at some point. The correct prediction of biomolecular binding
free-energies has many interesting applications in both basic and
applied pharmaceutical research. While recent advances in the field
of molecular dynamics (MD) simulations have proven the feasibility
of the calculation of protein–protein binding free energies,
the large conformational freedom of proteins and complex free energy
landscapes of binding processes make such calculations a difficult
task. Moreover, convergence and reversibility of resulting free-energy
values remain poorly described. In this work, an easy-to-use, yet
robust approach for the calculation of standard-state protein–protein
binding free energies using perturbed distance restraints is described.
In the binding process the conformations of the proteins were restrained,
as suggested earlier. Two approaches to avoid end-state problems upon
release of the conformational restraints were compared. The method
was evaluated by practical application to a small model complex of
ubiquitin and the very flexible ubiquitin-binding domain of human
DNA polymerase ι (UBM2). All computed free energy differences
were closely monitored for convergence, and the calculated binding
free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol–1 from experimental values. Statistical error estimates
were in the order of thermal noise. We conclude that the presented
method has promising potential for broad applicability to quantitatively
describe protein–protein and various other kinds of complex
formation.
Collapse
Affiliation(s)
- Jan Walther Perthold
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering, University of Natural Resources and Life Sciences (BOKU) Vienna , Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering, University of Natural Resources and Life Sciences (BOKU) Vienna , Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
10
|
Kianfar P, Abolfathi N, Karimi NZ. Investigating the effect of different transducer stiffness values on the contactin complex detachment by steered molecular dynamics. J Mol Graph Model 2017. [PMID: 28651183 DOI: 10.1016/j.jmgm.2017.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study investigated the adhesion behavior of Contactin4 (CNTN4), a member of Immunoglobulin Super Family (Ig-SF) of cell adhesion molecules. Contactin4 plays a crucial role in the formation, maintenance, and plasticity of neuronal networks. Contactin in its complex configuration with protein tyrosine phosphatase gamma (PTPRG) was selected for simulation. By utilizing Steered Molecular Dynamics (SMD), the uniaxial force was applied to induce unbinding of the complex, and the force-induced detachment of complex components was probed. Three sets of simulations with three values of transducer stiffness and five pulling speeds were designed. Our results showed the dependence of unbinding force on both accessible parameters of pulling speed and spring stiffness. By increasing the stiffness value and pulling speed the rupture force increased. Accordingly, the dissociation rates due to the Bell's theory based on rupture forces and loading rates were calculated.
Collapse
Affiliation(s)
- Parnian Kianfar
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran.
| | - Nabiollah Abolfathi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Navid Zarif Karimi
- Department of Industrial Engineering, Università di Bologna, Bologna 40126, Italy
| |
Collapse
|
11
|
Tolosa S, Hidalgo A, Sansón JA. Theoretical study of enzymatically catalyzed tautomerization of carbon acids in aqueous solution: quantum calculations and steered molecular dynamics simulations. J Mol Model 2016; 22:44. [PMID: 26815031 DOI: 10.1007/s00894-016-2914-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
The thermodynamics and kinetics of enzymatically assisted reactions of carbon acids were studied theoretically in this work. Quantum electronic (QE) structure calculations and steered molecular dynamics (SMD) simulations were carried out. Three 3-butenal tautomerization reactions that proceed from the β,γ-unsaturated reactant (R) to the α,β-unsaturated carbon acid product (P) and occur in two elementary steps through an intermediate (I) were studied, ignoring or including the surrounding aqueous medium in the calculations. The Gibbs free energies of activation of the R ⇆ I enolization and I ⇆ P ketonization steps were found to decrease considerably when residues simulating enzymes were introduced into these processes. Although the processes became slightly more favorable thermodynamically when the solution was included in the simulations, they became less favorable kinetically. The results from SMD simulations of these reactions were qualitatively consistent with the values we obtained using QE as well as those found by other authors in similar studies. Our simulations also allowed us to perform a detailed study of these reactions in solution.
Collapse
Affiliation(s)
- Santiago Tolosa
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain.
| | - Antonio Hidalgo
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain
| | - Jorge A Sansón
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain
| |
Collapse
|
12
|
Knapp B, Demharter S, Deane CM, Minary P. Exploring peptide/MHC detachment processes using hierarchical natural move Monte Carlo. Bioinformatics 2016; 32:181-6. [PMID: 26395770 PMCID: PMC4708099 DOI: 10.1093/bioinformatics/btv502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 01/15/2023] Open
Abstract
MOTIVATION The binding between a peptide and a major histocompatibility complex (MHC) is one of the most important processes for the induction of an adaptive immune response. Many algorithms have been developed to predict peptide/MHC (pMHC) binding. However, no approach has yet been able to give structural insight into how peptides detach from the MHC. RESULTS In this study, we used a combination of coarse graining, hierarchical natural move Monte Carlo and stochastic conformational optimization to explore the detachment processes of 32 different peptides from HLA-A*02:01. We performed 100 independent repeats of each stochastic simulation and found that the presence of experimentally known anchor amino acids affects the detachment trajectories of our peptides. Comparison with experimental binding affinity data indicates the reliability of our approach (area under the receiver operating characteristic curve 0.85). We also compared to a 1000 ns molecular dynamics simulation of a non-binding peptide (AAAKTPVIV) and HLA-A*02:01. Even in this simulation, the longest published for pMHC, the peptide does not fully detach. Our approach is orders of magnitude faster and as such allows us to explore pMHC detachment processes in a way not possible with all-atom molecular dynamics simulations. AVAILABILITY AND IMPLEMENTATION The source code is freely available for download at http://www.cs.ox.ac.uk/mosaics/. CONTACT bernhard.knapp@stats.ox.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bernhard Knapp
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK and
| | - Samuel Demharter
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK and
| | - Peter Minary
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| |
Collapse
|
13
|
Modeling of cell adhesion and deformation mediated by receptor–ligand interactions. Biomech Model Mechanobiol 2015; 15:371-87. [DOI: 10.1007/s10237-015-0694-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/07/2015] [Indexed: 11/30/2022]
|
14
|
DeSalvo SC, Liu Y, Choudhary GS, Ren D, Nangia S, Sureshkumar R. Signaling factor interactions with polysaccharide aggregates of bacterial biofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1958-1966. [PMID: 25607640 DOI: 10.1021/la504721b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biofilms are surface-attached colonies of bacteria embedded in an extracellular polymeric substance (EPS). Inside the eukaryotic hosts, bacterial biofilms interact with the host cells through signaling factors (SFs). These signaling processes play important roles in the interaction between bacteria and host cells and the outcome of infections and symbiosis. However, how host immune factors diffuse through biofilms is not well understood. Here, we describe synergistic molecular dynamics and experimental approaches for studying the translocation of signaling factors through polysaccharide chain aggregates present in the extracellular matrix of bacterial biofilms. The effect of polysaccharide chain degradation on the energetics of SF-EPS interactions was examined by simulating an EPS consisting of various polysaccharide chain lengths. It is shown that the SF stabilization energy, defined as the average potential of mean force difference between the environments outside and within the matrix, increases linearly with decreasing chain length. This effect has been explained based on the changes in the polysaccharide configurations around the SF. Specifically, shorter chains are packed tightly around the SF, promoting favorable SF-EPS interactions, while longer chains are packed loosely resulting in screening of interactions with neighboring chains. We further investigated the translocation of SFs through the host cell membrane using molecular dynamics simulations. Further, simulations predict the existence of energy barriers greater than 1000 kJ mol(-1) associated with the translocation of the signaling factors necrosis factor-alpha (TNF-α) and granulocyte macrophage colony stimulating factor (GM-CSF) across the lipid bilayer. The agreement of computational and experimental findings motivates future computational studies using a more detailed description of the EPS aimed at understanding the role of the extracellular matrix on biofilm drug resistance.
Collapse
Affiliation(s)
- Stephen C DeSalvo
- Department of Biomedical and Chemical Engineering, §Department of Civil and Environmental Engineering, ∥Department of Biology, ⊥Department of Physics, ‡Syracuse Biomaterials Institute, Syracuse University , Syracuse, New York 13244, United States
| | | | | | | | | | | |
Collapse
|
15
|
A computational model of the glycine tautomerization reaction in aqueous solution. J Mol Model 2014; 20:2147. [PMID: 24562859 DOI: 10.1007/s00894-014-2147-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
A theoretical study of the internal proton transfer reaction of glycine (Gly) in aqueous solution was performed by means of steered molecular dynamics (SMD) simulation with solute-solvent interaction potentials derived from AMBER van der Waals parameters and QM/MM electrostatic charges in solution. Thermodynamic calculations and the analysis of the solvation structure, dynamic properties, and vibrational spectra associated with the species involved in the tautomerization process were performed. The results obtained for the Gibbs free energy activation and reaction (ΔG(≠) =5.28 kcal mol⁻¹ and ΔG(R)=-6.65 kcal mol⁻¹), the solute-solvent interaction energy of the different glycine structures, and the hydrogen-bond lifetimes are in agreement with previous studies. These hydrations drive an increase in the diffusion coefficient and a decrease in the time of reorientation when the process takes place in the direction Z-Gly → TS-Gly → N-Gly. The vibrational spectrum associated with the normal modes of the bridge hydrogen atoms shows the N-H stretching at ν(s)=3,470 cm⁻¹ and ν(as)=3,470 cm⁻¹, the O-H stretching at 3,205 cm⁻¹, and the NHO bending at about 1,400 cm⁻¹, in agreement with previously reported data.
Collapse
|
16
|
Tolosa S, Mora-Diez N, Hidalgo A, Sansón JA. Amide-imide tautomerism of acetohydroxamic acid in aqueous solution: quantum calculation and SMD simulations. RSC Adv 2014. [DOI: 10.1039/c4ra06124a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The kinetics and the thermodynamics of the amide-imide tautomerizations of acetohydroxamic acid in aqueous solution are studied from a theoretical point of view.
Collapse
Affiliation(s)
- S. Tolosa
- Departamento de Ingeniería Química y Química Física
- Universidad de Extremadura
- Badajoz, Spain
| | - N. Mora-Diez
- Department of Chemistry
- Thompson Rivers University
- Kamloops, Canada
| | - A. Hidalgo
- Departamento de Ingeniería Química y Química Física
- Universidad de Extremadura
- Badajoz, Spain
| | - J. A. Sansón
- Departamento de Ingeniería Química y Química Física
- Universidad de Extremadura
- Badajoz, Spain
| |
Collapse
|
17
|
Tambunan USF, Pratomo H, Parikesit AA. Modification of Kampmann A5 as Potential Fusion Inhibitor of Dengue Virus using Molecular Docking and Molecular Dynamics Approach. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.621.634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Fukunishi H. Influence of ionization states of antigen on anti-fluorescein antibodies. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Fukunishi H, Shimada J, Shiraishi K. Antigen-antibody interactions and structural flexibility of a femtomolar-affinity antibody. Biochemistry 2012; 51:2597-605. [PMID: 22390639 DOI: 10.1021/bi3000319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The femtomolar-affinity mutant antibody (4M5.3) generated by directed evolution is interesting because of the potential of antibody engineering. In this study, the mutant and its wild type (4-4-20) were compared in terms of antigen-antibody interactions and structural flexibility to elucidate the effects of directed evolution. For this purpose, multiple steered molecular dynamics (SMD) simulations were performed. The pulling forces of SMD simulations elucidated the regions that form strong attractive interactions in the binding pocket. Structural analysis in these regions showed two important mutations for improving attractive interactions. First, mutation of Tyr102(H) to Ser (sequence numbering of Protein Data Bank entry 1FLR ) played a role in resolving the steric hindrance on the pathway of the antigen in the binding pocket. Second, mutation of Asp31(H) to His played a role in resolving electrostatic repulsion. Potentials of mean force (PMFs) of both the wild type and the mutant showed landscapes that do not include obvious intermediate states and go directly to the bound state. These landscapes were regarded as funnel-like binding free energy landscapes. Furthermore, the structural flexibility based on the fluctuations of the positions of atoms was analyzed. It was shown that the fluctuations in the positions of the antigen and residues in contact with antigen tend to be smaller in the mutant than in the wild type. This result suggested that structural flexibility decreases as affinity is improved by directed evolution. This suggestion is similar to the relationship between affinity and flexibility for in vivo affinity maturation, which was suggested by Romesberg and co-workers [Jimenez, R., et al. (2003) Proc. Natl. Acad. Sci. U.S.A.100, 92-97]. Consequently, the relationship was found to be applicable up to femotomolar affinity levels.
Collapse
Affiliation(s)
- Hiroaki Fukunishi
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan.
| | | | | |
Collapse
|
20
|
Ponmurugan M, Vemparala S. Transient-state fluctuationlike relation for the driving force on a biomolecule. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:060101. [PMID: 22304027 DOI: 10.1103/physreve.84.060101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Indexed: 05/31/2023]
Abstract
In experiments and simulations the force acting on a single biomolecular system has been observed as a fluctuating quantity if the system is driven under constant velocity. We ask the question that is analogous to transient state entropy production and work fluctuation relations whether the force fluctuations observed in the single biomolecular system satisfy a transient state fluctuationlike relation, and the answer is in the affirmative. Using a constant velocity pulling steered molecular dynamics simulation study for protein unfolding, we confirm that the force fluctuations of this single biomolecular system satisfy a transient-state fluctuationlike relation 1/γ(T,v) ln[P(v)(+f)/P(v)(-f)] = f. P(v)(±f) is the probability of positive and negative values of forces f = f · for a given unfolding velocity of magnitude v and the pulling direction n, nis the unit vector of n, and γ(T,v) is a factor that depends on initial equilibrium temperature T and the unfolding velocity. For different unfolding velocities we find that the system in the nonequilibrium pulling region displays substantial negative fluctuation in its unfolding force when velocity decreases. A negative value of force may indicate the emergence of refolding behavior during protein unfolding. We also find that γ(T,v) ~ T(-δ)v(α) and the system relaxation time τ(T,v) ~ T(δ)v(-(1+α), where α and δ are scaling exponents.
Collapse
Affiliation(s)
- M Ponmurugan
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.
| | | |
Collapse
|
21
|
PIERRES ANNE, VITTE JOANA, BENOLIEL ANNEMARIE, BONGRAND PIERRE. DISSECTING INDIVIDUAL LIGAND–RECEPTOR BONDS WITH A LAMINAR FLOW CHAMBER. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048006000161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The most important function of proteins may well be to bind to other biomolecules. It has long been felt that kinetic rates of bond formation and dissociation between soluble receptors and ligands might account for most features of the binding process. Only theoretical considerations allowed to predict the behaviour of surface-attached receptors from the properties of soluble forms. During the last decade, experimental progress essentially based on flow chambers, atomic force microscopes or biomembrane force probes allowed direct analysis of biomolecule interaction at the single bond level and gave new insight into previously ignored features such as bond mechanical properties or energy landscapes. The aim of this review is (i) to describe the main advances brought by laminar flow chambers, including information on bond response to forces, multiplicity of binding states, kinetics of bond formation between attached structures, effect of molecular environment on receptor efficiency and behaviour of multivalent attachment, (ii) to compare results obtain by this and other techniques on a few well defined molecular systems, and (iii) to discuss the limitations of the flow chamber method. It is concluded that a new framework may be needed to account for the effective behaviour of biomolecule association.
Collapse
Affiliation(s)
- ANNE PIERRES
- Aix Marseille Université, Faculté de Médecine Timone, Faculté des Sciences de Luminy, Marseille, Laboratoire Adhésion et Inflammation, F-13009, France
- INSERM U600, Marseille, F-13009, France
- CNRS U6212, Marseille, F-13009, France
| | - JOANA VITTE
- Aix Marseille Université, Faculté de Médecine Timone, Faculté des Sciences de Luminy, Marseille, Laboratoire Adhésion et Inflammation, F-13009, France
- INSERM U600, Marseille, F-13009, France
- CNRS U6212, Marseille, F-13009, France
- Assistance Publique — Hôpitaux de Marseille, Hôpital de Ste-Marguerite, Laboratoire d'Immunologie, Marseille, F-13009, France
| | - ANNE-MARIE BENOLIEL
- Aix Marseille Université, Faculté de Médecine Timone, Faculté des Sciences de Luminy, Marseille, Laboratoire Adhésion et Inflammation, F-13009, France
- INSERM U600, Marseille, F-13009, France
- CNRS U6212, Marseille, F-13009, France
| | - PIERRE BONGRAND
- Aix Marseille Université, Faculté de Médecine Timone, Faculté des Sciences de Luminy, Marseille, Laboratoire Adhésion et Inflammation, F-13009, France
- INSERM U600, Marseille, F-13009, France
- CNRS U6212, Marseille, F-13009, France
- Assistance Publique — Hôpitaux de Marseille, Hôpital de Ste-Marguerite, Laboratoire d'Immunologie, Marseille, F-13009, France
| |
Collapse
|
22
|
Fukunishi H, Yagi H, Kamijo K, Shimada J. Role of a Mutated Residue at the Entrance of the Substrate Access Channel in Cytochrome P450 Engineered for Vitamin D3 Hydroxylation Activity. Biochemistry 2011; 50:8302-10. [DOI: 10.1021/bi2006493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hiroaki Fukunishi
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| | - Hirotaka Yagi
- VALWAY
Technology Center, NEC Soft, Ltd., 1-18-7,
Shinkiba, Koto-ku, Tokyo 136-8627,
Japan
| | - Ken’ichi Kamijo
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| | - Jiro Shimada
- Green Innovation Research Laboratories, NEC Corporation, 34, Miyukigaoka, Tsukuba, Ibaraki
305-8501, Japan
| |
Collapse
|
23
|
Patel JS, Branduardi D, Masetti M, Rocchia W, Cavalli A. Insights into Ligand-Protein Binding from Local Mechanical Response. J Chem Theory Comput 2011; 7:3368-3378. [PMID: 22003321 PMCID: PMC3191767 DOI: 10.1021/ct200324j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 11/28/2022]
Abstract
Computational studies of ligand–protein binding are crucial for properly designing novel compounds of potential pharmacological interest. In this respect, researchers are increasingly interested in steered molecular dynamics for ligand–protein binding and unbinding studies. In particular, it has been suggested that analyzing the work profiles along the ligand–protein undocking paths could be fruitful. Here, we propose that small portions of work profiles, termed “local mechanical responses” of the system to a steering force, could serve as a universal measure for capturing relevant information about the system under investigation. Specifically, we first collected a high number of steering trajectories using two biological systems of increasing complexity (i.e., alanine dipeptide and (R)-roscovitine/CDK5 complex). Then, we devised a novel postprocessing tool to be applied to the local mechanical responses, to extract structural information related to the biological processes under investigation. Despite the out-of-equilibrium character of the trajectories, the analysis carried out on the work profiles provided pivotal information about the investigated biological processes. This could eventually be applied to drug design.
Collapse
|
24
|
Fuchigami S, Fujisaki H, Matsunaga Y, Kidera A. Protein Functional Motions: Basic Concepts and Computational Methodologies. ADVANCING THEORY FOR KINETICS AND DYNAMICS OF COMPLEX, MANY-DIMENSIONAL SYSTEMS: CLUSTERS AND PROTEINS 2011. [DOI: 10.1002/9781118087817.ch2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Matsushita S, Inoue Y, Hojo M, Sokabe M, Adachi T. Effect of tensile force on the mechanical behavior of actin filaments. J Biomech 2011; 44:1776-81. [PMID: 21536289 DOI: 10.1016/j.jbiomech.2011.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/29/2011] [Accepted: 04/09/2011] [Indexed: 01/08/2023]
Abstract
Actin filaments are the most abundant components of the cellular cytoskeleton, and play critical roles in various cellular functions such as migration, division and shape control. In these activities, mechanical tension causes structural changes in the double-helical structure of the actin filament, which is a key modulator of cytoskeletal reorganization. This study performed large-scale molecular dynamics (MD) and steered MD simulations to quantitatively analyze the effects of tensile force on the mechanical behavior of actin filaments. The results revealed that when a tensile force of 200pN was applied to a filament consisting of 14 actin subunits, the twist angle of the filament decreased by approximately 20°, corresponding to a rotation of approximately -2° per subunit, representing a critical structural change in actin filaments. Based on these structural changes, the variance in filament length and twist angle was found to decrease, leading to increases in extensional and torsional stiffness. Torsional stiffness increased significantly under the tensile condition, and the ratio of filament stiffness under tensile force to that under no external force increased significantly on longer temporal scales. The results obtained from this study contribute to the understanding of mechano-chemical interactions concerning actin dynamics, showing that increased tensile force in the filament prevents actin regulatory proteins from binding to the filament.
Collapse
Affiliation(s)
- Shinji Matsushita
- Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
26
|
Bizzarri AR. Steered Molecular Dynamics Simulations of the Electron Transfer Complex between Azurin and Cytochrome c551. J Phys Chem B 2011; 115:1211-9. [DOI: 10.1021/jp107933k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Facolta’ di Scienze, Università della Tuscia, Largo dell’Università, I-01100 Viterbo, Italy
| |
Collapse
|
27
|
Abstract
Cell adhesion to matrix, other cells, or pathogens plays a pivotal role in many processes in biomolecular engineering. Early macroscopic methods of quantifying adhesion led to the development of quantitative models of cell adhesion and migration. The more recent use of sensitive probes to quantify the forces that alter or manipulate adhesion proteins has revealed much greater functional diversity than was apparent from population average measurements of cell adhesion. This review highlights theoretical and experimental methods that identified force-dependent molecular properties that are central to the biological activity of adhesion proteins. Experimental and theoretical methods emphasized in this review include the surface force apparatus, atomic force microscopy, and vesicle-based probes. Specific examples given illustrate how these tools have revealed unique properties of adhesion proteins and their structural origins.
Collapse
Affiliation(s)
- Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA.
| |
Collapse
|
28
|
Maruthamuthu V, Schulten K, Leckband D. Elasticity and rupture of a multi-domain neural cell adhesion molecule complex. Biophys J 2009; 96:3005-14. [PMID: 19383447 PMCID: PMC2718298 DOI: 10.1016/j.bpj.2008.12.3936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 12/20/2008] [Accepted: 12/24/2008] [Indexed: 12/21/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays an important role in nervous system development. NCAM forms a complex between its terminal domains Ig1 and Ig2. When NCAM of cell A and of cell B connect to each other through complexes Ig12(A)/Ig12(B), the relative mobility of cells A and B and membrane tension exerts a force on the Ig12(A)/Ig12(B) complex. In this study, we investigated the response of the complex to force, using steered molecular dynamics. Starting from the structure of the complex from the Ig1-Ig2-Ig3 fragment, we first demonstrated that the complex, which differs in dimensions from a previous structure from the Ig1-Ig2 fragment in the crystal environment, assumes the same extension when equilibrated in solvent. We then showed that, when the Ig12(A)/Ig12(B) complex is pulled apart with forces 30-70 pN, it exhibits elastic behavior (with a spring constant of approximately 0.03 N/m) because of the relative reorientation of domains Ig1 and Ig2. At higher forces, the complex ruptures; i.e., Ig12(A) and Ig12(B) separate. The interfacial interactions between Ig12(A) and Ig12(B), monitored throughout elastic extension and rupture, identify E16, F19, K98, and L175 as key side chains stabilizing the complex.
Collapse
Affiliation(s)
- Venkat Maruthamuthu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
29
|
Molecular Dynamics Study of Forced Dissociation Process of Wheat Germ Agglutinin Dimer. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2009. [DOI: 10.1380/ejssnt.2009.825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Protein-protein interaction investigated by steered molecular dynamics: the TCR-pMHC complex. Biophys J 2008; 95:3575-90. [PMID: 18621828 DOI: 10.1529/biophysj.108.131383] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a novel steered molecular dynamics scheme to induce the dissociation of large protein-protein complexes. We apply this scheme to study the interaction of a T cell receptor (TCR) with a major histocompatibility complex (MHC) presenting a peptide (p). Two TCR-pMHC complexes are considered, which only differ by the mutation of a single amino acid on the peptide; one is a strong agonist that produces T cell activation in vivo, while the other is an antagonist. We investigate the interaction mechanism from a large number of unbinding trajectories by analyzing van der Waals and electrostatic interactions and by computing energy changes in proteins and solvent. In addition, dissociation potentials of mean force are calculated with the Jarzynski identity, using an averaging method developed for our steering scheme. We analyze the convergence of the Jarzynski exponential average, which is hampered by the large amount of dissipative work involved and the complexity of the system. The resulting dissociation free energies largely underestimate experimental values, but the simulations are able to clearly differentiate between wild-type and mutated TCR-pMHC and give insights into the dissociation mechanism.
Collapse
|
31
|
Liu X, Xu Y, Wang X, Barrantes FJ, Jiang H. Unbinding of Nicotine from the Acetylcholine Binding Protein: Steered Molecular Dynamics Simulations. J Phys Chem B 2008; 112:4087-93. [DOI: 10.1021/jp0716738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinli Liu
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning, 116024, China, Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, UNESCO Chair of Biophysics & Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, CC 857, B8000FWB, Bahía Blanca,
| | - Yechun Xu
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning, 116024, China, Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, UNESCO Chair of Biophysics & Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, CC 857, B8000FWB, Bahía Blanca,
| | - Xicheng Wang
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning, 116024, China, Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, UNESCO Chair of Biophysics & Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, CC 857, B8000FWB, Bahía Blanca,
| | - Francisco J. Barrantes
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning, 116024, China, Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, UNESCO Chair of Biophysics & Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, CC 857, B8000FWB, Bahía Blanca,
| | - Hualiang Jiang
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning, 116024, China, Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, UNESCO Chair of Biophysics & Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, CC 857, B8000FWB, Bahía Blanca,
| |
Collapse
|
32
|
Lorenzo AC, Bisch PM. Analyzing different parameters of steered molecular dynamics for small membrane interacting molecules. J Mol Graph Model 2008; 24:59-71. [PMID: 16002307 DOI: 10.1016/j.jmgm.2005.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 11/23/2022]
Abstract
The aim of this report is two-fold: First, to show the applicability of the Steered Molecular Dynamics (SMD) methodology for analyzing non-specific interactions governing the membrane affinity process of small biological molecules. Second, to point out a correlation between the system response and certain combinations of the SMD parameters (spring-elastic-constant and pulling-group). For these purposes, a simplified membrane model was used, modeled as a non-polar region limited by two polar aqueous media in a continuous dielectric representation. Polarization-induced effects at both interfaces were taken into account by the "electrostatic images" method. To perform SMD simulations a harmonic external force, representing a spring acting on a selected atom, forces the molecule to "break" its interaction with the surrounding environment by extracting it out of the membrane. With this approach, small molecules and peptides, with known affinity for the membrane environment, were studied: the zwitterionic tryptophan residue and a pentapeptide AcWLKLL. The SMD parameters, spring-elastic-constant and pulling-group, were varied and combined in order to analyze the systems responses in each case. It was observed that, the spring stiffness was crucial to reveal specific events that occur during the molecule behavior; hence, it was directly responsible for the sensitivity of this methodology. The pulling-group selected highly influenced on the reaction pathway, a fact that it was not observed with other parameters; consequently, force profiles are like the "fingerprints" of these induced pathways. The potential profile for the tryptophan was recovered from the SMD simulations being in good agreement with that estimated by an approximation method. With this rather simple model approach, SMD methodology has proven to be suitable for revealing the main interactions that govern the membrane affinity processes of small molecules and peptides.
Collapse
Affiliation(s)
- Alicia C Lorenzo
- Laboratório de Dinâmica Molecular, Programa de Computação Científica, PROCC, Fundação Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365 Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | | |
Collapse
|
33
|
Kong D, Ji B, Dai L. Nonlinear mechanical modeling of cell adhesion. J Theor Biol 2007; 250:75-84. [PMID: 17977558 DOI: 10.1016/j.jtbi.2007.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 09/20/2007] [Accepted: 09/20/2007] [Indexed: 11/17/2022]
Abstract
Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model.
Collapse
Affiliation(s)
- Dong Kong
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
34
|
Pogorelov TV, Autenrieth F, Roberts E, Luthey-Schulten ZA. Cytochrome c(2) Exit Strategy: Dissociation Studies and Evolutionary Implications. J Phys Chem B 2007; 111:618-34. [PMID: 17228920 DOI: 10.1021/jp064973i] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small, water-soluble, type c cytochromes form a transient network connecting major bioenergetic membrane protein complexes in both photosynthesis and respiration. In the photosynthesis cycle of Rhodobacter sphaeroides, cytochrome c2 (cyt c2) docks to the reaction center (RC), undergoes electron transfer, and exits for the cytochrome bc1 complex. Translations of cyt c2 about the RC-cyt c2 docking interface and surrounding membrane reveal possible exit pathways. A pathway at a minimal elevation allowed by the architecture of the RC is analyzed using both an all-atom steered molecular dynamics simulation of the RC-cyt c2 complex and a bioinformatic analysis of the structures and sequences of cyt c. The structure-based phylogenetic analysis allows for the identification of structural elements that have evolved to satisfy the requirements of having multiple functional partners. The patterns of evolutionary variation obtained from the phylogenetic analysis of both docking partners of cyt c2 reveal conservation of key residues involved in the interaction interfaces that would be candidates for further experimental studies. Additionally, using the molecular mechanics Poisson-Boltzmann surface area method we calculate that the binding free energy of reduced cyt c2 to the RC is nearly 6 kcal/mol more favorable than with oxidized cyt c2. The redox-dependent variations lead to changes in structural flexibility, behavior of the interfacial water molecules, and eventually changes in the binding free energy of the complex.
Collapse
Affiliation(s)
- Taras V Pogorelov
- Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Chemical and Life Sciences Laboratory A544, MC-712, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
35
|
Bayas MV, Kearney A, Avramovic A, van der Merwe PA, Leckband DE. Impact of salt bridges on the equilibrium binding and adhesion of human CD2 and CD58. J Biol Chem 2006; 282:5589-96. [PMID: 17172599 DOI: 10.1074/jbc.m607968200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes quantitative investigations of the impact of single charge mutations on equilibrium binding, kinetics, and the adhesion strength of the CD2-CD58 interaction. Previously steered molecular dynamics simulations guided the selection of the charge mutants investigated, which include the CD2 mutants D31A, K41A, K51A, and K91A. This set includes mutations in which the previous cell aggregation and binding data either agreed or disagreed with the steered molecular dynamics predictions. Surface plasmon resonance measurements quantified the solution binding properties. Adhesion was quantified with the surface force apparatus, which was used previously to study the closely related CD2-CD48 interaction. The results reveal roles that these salt bridges play in equilibrium binding and adhesion. We discuss both the molecular basis of this behavior and its implications for cell adhesion.
Collapse
Affiliation(s)
- Marco V Bayas
- Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
36
|
Minh DDL. Free-energy reconstruction from experiments performed under different biasing programs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:061120. [PMID: 17280051 DOI: 10.1103/physreve.74.061120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Indexed: 05/13/2023]
Abstract
Recently developed nonequilibrium statistical physics relationships, including Jarzynski's equality and the Crooks fluctuation theorem, have been used to calculate equilibrium thermodynamic properties using data from both laboratory and computational experiments. Although Jarzynski's derivation does not include an explicit time dependency, prior work utilizing the relationship to reconstruct free-energy surfaces has combined data from experiments performed under identical conditions. Here, a formalism is developed for combining data from a variety of biasing protocols, as in dynamic force spectroscopy experiments. The method is then demonstrated on data from simulations conducted under a wide range of pulling velocities and with a random biasing protocol.
Collapse
Affiliation(s)
- David D L Minh
- Center for Theoretical Biological Physics and Department of Chemistry and Biochemistry, University of California at San Diego, San Diego, California 92093, USA.
| |
Collapse
|
37
|
Abstract
Catch bonds, whose lifetimes are prolonged by force, have been observed in selectin-ligand interactions and other systems. Several biophysical models have been proposed to explain this counterintuitive phenomenon, but none was based on the structure of the interacting molecules and the noncovalent interactions at the binding interface. Here we used molecular dynamics simulations to study changes in structure and atomic-level interactions during forced unbinding of P-selectin from P-selectin glycoprotein ligand-1. A mechanistic model for catch bonds was developed based on these observations. In the model, "catch" results from forced opening of an interdomain hinge that tilts the binding interface to allow two sides of the contact to slide against each other. Sliding promotes formation of new interactions and even rebinding to the original state, thereby slowing dissociation and prolonging bond lifetimes. Properties of this sliding-rebinding mechanism were explored using a pseudoatom representation and Monte Carlo simulations. The model has been supported by its ability to fit experimental data and can be related to previously proposed two-pathway models.
Collapse
Affiliation(s)
- Jizhong Lou
- Institute for Bioengineering and Bioscience, Coulter Department of Biomedical Engineering, and Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
38
|
Chau PL. Simulations of biomolecule unbinding from protein using DL_POLY. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600835640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Vemparala S, Saiz L, Eckenhoff RG, Klein ML. Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles. Biophys J 2006; 91:2815-25. [PMID: 16877515 PMCID: PMC1578482 DOI: 10.1529/biophysj.106.085324] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations have been performed to investigate the partitioning of the volatile anesthetic halothane from an aqueous phase into a coexisting hydrated bilayer, composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids, with embedded alpha-helical peptide bundles based on the membrane-bound portions of the alpha- and delta-subunits, respectively, of nicotinic acetylcholine receptor. In the molecular dynamics simulations halothane molecules spontaneously partitioned into the DOPC bilayer and then preferentially occupied regions close to lipid headgroups. A single halothane molecule was observed to bind to tyrosine (Tyr-277) residue in the alpha-subunit, an experimentally identified specific binding site. The binding of halothane attenuated the local loop dynamics of alpha-subunit and significantly influenced global concerted motions suggesting anesthetic action in modulating protein function. Steered molecular dynamics calculations on a single halothane molecule partitioned into a DOPC lipid bilayer were performed to probe the free energy profile of halothane across the lipid-water interface and rationalize the observed spontaneous partitioning. Partitioned halothane molecules affect the hydrocarbon chains of the DOPC lipid, by lowering of the hydrocarbon tilt angles. The anesthetic molecules also caused a decrease in the number of peptide-lipid contacts. The observed local and global effects of anesthetic binding on protein motions demonstrated in this study may underlie the mechanism of action of anesthetics at a molecular level.
Collapse
Affiliation(s)
- Satyavani Vemparala
- Department of Chemistry and Center for Molecular Modeling, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
40
|
Seeber M, Fanelli F, Paci E, Caflisch A. Sequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane. Biophys J 2006; 91:3276-84. [PMID: 16861280 PMCID: PMC1614499 DOI: 10.1529/biophysj.106.088591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple molecular dynamics simulations of bacterioopsin pulling from its C-terminus show that its alpha-helices unfold individually. In the first metastable state observed in the simulations, helix G is unfolded at its C-terminal segment while the rest of helix G (residues 200-216) is folded and opposes resistance because of a salt-bridge network consisting of Asp-212 and Lys-216 on helix G and Arg-82 and Asp-85 on helix C. Helix G unfolds inside the bundle because the external force is applied to its C-terminal end in a direction perpendicular to the surface of the membrane. Inversely, helix F has to flip by 180 degrees to exit from the membrane because the applied force and the helical N-C axis point in opposite directions. At the highest peak of the force, which cannot be interpreted in single-molecule force spectroscopy experiments, helix F has a pronounced kink at Pro-186. Mutation of Pro-186 and/or the charged side chains mentioned above, which are involved in very favorable electrostatic interactions in the low-dielectric region of the membrane, are expected to reduce the highest peak of the force. Helices E and D unfold in a similar way to helices G and F, respectively. Hence, the force-distance profile and sequence of events during forced unfolding of bacterioopsin are influenced by the up-and-down topology of the seven-helix bundle. The sequential extraction of individual helices from the membrane suggests that the spontaneous (un)folding of bacterioopsin proceeds through metastable bundles of fewer than seven helices. The metastable states observed in the simulations provide atomic level evidence that corroborates the interpretation of very recent force spectroscopy experiments of bacteriorhodopsin refolding.
Collapse
Affiliation(s)
- Michele Seeber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
41
|
Park S, Schulten K. Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 2006; 120:5946-61. [PMID: 15267476 DOI: 10.1063/1.1651473] [Citation(s) in RCA: 603] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Steered molecular dynamics (SMD) permits efficient investigations of molecular processes by focusing on selected degrees of freedom. We explain how one can, in the framework of SMD, employ Jarzynski's equality (also known as the nonequilibrium work relation) to calculate potentials of mean force (PMF). We outline the theory that serves this purpose and connects nonequilibrium processes (such as SMD simulations) with equilibrium properties (such as the PMF). We review the derivation of Jarzynski's equality, generalize it to isobaric--isothermal processes, and discuss its implications in relation to the second law of thermodynamics and computer simulations. In the relevant regime of steering by means of stiff springs, we demonstrate that the work on the system is Gaussian-distributed regardless of the speed of the process simulated. In this case, the cumulant expansion of Jarzynski's equality can be safely terminated at second order. We illustrate the PMF calculation method for an exemplary simulation and demonstrate the Gaussian nature of the resulting work distribution.
Collapse
Affiliation(s)
- Sanghyun Park
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
42
|
Gao M, Sotomayor M, Villa E, Lee EH, Schulten K. Molecular mechanisms of cellular mechanics. Phys Chem Chem Phys 2006; 8:3692-706. [PMID: 16896432 DOI: 10.1039/b606019f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanical forces play an essential role in cellular processes as input, output, and signals. Various protein complexes in the cell are designed to handle, transform and use such forces. For instance, proteins of muscle and the extracellular matrix can withstand considerable stretching forces, hearing-related and mechanosensory proteins can transform weak mechanical stimuli into electrical signals, and regulatory proteins are suited to forcing DNA into loops to control gene expression. Here we review the structure-function relationship of four protein complexes with well defined and representative mechanical functions. The first example is titin, a protein that confers passive elasticity on muscle. The second system is the elastic extracellular matrix protein, fibronectin, and its cellular receptor integrin. The third protein system is the transduction apparatus in hearing and other mechanical senses, likely containing cadherin and ankyrin repeats. The last system is the lac repressor protein, which regulates gene expression by looping DNA. This review focuses on atomic level descriptions of the physical mechanisms underlying the various mechanical functions of the stated proteins.
Collapse
Affiliation(s)
- Mu Gao
- Beckman Institute, Department of Physics, Center for Biophysics and Computational Biology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
43
|
Li PC, Huang L, Makarov DE. Mechanical Unfolding of Segment-Swapped Protein G Dimer: Results from Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2006; 110:14469-74. [PMID: 16854158 DOI: 10.1021/jp056422i] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein G dimer (pdb code 1Q10) is a mutated dimeric form of the immunoglobulin-binding domain B1 of streptococcal protein G, in which the two monomeric units have swapped elements of their secondary structure. We have used replica exchange molecular dynamics simulations to study how this dimer responds to a mechanical force that pulls the N-terminus of one unit and the C-terminus of the other apart. We have further compared the mechanical response of the dimer to that of the protein G monomer. When the pulling force is low enough, the mechanical unfolding can be viewed as a thermally activated barrier crossing process. For each protein, we have computed the corresponding free energy barrier and its dependence on the pulling force. While the dimer is found to be less resistant to mechanical unfolding than its monomeric counterpart, the two proteins exhibit essentially the same mechanical unfolding mechanism involving separation of the terminal parallel strands. On the basis of our results, we speculate that the mechanical properties of natural adhesives, composites, fibers, and other materials may be optimized not only at a single molecule level but also at the mesoscopic level through the interactions among individual chains.
Collapse
Affiliation(s)
- Pai-Chi Li
- Department of Chemistry and Biochemistry and Institute for Theoretical Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
44
|
Berrera M, Cattaneo A, Carloni P. Molecular simulation of the binding of nerve growth factor peptide mimics to the receptor tyrosine kinase A. Biophys J 2006; 91:2063-71. [PMID: 16798810 PMCID: PMC1557562 DOI: 10.1529/biophysj.106.083519] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nerve growth factor (NGF) mimics play an important role for therapies that target the receptor tyrosine kinase A (trkA). The N-terminal fragment of the NGF (N-term@NGF) was previously demonstrated to be an important determinant for affinity and specificity in the binding to trkA. Here we use a variety of computational tools (contact surface analysis and free energy predictions) to identify residues playing a key role for the binding to the receptor. Molecular dynamics simulations are then used to investigate the stability of complexes between trkA and peptides mimicking N-term@NGF. Steered molecular dynamics calculations are finally performed to investigate the process of detaching the peptide from the receptor. Three disruptive events are observed, the first involving the breaking of all intermolecular interactions except two salt bridges, which break subsequently.
Collapse
Affiliation(s)
- Marco Berrera
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | | | | |
Collapse
|
45
|
Lele TP, Thodeti CK, Ingber DE. Force meets chemistry: Analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching. J Cell Biochem 2006; 97:1175-83. [PMID: 16408278 DOI: 10.1002/jcb.20761] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mechanotransduction--the process by which mechanical forces are converted into changes of intracellular biochemistry--is critical for normal cell and tissue function. Integrins facilitate mechanochemical conversion by transferring physical forces from the extracellular matrix, across the cell surface, and to cytoskeletal-associated proteins within focal adhesions. It is likely that force alters biochemistry at these sites by altering molecular binding affinities of a subset of focal adhesion proteins, but this has been difficult to quantify within living cells. Here, we describe how the fluorescence recovery after photobleaching (FRAP) technique can be adapted and used in conjunction with mathematical models to directly measure force-dependent alterations in molecular binding and unbinding rate constants of individual focal adhesion proteins in situ. We review these recent findings, and discuss the strengths and limitations of this approach for analysis of mechanochemical signaling in focal adhesions and other cellular structures. The ability to quantify molecular binding rate constants in the physical context of the living cytoplasm should provide new insight into the molecular basis of cellular mechanotransduction. It also may facilitate future efforts to bridge biological experimentation and mathematical modeling in our quest for a systems biology level description of cell regulation.
Collapse
Affiliation(s)
- Tanmay P Lele
- Vascular Biology Program, Department of Pathology and Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
46
|
Curcio R, Caflisch A, Paci E. Change of the unbinding mechanism upon a mutation: a molecular dynamics study of an antibody-hapten complex. Protein Sci 2005; 14:2499-514. [PMID: 16195542 PMCID: PMC2253310 DOI: 10.1110/ps.041280705] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We study forced unbinding of fluorescein from the wild type (WT) and a mutant [H(H58)A] of the single-chain variable-fragment (scFv) anti-fluorescein antibody FITC-E2 by molecular dynamics simulations using various pulling techniques. A large number of long simulations were needed to obtain statistically meaningful results as both the wild type and the H(H58)A mutant unbinding occurs through multiple pathways, often with metastable intermediates. For the wild type, the rate-limiting step in the unbinding process corresponds to the breaking of the non-native interactions characteristic of a specific intermediate. The H(H58)A mutation disfavors the occurrence of this intermediate. Two events where the hapten partially unbinds in the absence of pulling force are observed in extensive equilibrium simulations of the wild type, and their analysis indicates that forced unbinding and spontaneous unbinding proceed along similar pathways. The different unbinding mechanisms observed in the simulations suggest a possible reason for the difference in the experimental off-rate between the two antibodies. We predict mutations that are expected to modulate the occurrence of the unbinding intermediate. For two such new mutants [H(H58)A and S(H52)A], our predictions are validated in silico by additional simulations. The accompanying paper in this issue by Honegger et al. reports the X-ray structure of FITC-E2 with a derivative of fluorescein, which was used as the starting conformation for the work presented here.
Collapse
Affiliation(s)
- Raffaele Curcio
- Biochemisches Institut der Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
47
|
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26:1781-802. [PMID: 16222654 PMCID: PMC2486339 DOI: 10.1002/jcc.20289] [Citation(s) in RCA: 12445] [Impact Index Per Article: 655.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.
Collapse
Affiliation(s)
- James C Phillips
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Recent advances in molecular force measurements have resulted in the quantification of the nanomechanical properties of single molecular bonds, and elucidated novel relationships between molecular architecture and biomolecular adhesion. The measured forces to rupture single intermolecular bonds revealed novel and unexpected ways that proteins respond to mechanical force. Measurement of the magnitude of interprotein forces and the distances over which they act further determined how protein architecture may contribute to both the stability and structural organization of adhesive junctions.
Collapse
Affiliation(s)
- Deborah Leckband
- Department of Chemical and Biomolecular Engineering, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| |
Collapse
|
49
|
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005. [DOI: 10.1002/jcc.20289 http://www.ks.uiuc.edu/research/namd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Autenrieth F, Tajkhorshid E, Schulten K, Luthey-Schulten Z. Role of Water in Transient Cytochrome c2 Docking. J Phys Chem B 2004. [DOI: 10.1021/jp047994q] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felix Autenrieth
- Department of Chemistry and Beckman Institute, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801
| | - Emad Tajkhorshid
- Department of Chemistry and Beckman Institute, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801
| | - Klaus Schulten
- Department of Chemistry and Beckman Institute, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801
| | - Zaida Luthey-Schulten
- Department of Chemistry and Beckman Institute, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801
| |
Collapse
|