1
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
2
|
Weddell JC, Imoukhuede PI. Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PLoS One 2014; 9:e97271. [PMID: 24827582 PMCID: PMC4020774 DOI: 10.1371/journal.pone.0097271] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Cell population heterogeneity can affect cellular response and is a major factor in drug resistance. However, there are few techniques available to represent and explore how heterogeneity is linked to population response. Recent high-throughput genomic, proteomic, and cellomic approaches offer opportunities for profiling heterogeneity on several scales. We have recently examined heterogeneity in vascular endothelial growth factor receptor (VEGFR) membrane localization in endothelial cells. We and others processed the heterogeneous data through ensemble averaging and integrated the data into computational models of anti-angiogenic drug effects in breast cancer. Here we show that additional modeling insight can be gained when cellular heterogeneity is considered. We present comprehensive statistical and computational methods for analyzing cellomic data sets and integrating them into deterministic models. We present a novel method for optimizing the fit of statistical distributions to heterogeneous data sets to preserve important data and exclude outliers. We compare methods of representing heterogeneous data and show methodology can affect model predictions up to 3.9-fold. We find that VEGF levels, a target for tuning angiogenesis, are more sensitive to VEGFR1 cell surface levels than VEGFR2; updating VEGFR1 levels in the tumor model gave a 64% change in free VEGF levels in the blood compartment, whereas updating VEGFR2 levels gave a 17% change. Furthermore, we find that subpopulations of tumor cells and tumor endothelial cells (tEC) expressing high levels of VEGFR (>35,000 VEGFR/cell) negate anti-VEGF treatments. We show that lowering the VEGFR membrane insertion rate for these subpopulations recovers the anti-angiogenic effect of anti-VEGF treatment, revealing new treatment targets for specific tumor cell subpopulations. This novel method of characterizing heterogeneous distributions shows for the first time how different representations of the same data set lead to different predictions of drug efficacy.
Collapse
Affiliation(s)
- Jared C. Weddell
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| | - P. I. Imoukhuede
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
3
|
Röttgermann PJF, Alberola AP, Rädler JO. Cellular self-organization on micro-structured surfaces. SOFT MATTER 2014; 10:2397-2404. [PMID: 24623049 DOI: 10.1039/c3sm52419a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Micro-patterned surfaces are frequently used in high-throughput single-cell studies, as they allow one to image isolated cells in defined geometries. Commonly, cells are seeded in excess onto the entire chip, and non-adherent cells are removed from the unpatterned sectors by rinsing. Here, we report on the phenomenon of cellular self-organization, which allows for autonomous positioning of cells on micro-patterned surfaces over time. We prepared substrates with a regular lattice of protein-coated adhesion sites surrounded by PLL-g-PEG passivated areas, and studied the time course of cell ordering. After seeding, cells randomly migrate over the passivated surface until they find and permanently attach to adhesion sites. Efficient cellular self-organization was observed for three commonly used cell lines (HuH7, A549, and MDA-MB-436), with occupancy levels typically reaching 40-60% after 3-5 h. The time required for sorting was found to increase with increasing distance between adhesion sites, and is well described by the time-to-capture in a random-search model. Our approach thus paves the way for automated filling of cell arrays, enabling high-throughput single-cell analysis of cell samples without losses.
Collapse
Affiliation(s)
- Peter J F Röttgermann
- Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| | | | | |
Collapse
|
4
|
Deupree SM, Schoenfisch MH. Quantitative method for determining the lateral strength of bacterial adhesion and application for characterizing adhesion kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:4700-4707. [PMID: 18399690 DOI: 10.1021/la800417g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A quantitative method for measuring the shear force required to detach individual adhered bacteria using atomic force microscopy (AFM) was developed. By determining the total compression of the cantilever during cell detachment events, a more accurate means of calculating the applied lateral force necessary to remove individual cells was achieved compared to previous methods. In addition, a tunable assay for monitoring the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus adhesion strength was employed. The accumulation of force measurements over time allowed for the characterization of adhesion strength kinetics. P. aeruginosa reinforced its adhesion to the surface at a rate 7-fold faster than for S. aureus; the average adhesion strength of P. aeruginosa was larger than that of S. aureus at corresponding time points. Adhered cells of the same species and strain demonstrated a range of adhesion forces that broadened with time, indicating that the change in adhesion strength does not proceed uniformly.
Collapse
Affiliation(s)
- Susan M Deupree
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
5
|
Affinity adsorption of cells to surfaces and strategies for cell detachment. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007. [PMID: 17924078 DOI: 10.1007/10_2006_042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.
Collapse
|
6
|
Ham ASW, Goetz DJ, Klibanov AL, Lawrence MB. Microparticle adhesive dynamics and rolling mediated by selectin-specific antibodies under flow. Biotechnol Bioeng 2007; 96:596-607. [PMID: 16917925 PMCID: PMC3711028 DOI: 10.1002/bit.21153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In vitro studies were performed to characterize the relative performance of candidate receptors to target microparticles to inflammatory markers on vascular endothelium. To model the interactions of drug-bearing microparticles or imaging contrast agents with the vasculature, 6 micron polystyrene particles bearing antibodies, peptides, or carbohydrates were perfused over immobilized E- or P-selectin in a flow chamber. Microparticles conjugated with HuEP5C7.g2 (HuEP), a monoclonal antibody (mAb) specific to E- and P-selectin, supported leukocyte-like rolling and transient adhesion at venular shear rates. In contrast, microparticles conjugated with a higher affinity mAb specific for P-selectin (G1) were unable to form bonds at venular flow rates. When both HuEP and G1 were conjugated to the microparticle, HuEP supported binding to P-selectin in flow which allowed G1 to form bonds leading to stable adhesion. While the microparticle attachment and rolling performance was not as stable as that mediated by the natural ligands P-selectin Glycoprotein Ligand-1 or sialyl Lewis(x), HuEP performed significantly better than any previously characterized mAb in terms of mediating microparticle binding under flow conditions. HuEP may be a viable alternative to natural ligands to selectins for targeting particles to inflamed endothelium.
Collapse
Affiliation(s)
- Anthony Sang Won Ham
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22908; tel: 434-982-4269; fax: 434-982-3870
| | - Douglas J. Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| | - Alexander L. Klibanov
- Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Michael B. Lawrence
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22908; tel: 434-982-4269; fax: 434-982-3870
| |
Collapse
|
7
|
Sarda S, Pointu D, Pincet F, Henry N. Specific recognition of macroscopic objects by the cell surface: evidence for a receptor density threshold revealed by micrometric particle binding characteristics. Biophys J 2004; 86:3291-303. [PMID: 15111442 PMCID: PMC1304194 DOI: 10.1016/s0006-3495(04)74377-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of specific molecular bonds between a cell and a facing surface is involved in many physiological and technological situations. Using micrometric magnetic particles, we have explored the formation of specific molecular bonds between the cell and surfaces bearing complementary ligands under passive conditions. Streptavidin-coated particles were targeted to the cell surface of a B-cell line through a specific biotinylated antibody against the CD19 receptor. Flow cytometry, optical microscopy, and micropipette experimental techniques have been used. Main findings have been that cell surface receptor density acted like a switch for particle capture with a threshold value found here equal to 1.6 x 10(3) receptor/ microm(2). This led to exclusion from binding of the cells of lowest receptor density. The density threshold was modulated by the length of the binding link and the physics of the cell/particle collision. We suggest that the shear stress is one of the main determinants of the characteristics of binding. We also show that several thousand receptors were involved in the cell particle contact at the end of the binding process, although only eight bonds are required for the initial capture of a particle. A passive binding inhibition process due to link concentration by the initial contact was proposed to account for the small number of particles per cell.
Collapse
Affiliation(s)
- Stéphanie Sarda
- Laboratoire Chimie Bioinorganique Médicale, Institut Universitaire Technologique Paul Sabatier, Castres, France
| | | | | | | |
Collapse
|
8
|
Wilson DP, McElwain DLS. A model of neutralization of Chlamydia trachomatis based on antibody and host cell aggregation on the elementary body surface. J Theor Biol 2004; 226:321-30. [PMID: 14643646 DOI: 10.1016/j.jtbi.2003.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Humoral immunity is that aspect of specific immunity that is mediated by B lymphocytes and involves the neutralizing of pathogens by means of antibodies attaching to the pathogen's binding sites. Antibodies bind to and block ligand sites on the pathogen which prevents these sites from attaching to target cell receptors and so cell entry is inhibited. Many studies investigate the role of humoral immunity for protection against chlamydial challenge and they have shown that neutralization of the chlamydial body requires a large number of attached antibodies. Steric hindrance greatly influences the number of available sites that may be bound, reducing relative occupancy well below 100%. We model steric effects of antibody Fab fragment attachment indicating that they must be taken into consideration to accurately model valency, the number of available binding sites. We derive a partial differential equation for the number of antibody Fabs and host cell receptors that are aggregated to extracellular chlamydial elementary bodies. We consider steric effects in describing the size distribution of aggregates. Our theory is in good agreement with Monte Carlo simulations of binding. We use our theoretical prediction for the valency in a model for the in-host population dynamics of a chlamydial infection and we fit our model to experimental data.
Collapse
Affiliation(s)
- D P Wilson
- School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
| | | |
Collapse
|
9
|
|
10
|
Chon JH, Houston MM, Xu C, Chaikof EL. PR-39 coordinates changes in vascular smooth muscle cell adhesive strength and locomotion by modulating cell surface heparan sulfate-matrix interactions. J Cell Physiol 2001; 189:133-43. [PMID: 11598898 DOI: 10.1002/jcp.1050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PR-39 is proline-rich peptide produced at sites of tissue injury. While the functional properties of this peptide have not been fully defined, PR-39 may be an important regulator of processes related to cell-matrix adhesion since it reportedly upregulates syndecan-4, which is a critical determinant of focal adhesion formation. The ability of PR-39 to modulate the adhesion and chemokinetic migration behavior of arterial smooth muscle cells (SMCs) in a fashion coordinated with syndecan-4 expression was investigated. Treatment of SMCs with PR-39 did not alter syndecan-1 mRNA, but did induce a two-fold increase in syndecan-4 mRNA (P < 0.0001) and significantly enhanced cell surface expression of both syndecan-4 (P < 0.01) and heparan sulfate (HS) (P < 0.05). These observations were consistent with an observed increase in cell-matrix adhesive strength (P < 0.05) and a reduction in cell speed (P < 0.01) on fibronectin-coated substrates. Incubation of PR-39 treated cells with a soluble fibronectin derived heparin-binding peptide, as a competitive inhibitor of heparan sulfate/matrix interactions, abolished these effects. These data suggest that PR-39 mediated alterations of cell adhesion and motility may be related, in part, to the increased expression of heparan sulfate glycosaminoglycans (GAGs) that accompany the upregulation of cell surface syndecan-4. Furthermore, this investigation supports the notion that factors which control syndecan-4 expression may play an important role in regulating adhesion related cell processes.
Collapse
Affiliation(s)
- J H Chon
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
11
|
Chon JH, Chaikof EL. Soluble heparin-binding peptides regulate chemokinesis and cell adhesive forces. Am J Physiol Cell Physiol 2001; 280:C1394-402. [PMID: 11350734 DOI: 10.1152/ajpcell.2001.280.6.c1394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of a soluble heparin-binding peptide sequence derived from fibronectin to modulate the adhesion and chemokinetic migration behavior of arterial smooth muscle cells was assessed using a novel glass microsphere centrifugation assay and automated time-lapse fluorescence videomicroscopy, respectively. Treatment of cells grown on fibronectin-coated substrates with the soluble heparin-binding peptide resulted in the disassembly of focal adhesions, as assessed by immunohistochemical staining. These observations were consistent with an observed dose-dependent two- to fivefold reduction in cell-substrate adhesive strength ( P < 0.001) and a biphasic effect on migration speed ( P < 0.05). Moreover, heparin-binding peptides induced a twofold reduction ( P < 0.01) in two-dimensional cell dispersion in the presence of a non-heparin-binding growth factor, platelet-derived growth factor-AB (PDGF-AB). Heparin-binding peptides were unable to mediate these effects when cells were grown on substrates lacking a heparin-binding domain. These data support the notion that competitive interactions between cell surface heparan sulfates with heparin-binding peptides may modulate chemokinetic cell migration behavior and other adhesion-related processes.
Collapse
Affiliation(s)
- J H Chon
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
12
|
Chang KC, Hammer DA. Adhesive dynamics simulations of sialyl-Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys J 2000; 79:1891-902. [PMID: 11023895 PMCID: PMC1301081 DOI: 10.1016/s0006-3495(00)76439-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Selectin-mediated leukocyte rolling is crucial for the proper function of the immune response. Recently, selectin-mediated rolling was recreated in a cell-free system (Biophysical Journal 71:2902-2907 (1996)); it was shown that sialyl Lewis(x) (sLe(x))-coated microspheres roll over E-selectin-coated surfaces under hydrodynamic flow. The cell-free system removes many confounding cellular features, such as cell deformability and signaling, allowing us to focus on the role of carbohydrate/selectin physical chemistry in mediating rolling. In this paper, we use adhesive dynamics, a computational method that allows us to simulate adhesion, to analyze the experimental data produced in the cell-free system. We simulate the effects of shear rate, ligand density, and number of receptors per particle on rolling velocity and compare them with experimental results obtained with the cell-free system. If we assume the population of particles is homogeneous in receptor density, we predict that particle rolling velocity calculated in simulations is more sensitive to shear rate than found in experiments. Also, the calculated rolling velocity is more sensitive to the number of receptors on the microspheres than to the ligand density on the surface, again in contrast to experiment. We argue that heterogeneity in the distribution of receptors throughout the particle population causes these discrepancies. We improve the agreement between experiment and simulation by calculating the average rolling velocity of a population whose receptors follow a normal distribution, suggesting heterogeneity among particles significantly affects the experimental results. Further comparison between theory and experiment yields an estimate of the reactive compliance of sLe(x)/E-selectin interactions of 0.25 A, close to that reported in the literature for E-selectin and its natural ligand (0.3 A). We also provide an estimate of the value of the intrinsic association rate (between 10(4) and 10(5) s(-1)) for the formation of sLe(x)/E-selectin bonds.
Collapse
Affiliation(s)
- K C Chang
- School of Chemical Engineering, Cornell University, Ithaca, New York 14853 USA
| | | |
Collapse
|
13
|
Abstract
Data and a semi-empirical model are presented that describe the affinity interaction of yeast cells with a Concanavalin A derivatised surface. The model uses 3 parameters to describe the time course of cell attachment from a flowing suspension of yeast cells, over a range of flow rates, and gives an effective global fit to the data obtained. Further modifications allow the effects of a soluble competitor (glucose) on binding to be quantified in terms of a saturation effect, and an effective global fit is obtained. A comparison was made between the relationship between steady-state attached fraction and applied shear with similar data reported earlier (Ming, F. et al, 1998) for the detachment of pre-adsorbed cells. This shows that there is an order of magnitude difference between the forces required to effect complete detachment in the two systems, and that the nature of the relationship between shear and attached fraction is profoundly different. The magnitude of this time-dependent stabilization might be explained in terms of a progressive reorientation of cell relative to the surface such that the number of bonds is maximized.
Collapse
|
14
|
Ming F, Whish WJ, Hubble J, Eisenthal R. Estimation of parameters for cell-surface interactions: Maximum binding force and detachment constant. Enzyme Microb Technol 1998. [DOI: 10.1016/s0141-0229(97)00136-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
García AJ, Ducheyne P, Boettiger D. Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials 1997; 18:1091-8. [PMID: 9247346 DOI: 10.1016/s0142-9612(97)00042-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Quantitative analysis of cell adhesion is essential in understanding physiological phenomena and developing biotechnological applications. Electrochemical measurements demonstrated that the transport patterns associated with a spinning disc device approximate the fluid flow and mass transport fields for a disc spinning in an infinite fluid. Therefore, this device applies a linear range of forces to attached cells under uniform and constant chemical conditions at the interface. The application of this apparatus for examining cell adhesion to surface-active materials was illustrated by investigating the attachment of osteoblast-like cells to fibronectin adsorbed onto bioactive and non-reactive glasses for different chemical environments. Cells were seeded on fibronectin-coated substrates for 15 min and then subjected to detachment forces for 10 min. The number of adherent cells decreased non-linearly with applied force and the detachment profile was accurately described by a sigmoidal curve fit, as expected for a cell population with normally distributed adhesion properties.
Collapse
Affiliation(s)
- A J García
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
16
|
Dickinson RB, Nagel JA, Proctor RA, Cooper SL. Quantitative comparison of shear-dependent Staphylococcus aureus adhesion to three polyurethane ionomer analogs with distinct surface properties. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1997; 36:152-62. [PMID: 9261676 DOI: 10.1002/(sici)1097-4636(199708)36:2<152::aid-jbm3>3.0.co;2-j] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial adhesion is a central step in infection on biomaterial surfaces; however, the relation between biomaterial surface properties and adhesion remains poorly understood. To quantitatively determine the relationship among polyurethane surface properties, protein coating, and adhesion, we have compared attachment and detachment kinetics of Staphylococcus aureus on three different novel polyurethanes with different protein coatings. Rate constants for attachment or detachment were measured as a function of shear rate in a well-defined laminar flow field. The tested polyurethanes included a relatively hydrophobic-base polyether urethane and hydrophilic anionomer and cationomer analogs of the base material. Materials were tested bare, or coated with human fibrinogen, plasma, or albumin. The results suggest that the presence of fibrinogen or plasma greatly enhance the attachment rate constants and decrease the detachment rate constants on all materials. The most extreme differences among the different materials were observed on the bare materials, with the base polyurethane being most resistant to both attachment and detachment. However, except for a reduced attachment rate constant on the plasma-coated sulfonated polyurethane, few differences in the rate constants were observed among protein-coated materials, suggesting the primary role of surface properties is masked by the presence of the adsorbed protein layer.
Collapse
Affiliation(s)
- R B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | | | | | | |
Collapse
|
17
|
Kuo SC, Hammer DA, Lauffenburger DA. Simulation of detachment of specifically bound particles from surfaces by shear flow. Biophys J 1997; 73:517-31. [PMID: 9199814 PMCID: PMC1180951 DOI: 10.1016/s0006-3495(97)78090-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The receptor-mediated adhesion of cells to ligand-coated surfaces is important in many physiological and biotechnological processes. Previously, we measured the detachment of antibody-coated spheres from counter-antibody- and protein A-coated substrates using a radial-flow detachment assay and were able to relate mechanical adhesion strength to chemical binding affinity (Kuo and Lauffenburger, Biophys. J. 65:2191-2200 (1993)). In this paper, we use "adhesive dynamics" to simulate the detachment of antibody-coated hard spheres from a ligand-coated substrate. We modeled the antibody-ligand (either counter-antibody or protein A) bonds as adhesive springs. In the simulation as in the experiments, beads attach to the substrate under static conditions. Flow is then initiated, and detachment is measured by the significant displacement of previously bound particles. The model can simulate the effects of many parameters on cell detachment, including hydrodynamic stresses, receptor number, ligand density, reaction rates between receptor and ligand, and stiffness and reactive compliance of the adhesive springs. The simulations are compared with experimental detachment data, thus relating measured bead adhesion strength to molecular properties of the adhesion molecules. The simulations accurately recreated the logarithmic dependence of adhesion strength on affinity of receptor-ligand recognition, which was seen in experiments and predicted by analytic theory. In addition, we find the value of the reactive compliance, the parameter which relates the strain of a bond to its rate of breakage, that gives the best match between theory and experiment to be 0.01. Finally, we analyzed the effect of varying either the forward or reverse rate constants as different ways to achieve the same affinity, and showed that adhesion strength depends uniquely on the equilibrium affinity, not on the kinetics of binding. Given that attachment is independent of affinity, detachment and attachment are distinct adhesive phenomena.
Collapse
Affiliation(s)
- S C Kuo
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign 61801, USA.
| | | | | |
Collapse
|
18
|
Garcia AJ, Ducheyne P, Boettiger D. Cell Adhesion Strength Increases Linearly with Adsorbed Fibronectin Surface Density. ACTA ACUST UNITED AC 1997. [DOI: 10.1089/ten.1997.3.197] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andres J. Garcia
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul Ducheyne
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David Boettiger
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
19
|
Dickinson RB, Nagel JA, McDevitt D, Foster TJ, Proctor RA, Cooper SL. Quantitative comparison of clumping factor- and coagulase-mediated Staphylococcus aureus adhesion to surface-bound fibrinogen under flow. Infect Immun 1995; 63:3143-50. [PMID: 7622242 PMCID: PMC173429 DOI: 10.1128/iai.63.8.3143-3150.1995] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The contributions of clumping factor and coagulase in mediating Staphylococcus aureus adhesion to surface-adsorbed fibrinogen have been quantified by using a new methodology and analysis. The attachment or detachment kinetics of bacteria were directly observed in a radial flow chamber with a well-defined laminar flow field and a spatially varying shear rate and were quantified by recursively scanning the chamber surface and counting cells via automated video microscopy and image analysis with a motorized stage and focus control. Intrinsic rate constants for attachment or detachment were estimated as functions of shear rate for the wild-type Newman strain of S. aureus and for mutants lacking clumping factor, coagulase, or both proteins on surfaces coated with plasma, fibrinogen, or albumin. Clumping factor, but not coagulase, increased the probability of attachment and decreased the probability of detachment of S. aureus on plasma-coated surfaces; however, both clumping factor and, to a lesser extent, coagulase increased the probability of attachment on the purified-fibrinogen-coated surface. All mutants were resistant to detachment on the purified-fibrinogen-coated surface, suggesting the possibility of an additional adhesion mechanism which was independent of coagulase or clumping factor and effective only for fully attached cells. Together, these results suggest that the presence of clumping factor plays the primary role in enhancing adhesion to surfaces with adsorbed fibrinogen, not only by enhancing the probability of cell attachment but also by increasing the strength of the resulting adhesion.
Collapse
Affiliation(s)
- R B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville 32611, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kuo SC, Lauffenburger DA. Relationship between receptor/ligand binding affinity and adhesion strength. Biophys J 1993; 65:2191-200. [PMID: 8298043 PMCID: PMC1225951 DOI: 10.1016/s0006-3495(93)81277-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Receptor-mediated cell adhesion is a central phenomenon in many physiological and biotechnological processes. Mechanical strength of adhesion is generally presumed to be related to chemical affinity of receptor/ligand bonds, but no experimental study has been previously directed toward this issue. Here we investigate the dependence of receptor/ligand adhesion strength on bond affinity using a radial fluid flow chamber assay to measure the force needed to detach polystyrene beads covalently coated with immunoglobulin G from glass surfaces covalently coated with protein A. A spectrum of animal species sources for immunoglobulin G permits examination of three decades of protein A/immunoglobulin G binding affinity. Our results for this model system demonstrate that adhesion strength varies with the logarithm of the binding affinity, consistent with a prediction from the theoretical model by Dembo et al. (Dembo, M., D.C. Torney, K. Saxman, and D. Hammer. 1988. Proc. R. Soc. Lond. Ser. B 234:55-83).
Collapse
Affiliation(s)
- S C Kuo
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign 61801
| | | |
Collapse
|