1
|
Laisk A, Peterson RB, Oja V. Excitation transfer and quenching in photosystem II, enlightened by carotenoid triplet state in leaves. PHOTOSYNTHESIS RESEARCH 2024; 160:31-44. [PMID: 38502255 DOI: 10.1007/s11120-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Accumulation of carotenoid (Car) triplet states was investigated by singlet-triplet annihilation, measured as chlorophyll (Chl) fluorescence quenching in sunflower and lettuce leaves. The leaves were illuminated by Xe flashes of 4 μs length at half-height and 525-565 or 410-490 nm spectral band, maximum intensity 2 mol quanta m-2 s-1, flash photon dose up to 10 μmol m-2 or 4-10 PSII excitations. Superimposed upon the non-photochemically unquenched Fmd state, fluorescence was strongly quenched near the flash maximum (minimum yield Fe), but returned to the Fmd level after 30-50 μs. The fraction of PSII containing a 3Car in equilibrium with singlet excitation was calculated as Te = (Fmd-Fe)/Fmd. Light dependence of Te was a rectangular hyperbola, whose initial slope and plateau were determined by the quantum yields of triplet formation and annihilation and by the triplet lifetime. The intrinsic lifetime was 9 μs, but it was strongly shortened by the presence of O2. The triplet yield was 0.66 without nonphotochemical quenching (NPQ) but approached zero when NP-Quenched fluorescence approached 0.2 Fmd. The results show that in the Fmd state a light-adapted charge-separated PSIIL state is formed (Sipka et al., The Plant Cell 33:1286-1302, 2021) in which Pheo-P680+ radical pair formation is hindered, and excitation is terminated in the antenna by 3Car formation. The results confirm that there is no excitonic connectivity between PSII units. In the PSIIL state each PSII is individually turned into the NPQ state, where excess excitation is quenched in the antenna without 3Car formation.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse St. 1, 50411, Tartu, Estonia.
| | - Richard B Peterson
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT, 06511, USA
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse St. 1, 50411, Tartu, Estonia
| |
Collapse
|
2
|
Wamsley M, Peng W, Tan W, Wathudura P, Cui X, Zou S, Zhang D. Total Luminescence Spectroscopy for Quantification of Temperature Effects on Photophysical Properties of Photoluminescent Materials. ACS MEASUREMENT SCIENCE AU 2023; 3:10-20. [PMID: 36817009 PMCID: PMC9936609 DOI: 10.1021/acsmeasuresciau.2c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/18/2023]
Abstract
Quantification of the temperature effects on the optical properties of photoluminescent (PL) materials is important for a fundamental understanding of both materials optical processes and rational PL materials design and applications. However, existing techniques for studying the temperature effects are limited in their information content. Reported herein is a temperature-dependent total photoluminescence (TPL) spectroscopy technique for probing the temperature dependence of materials optical properties. When used in combination with UV-vis measurements, this TPL method enables experimental quantification of temperature effects on fluorophore fluorescence intensity and quantum yield at any combination of excitation and detection wavelengths, including the fluorophore Stokes-shifted and anti-Stokes-shifted fluorescence. All model polyaromatic hydrocarbon (PAH) and xanthene fluorophores exhibited a strong excitation- and emission-wavelength dependence in their temperature effects. However, the heavy-atom effects used for explaining the strong temperature dependence of brominated anthracenes are not operative with xanthene fluorophores that have heavy atom substitutions. The insights from TPL measurements are important not only for enhancing the fundamental understandings of the materials photophysical properties but also for rational measurement design for applications where the temperature sensitivity of the fluorophore fluorescence is critical. An example application is demonstrated for developing a sensitive and robust ratiometric fluorescence thermometric method for in situ real-time monitoring of sample temperatures inside a fluorescence cuvette placed in a temperature-controlled sample holder.
Collapse
Affiliation(s)
- Max Wamsley
- Department
of Chemistry, Mississippi University, Mississippi State, Mississippi 39759, United States
| | - Weiyu Peng
- Department
of Chemistry, Mississippi University, Mississippi State, Mississippi 39759, United States
| | - Weinan Tan
- Department
of Chemistry, Mississippi University, Mississippi State, Mississippi 39759, United States
| | - Pathum Wathudura
- Department
of Chemistry, Mississippi University, Mississippi State, Mississippi 39759, United States
| | - Xin Cui
- Department
of Chemistry, Mississippi University, Mississippi State, Mississippi 39759, United States
| | - Shengli Zou
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department
of Chemistry, Mississippi University, Mississippi State, Mississippi 39759, United States
| |
Collapse
|
3
|
Akhtar P, Sipka G, Han W, Li X, Han G, Shen JR, Garab G, Tan HS, Lambrev PH. Ultrafast excitation quenching by the oxidized photosystem II reaction center. J Chem Phys 2022; 156:145101. [DOI: 10.1063/5.0086046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Photosystem II (PSII) is the pigment–protein complex driving the photoinduced oxidation of water and reduction of plastoquinone in all oxygenic photosynthetic organisms. Excitations in the antenna chlorophylls are photochemically trapped in the reaction center (RC) producing the chlorophyll–pheophytin radical ion pair P+ Pheo−. When electron donation from water is inhibited, the oxidized RC chlorophyll P+ acts as an excitation quencher, but knowledge on the kinetics of quenching is limited. Here, we used femtosecond transient absorption spectroscopy to compare the excitation dynamics of PSII with neutral and oxidized RC (P+). We find that equilibration in the core antenna has a major lifetime of about 300 fs, irrespective of the RC redox state. Two-dimensional electronic spectroscopy revealed additional slower energy equilibration occurring on timescales of 3–5 ps, concurrent with excitation trapping. The kinetics of PSII with open RC can be described well with previously proposed models according to which the radical pair P+ Pheo− is populated with a main lifetime of about 40 ps, which is primarily determined by energy transfer between the core antenna and the RC chlorophylls. Yet, in PSII with oxidized RC (P+), fast excitation quenching was observed with decay lifetimes as short as 3 ps and an average decay lifetime of about 90 ps, which is shorter than the excited-state lifetime of PSII with open RC. The underlying mechanism of this extremely fast quenching prompts further investigation.
Collapse
Affiliation(s)
- Parveen Akhtar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371, Singapore
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
- ELI-ALPS, ELI-HU Non-profit Ltd., Wolfgang Sandner u. 3, Szeged 6728, Hungary
| | - Gábor Sipka
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Győző Garab
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Howe-Siang Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371, Singapore
| | - Petar H. Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
4
|
Kofod N, Nielsen LG, Sørensen TJ. Temperature Dependence of Fundamental Photophysical Properties of [Eu(MeOH- d4) 9] 3+ Solvates and [Eu·DOTA(MeOH- d4)] - Complexes. J Phys Chem A 2021; 125:8347-8357. [PMID: 34546039 DOI: 10.1021/acs.jpca.1c04994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trivalent lanthanide ions show optical transitions between energy levels within the 4f shell. All these transitions are formally forbidden according to the quantum mechanical selection rules used in molecular photophysics. Nevertheless, highly luminescent complexes can be achieved, and terbium(III) and europium(III) ions are particularly efficient emitters. This report started when an apparent lack of data in the literature led us to revisit the fundamental photophysics of europium(III). The photophysical properties of two complexes-[Eu·DOTA(MeOH-d4)]- and [Eu(MeOH-d4)9]3+-were investigated in deuterated methanol at five different temperatures. Absorption spectra showed decreased absorbance as the temperature was increased. Luminescence spectra and time-resolved emission decay profiles showed a decrease in intensity and lifetime as the temperature was increased. Having corrected the emission spectra for the actual number of absorbed photons and differences in the non-radiative pathways, the relative emission probability was revealed. These were found to increase with increasing temperature. The transition probability for luminescence was shown to increase with temperature, while the transition probability for light absorption decreased. The changes in transition probabilities were correlated with a change in the symmetry of the absorber or emitter, with an average increase in symmetry lowering absorbance and access to more asymmetric structures increasing the emission rate constant. Determining luminescence quantum yields and the Einstein coefficient for spontaneous emission allowed us to conclude that lowering symmetry increases both. Furthermore, it was found that collisional self-quenching is an issue for lanthanide luminescence, when high concentrations are used. Finally, detailed analysis revealed results that show the so-called "Werts' method" for calculating radiative lifetimes and intrinsic quantum yields is based on assumptions that do not hold for the two systems investigated here. We conclude that we are lacking a good theoretical description of the intraconfigurational f-f transitions, and that there are still aspects of fundamental lanthanide photophysics to be explored.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Lea Gundorff Nielsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
5
|
Chiba T, Shibata Y. Identification of assembly precursors to photosystems emitting fluorescence at 683 nm and 687 nm by cryogenic fluorescence microspectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148090. [PMID: 31669492 DOI: 10.1016/j.bbabio.2019.148090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Photosystem I (PSI) and photosystem II (PSII) play key roles in photoinduced electron-transfer reaction in oxygenic photosynthesis. Assemblies of these PSs can be initiated by illumination of the etiolated seedlings (greening). The study aimed to identify specific fluorescence spectral components relevant to PSI and PSII assembly intermediates emerging in greening seedlings of Zea mays, a typical C4 plant. The different PSII contents between the bundle sheath (BS) and mesophyll (M) cells were utilized to spectrally isolate the precursors to PSI and PSII. The greening Zea mays leaf thin sections were observed with the cryogenic microscope combined with a spectrometer. With the aid of the singular-value decomposition analysis, we could identify four independent fluorescent species, SAS677, SAS685, SAS683, and SAS687, named after their fluorescence peak wavelengths. SAS677 and SAS685 are the dominant components after the 30-minute greening, and the distributions of these components showed no clear differences between M and BS cells, indicating immature cell differentiation in this developing stage. On the other hand, the 1-hour greening resulted in reduced distributions of SAS683 in BS cells leading us to assign this species to PSII precursors. The 2-hour greening induced the enrichment of SAS687 in BS cells suggesting its PSI relevance. Similarity in the peak wavelengths of SAS683 and the reported reaction center of PSII implied their connection. SAS687 showed an intense sub-band at around 740 nm, which can be assigned to the emission from the red chlorophylls specific to the mature PSI.
Collapse
Affiliation(s)
- Tomofumi Chiba
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
The wavelength of the incident light determines the primary charge separation pathway in Photosystem II. Sci Rep 2018; 8:2837. [PMID: 29434283 PMCID: PMC5809461 DOI: 10.1038/s41598-018-21101-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 01/12/2023] Open
Abstract
Charge separation is a key component of the reactions cascade of photosynthesis, by which solar energy is converted to chemical energy. From this photochemical reaction, two radicals of opposite charge are formed, a highly reducing anion and a highly oxidising cation. We have previously proposed that the cation after far-red light excitation is located on a component different from PD1, which is the location of the primary electron hole after visible light excitation. Here, we attempt to provide further insight into the location of the primary charge separation upon far-red light excitation of PS II, using the EPR signal of the spin polarized 3P680 as a probe. We demonstrate that, under far-red light illumination, the spin polarized 3P680 is not formed, despite the primary charge separation still occurring at these conditions. We propose that this is because under far-red light excitation, the primary electron hole is localized on ChlD1, rather than on PD1. The fact that identical samples have demonstrated charge separation upon both far-red and visible light excitation supports our hypothesis that two pathways for primary charge separation exist in parallel in PS II reaction centres. These pathways are excited and activated dependent of the wavelength applied.
Collapse
|
7
|
Neverov KV, Krasnovsky AA, Zabelin AA, Shuvalov VA, Shkuropatov AY. Low-temperature (77 K) phosphorescence of triplet chlorophyll in isolated reaction centers of photosystem II. PHOTOSYNTHESIS RESEARCH 2015; 125:43-49. [PMID: 25712165 DOI: 10.1007/s11120-015-0105-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Phosphorescence characterized by the main emission band at 952 ± 1 nm (1.30 eV), the lifetime of 1.5 ± 0.1 ms and the quantum yield nearly equal to that for monomeric chlorophyll a in aqueous detergent dispersions, has been detected in isolated reaction centers (RCs) of spinach photosystem II at 77 K. The excitation spectrum shows maxima corresponding to absorption bands of chlorophyll a, pheophytin a, and β-carotene. The phosphorescence intensity strongly depends upon the redox state of RCs. The data suggest that the phosphorescence signal originates from the chlorophyll triplet state populated via charge recombination in the radical pair [Formula: see text].
Collapse
Affiliation(s)
- Konstantin V Neverov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr., 33, Moscow, 119071, Russian Federation
| | | | | | | | | |
Collapse
|
8
|
Marais A, Sinayskiy I, Petruccione F, van Grondelle R. A quantum protective mechanism in photosynthesis. Sci Rep 2015; 5:8720. [PMID: 25732807 PMCID: PMC4346811 DOI: 10.1038/srep08720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/29/2015] [Indexed: 11/28/2022] Open
Abstract
Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.
Collapse
Affiliation(s)
- Adriana Marais
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa and National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Ilya Sinayskiy
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa and National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Francesco Petruccione
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa and National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Rienk van Grondelle
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Caffarri S, Tibiletti T, Jennings RC, Santabarbara S. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 2015; 15:296-331. [PMID: 24678674 PMCID: PMC4030627 DOI: 10.2174/1389203715666140327102218] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/31/2023]
Abstract
Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting
light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter
process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low
levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem
II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to
catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are
highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron
transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity
regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure
are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of
the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as
obtained by structural, biochemical and spectroscopic investigations.
Collapse
Affiliation(s)
| | | | | | - Stefano Santabarbara
- Laboratoire de Génétique et de Biophysique des Plantes (LGBP), Aix-Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
10
|
Santabarbara S, Agostini A, Casazza AP, Zucchelli G, Carbonera D. Carotenoid triplet states in photosystem II: coupling with low-energy states of the core complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:262-275. [PMID: 25481107 DOI: 10.1016/j.bbabio.2014.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
The photo-excited triplet states of carotenoids, sensitised by triplet-triplet energy transfer from the chlorophyll triplet states, have been investigated in the isolated Photosystem II (PSII) core complex and PSII-LHCII (Light Harvesting Complex II) supercomplex by Optically Detected Magnetic Resonance techniques, using both fluorescence (FDMR) and absorption (ADMR) detection. The absence of Photosystem I allows us to reach the full assignment of the carotenoid triplet states populated in PSII under steady state illumination at low temperature. Five carotenoid triplet ((3)Car) populations were identified in PSII-LHCII, and four in the PSII core complex. Thus, four (3)Car populations are attributed to β-carotene molecules bound to the core complex. All of them show associated fluorescence emission maxima which are relatively red-shifted with respect to the bulk emission of both the PSII-LHCII and the isolated core complexes. In particular the two populations characterised by Zero Field Splitting parameters |D|=0.0370-0.0373 cm(-1)/|E|=0.00373-0.00375 cm(-1) and |D|=0.0381-0.0385 cm(-1)/|E|=0.00393-0.00389 cm(-1), are coupled by singlet energy transfer with chlorophylls which have a red-shifted emission peaking at 705 nm. This observation supports previous suggestions that pointed towards the presence of long-wavelength chlorophyll spectral forms in the PSII core complex. The fifth (3)Car component is observed only in the PSII-LHCII supercomplex and is then assigned to the peripheral light harvesting system.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
11
|
Determination of the PS I content of PS II core preparations using selective emission: A new emission of PS II at 780nm. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:167-77. [DOI: 10.1016/j.bbabio.2013.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 11/20/2022]
|
12
|
Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R. Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein Lhcb5. J Phys Chem B 2013; 117:11337-48. [PMID: 23786371 DOI: 10.1021/jp402977y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In oxygenic photosynthetic organisms, chlorophyll triplets are harmful excited states readily reacting with molecular oxygen to yield the reactive oxygen species (ROS) singlet oxygen. Carotenoids have a photoprotective role in photosynthetic membranes by preventing photoxidative damage through quenching of chlorophyll singlets and triplets. In this work we used mutation analysis to investigate the architecture of chlorophyll triplet quenching sites within Lhcb5, a monomeric antenna protein of Photosystem II. The carotenoid and chlorophyll triplet formation as well as the production of ROS molecules were studied in a family of recombinant Lhcb5 proteins either with WT sequence, mutated into individual chlorophyll binding residues or refolded in vitro to bind different xanthophyll complements. We observed a site-specific effect in the efficiency of chlorophyll-carotenoid triplet-triplet energy transfer. Thus chlorophyll (Chl) 602 and 603 appear to be particularly important for triplet-triplet energy transfer to the xanthophyll bound into site L2. Surprisingly, mutation on Chl 612, the chlorophyll with the lower energy associated and in close contact with lutein in site L1, had no effect on quenching chlorophyll triplet excited states. Finally, we present evidence for an indirect role of neoxanthin in chlorophyll triplet quenching and show that quenching of both singlet and triplet states is necessary for minimizing singlet oxygen formation.
Collapse
Affiliation(s)
- Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona , Ca' Vignal 1, strada le Grazie 15, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
13
|
Acharya K, Neupane B, Zazubovich V, Sayre RT, Picorel R, Seibert M, Jankowiak R. Site energies of active and inactive pheophytins in the reaction center of Photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 2012; 116:3890-9. [PMID: 22397491 DOI: 10.1021/jp3007624] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction center (RC) preparations is pheophytin a (Pheo a) within the D1 protein (Pheo(D1)), while Pheo(D2) (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the past two decades placed the Q(y)-states of Pheo(D1) and Pheo(D2) bands near 678-684 and 668-672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986 - 998; Cox et al. J. Phys. Chem. B 2009, 113, 12364 - 12374] of the electronic structure of the PSII RC reversed the assignment of the active and inactive Pheos, suggesting that the mean site energy of Pheo(D1) is near 672 nm, whereas Pheo(D2) (~677.5 nm) and Chl(D1) (~680 nm) have the lowest energies (i.e., the Pheo(D2)-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Q(y) absorption maxima at 676-680 nm [Germano et al. Biochemistry 2001, 40, 11472 - 11482; Germano et al. Biophys. J. 2004, 86, 1664 - 1672]. To provide more insight into the site energies of both Pheo(D1) and Pheo(D2) (including the corresponding Q(x) transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch Pheo(D1) is genetically replaced with chlorophyll a (Chl a). We show that the Q(x)-/Q(y)-region site energies of Pheo(D1) and Pheo(D2) are ~545/680 nm and ~541.5/670 nm, respectively, in good agreement with our previous assignment [Jankowiak et al. J. Phys. Chem. B 2002, 106, 8803 - 8814]. The latter values should be used to model excitonic structure and excitation energy transfer dynamics of the PSII RCs.
Collapse
Affiliation(s)
- K Acharya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:760-9. [PMID: 22342615 DOI: 10.1016/j.bbabio.2012.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/17/2022]
Abstract
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is thought to be an indicator of an essential regulation and photoprotection mechanism against high-light stress in photosynthetic organisms. NPQ is typically characterized by modulated pulse fluorometry and it is often assumed implicitly to be a good proxy for the actual physiological photoprotection capacity of the organism. Using the results of previously published ultrafast fluorescence measurements on intact leaves of w.t. and mutants of Arabidopsis (Holzwarth et al. 2009) we have developed exact relationships for the fluorescence quenching and the corresponding Photosystem II acceptor side photoprotection effects under NPQ conditions. The approach based on the exciton-radical pair equilibrium model assumes that photodamage results from triplet states generated in the reaction center. The derived relationships allow one to distinguish and determine the individual and combined quenching as well as photoprotection contributions of each of the multiple NPQ mechanisms. Our analysis shows inter alia that quenching and photoprotection are not linearly related and that antenna detachment, which can be identified with the so-called qE mechanism, contributes largely to the measured fluorescence quenching but does not correspond to the most efficient photoprotective response. Conditions are formulated which allow simultaneously the maximal photosynthetic electron flow as well as maximal acceptor side photoprotection. It is shown that maximal photoprotection can be achieved if NPQ is regulated in such a way that PSII reaction centers are open under given light conditions. The results are of fundamental importance for a proper interpretation of the physiological relevance of fluorescence-based NPQ data.
Collapse
Affiliation(s)
- Petar H Lambrev
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | | | | | | |
Collapse
|
15
|
Herascu N, Ahmouda S, Picorel R, Seibert M, Jankowiak R, Zazubovich V. Effects of the Distributions of Energy or Charge Transfer Rates on Spectral Hole Burning in Pigment–Protein Complexes at Low Temperatures. J Phys Chem B 2011; 115:15098-109. [DOI: 10.1021/jp208142k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicoleta Herascu
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6 Canada
| | - Somaya Ahmouda
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6 Canada
| | - Rafael Picorel
- Estacion Experimental Aula Dei (CSIC), Avda. Montañana, 50059 Zaragoza, Spain
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael Seibert
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Valter Zazubovich
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6 Canada
| |
Collapse
|
16
|
Sytina OA, Novoderezhkin VI, van Grondelle R, Groot ML. Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution. J Phys Chem A 2011; 115:11944-51. [PMID: 21936513 DOI: 10.1021/jp204395z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protochlorophyllide (Pchlide) is a natural porphyrin, a precursor of chlorophyll, synthesized by plants for its photosynthetic apparatus. The pigment spontaneously forms aggregates when dissolved in neat water solution. We present here calculations of the transient absorption spectra and its comprising components (ground-state bleach, stimulated emission, and excited-state absorption) for a strongly excitonically coupled linear chain of four Pchlide chromophores, using exciton theory with phenomenological Gaussian line shapes and without energetic disorder. A refined multiexciton model that includes static disorder is applied to fit the experimental power-dependent transient absorption spectra of aqueous protochlorophyllide and the kinetics for delay times up to 20 ps after photoexcitation. We show that population up to the 4-exciton manifold is sufficient to explain the pronounced saturation of the bleaching and the shape changes in the instantaneous, t = 0.2 ps transient spectra when the pulse energy is increased from 10 to 430 nJ per pulse. The decay of the multiexciton manifold is relatively slow and is preceded by a spectroscopically distinct process. We suggest that the exciton states in the Pchlide aggregates are mixed with charge-transfer states (CTS) and that the population and repopulation of the CTS coupled to the exciton states explains the relatively slow decay of the multiexciton manifold. The relevance of our results to the optical properties and dynamics of natural photosynthetic complexes and the possible physical origin of CTS formation are discussed.
Collapse
Affiliation(s)
- Olga A Sytina
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Di Donato M, Stahl AD, van Stokkum IHM, van Grondelle R, Groot ML. Cofactors Involved in Light-Driven Charge Separation in Photosystem I Identified by Subpicosecond Infrared Spectroscopy. Biochemistry 2010; 50:480-90. [DOI: 10.1021/bi101565w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariangela Di Donato
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Andreas D. Stahl
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie-Louise Groot
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Kamlowski A, Frankemöller L, van der Est A, Stehlik D, Holzwart AR. Evidence for delocalization of the triplet state 3P680 in the D1D2cytb559-complex of photosystem II. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961001221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Purchase R, Völker S. Spectral hole burning: examples from photosynthesis. PHOTOSYNTHESIS RESEARCH 2009; 101:245-66. [PMID: 19714478 PMCID: PMC2744831 DOI: 10.1007/s11120-009-9484-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/31/2009] [Indexed: 05/14/2023]
Abstract
The optical spectra of photosynthetic pigment-protein complexes usually show broad absorption bands, often consisting of a number of overlapping, "hidden" bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of "traps" for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump-probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research.
Collapse
Affiliation(s)
- Robin Purchase
- Huygens and Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Silvia Völker
- Huygens and Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
- Department of Biophysics, Faculty of Exact Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Komura M, Itoh S. Fluorescence measurement by a streak camera in a single-photon-counting mode. PHOTOSYNTHESIS RESEARCH 2009; 101:119-133. [PMID: 19568951 DOI: 10.1007/s11120-009-9463-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/15/2009] [Indexed: 05/28/2023]
Abstract
We describe here a recently developed fluorescence measurement system that uses a streak camera to detect fluorescence decay in a single photon-counting mode. This system allows for easy measurements of various samples and provides 2D images of fluorescence in the wavelength and time domains. The great advantage of the system is that the data can be handled with ease; furthermore, the data are amenable to detailed analysis. We describe the picosecond kinetics of fluorescence in spinach Photosystem (PS) II particles at 4-77 K as a typical experimental example. Through the global analysis of the data, we have identified a new fluorescence band (F689) in addition to the already established F680, F685, and F695 emission bands. The blue shift of the steady-state fluorescence spectrum upon cooling below 77 K can be interpreted as an increase of the shorter-wavelength fluorescence, especially F689, due to the slowdown of the excitation energy transfer process. The F685 and F695 bands seem to be thermally equilibrated at 77 K but not at 4 K. The simple and efficient photon accumulation feature of the system allows us to measure fluorescence from leaves, solutions, single colonies, and even single cells. The 2D fluorescence images obtained by this system are presented for isolated spinach PS II particles, intact leaves of Arabidopsis thaliana, the PS I super-complex of a marine centric diatom, Chaetoceros gracilis, isolated membranes of a purple photosynthetic bacterium, Acidiphilium rubrum, which contains Zn-BChl a, and a coral that contains a green fluorescent protein and an algal endosymbiont, Zooxanthella.
Collapse
Affiliation(s)
- Masayuki Komura
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Japan
| | | |
Collapse
|
21
|
Martínez-Junza V, Szczepaniak M, Braslavsky SE, Sander J, Nowaczyk M, Rögner M, Holzwarth AR. A photoprotection mechanism involving the D(2) branch in photosystem II cores with closed reaction centers. Photochem Photobiol Sci 2008; 7:1337-43. [PMID: 18958320 DOI: 10.1039/b809884k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosecond transient absorption spectroscopy has been used to study reaction centre (RC) chlorophyll triplet quenching by carotenoid in intact photosystem II cores from T. elongatus with closed RCs. We found a triplet beta-carotene ((3)Car) signal (absorption difference maximum at 530 nm) that is sensitized by the RC chlorophyll (Chl) triplet with a formation time of ca. 190 ns, has a decay time of 7 micros and is formed with a quantum yield between 10 and 20%. The (3)Car signal is assigned to the beta-carotene on the D(2) branch of the RC. We thus propose a new photoprotection mechanism operative in closed RCs where-as a consequence of the negative charge on the quinone Q(A)-the triplet chlorophyll ((3)Chl) is formed by the radical pair (RP) mechanism on the normally inactive D(2) branch where it can be subsequently quenched by the D(2) beta-carotene. We suggest that the D(2) branch becomes active when the RCs are closed under high light fluence conditions. Under these conditions the D(2) branch plays a photoprotective role. This interpretation allows combining many seemingly inconsistent observations in the literature and reveals the so far missing RC triplet quenching mechanism in photosystem II. The newly proposed mechanism also explains the reason why this RC triplet quenching is not observed in isolated D(1)-D(2)-cyt b(559) RCs. If Q(A) is either not present at all (as in the isolated RC) or is not charged (as in open RCs or with doubly reduced Q(A)) then the RC (3)Chl is formed on the D(1) branch. The D(1) branch (3)Chl can not be quenched due to the large distance to the beta-carotene. This interpretation is actually in line with the well-known (3)RC quenching mechanism in bacterial RCs, where also the carotenoid in the (analogous to the D(2) branch) B-branch of the RC becomes the quencher.
Collapse
|
22
|
Pawlowicz NP, van Grondelle R, van Stokkum IHM, Breton J, Jones MR, Groot ML. Identification of the first steps in charge separation in bacterial photosynthetic reaction centers of Rhodobacter sphaeroides by ultrafast mid-infrared spectroscopy: electron transfer and protein dynamics. Biophys J 2008; 95:1268-84. [PMID: 18424493 PMCID: PMC2479572 DOI: 10.1529/biophysj.108.130880] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023] Open
Abstract
Time-resolved visible pump/mid-infrared (mid-IR) probe spectroscopy in the region between 1600 and 1800 cm(-1) was used to investigate electron transfer, radical pair relaxation, and protein relaxation at room temperature in the Rhodobacter sphaeroides reaction center (RC). Wild-type RCs both with and without the quinone electron acceptor Q(A), were excited at 600 nm (nonselective excitation), 800 nm (direct excitation of the monomeric bacteriochlorophyll (BChl) cofactors), and 860 nm (direct excitation of the dimer of primary donor (P) BChls (P(L)/P(M))). The region between 1600 and 1800 cm(-1) encompasses absorption changes associated with carbonyl (C=O) stretch vibrational modes of the cofactors and protein. After photoexcitation of the RC the primary electron donor P excited singlet state (P*) decayed on a timescale of 3.7 ps to the state P(+)B(L)(-) (where B(L) is the accessory BChl electron acceptor). This is the first report of the mid-IR absorption spectrum of P(+)B(L)(-); the difference spectrum indicates that the 9-keto C=O stretch of B(L) is located around 1670-1680 cm(-1). After subsequent electron transfer to the bacteriopheophytin H(L) in approximately 1 ps, the state P(+)H(L)(-) was formed. A sequential analysis and simultaneous target analysis of the data showed a relaxation of the P(+)H(L)(-) radical pair on the approximately 20 ps timescale, accompanied by a change in the relative ratio of the P(L)(+) and P(M)(+) bands and by a minor change in the band amplitude at 1640 cm(-1) that may be tentatively ascribed to the response of an amide C=O to the radical pair formation. We conclude that the drop in free energy associated with the relaxation of P(+)H(L)(-) is due to an increased localization of the electron hole on the P(L) half of the dimer and a further consequence is a reduction in the electrical field causing the Stark shift of one or more amide C=O oscillators.
Collapse
Affiliation(s)
- Natalia P Pawlowicz
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Pawlowicz NP, Groot ML, van Stokkum IHM, Breton J, van Grondelle R. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy. Biophys J 2007; 93:2732-42. [PMID: 17573421 PMCID: PMC1989691 DOI: 10.1529/biophysj.107.105452] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC complex of PSII, demonstrating that the local structure of the primary reactants has remained intact in the isolated D1D2 complex.
Collapse
Affiliation(s)
- N P Pawlowicz
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Novoderezhkin VI, Dekker JP, van Grondelle R. Mixing of exciton and charge-transfer states in Photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. Biophys J 2007; 93:1293-311. [PMID: 17526589 PMCID: PMC1929038 DOI: 10.1529/biophysj.106.096867] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We propose an exciton model for the Photosystem II reaction center (RC) based on a quantitative simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, triplet-minus-singlet, and Stark spectra together with the spectra of pheophytin-modified RCs, and so-called RC5 complexes that lack one of the peripheral chlorophylls. In this model, the excited state manifold includes a primary charge-transfer (CT) state that is supposed to be strongly mixed with the pure exciton states. We generalize the exciton theory of Stark spectra by 1), taking into account the coupling to a CT state (whose static dipole cannot be treated as a small parameter in contrast to usual excited states); and 2), expressing the line shape functions in terms of the modified Redfield approach (the same as used for modeling of the linear responses). This allows a consistent modeling of the whole set of experimental data using a unified physical picture. We show that the fluorescence and Stark spectra are extremely sensitive to the assignment of the primary CT state, its energy, and coupling to the excited states. The best fit of the data is obtained supposing that the initial charge separation occurs within the special-pair PD1PD2. Additionally, the scheme with primary electron transfer from the accessory chlorophyll to pheophytin gave a reasonable quantitative fit. We show that the effectiveness of these two pathways is strongly dependent on the realization of the energetic disorder. Supposing a mixed scheme of primary charge separation with a disorder-controlled competition of the two channels, we can explain the coexistence of fast sub-ps and slow ps components of the Phe-anion formation as revealed by different ultrafast spectroscopic techniques.
Collapse
Affiliation(s)
- Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| | | | | |
Collapse
|
25
|
Komura M, Shibata Y, Itoh S. A new fluorescence band F689 in photosystem II revealed by picosecond analysis at 4–77 K: Function of two terminal energy sinks F689 and F695 in PS II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1657-68. [PMID: 17070496 DOI: 10.1016/j.bbabio.2006.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/22/2006] [Accepted: 09/26/2006] [Indexed: 11/29/2022]
Abstract
We performed picosecond time-resolved fluorescence spectroscopy in spinach photosystem II (PS II) particles at 4, 40, and 77 K and identified a new fluorescence band, F689. F689 was identified in addition to the well-known F685 and F695 bands in both analyses of decay-associated spectra and global Gaussian deconvolution of time-resolved spectra. Its fast decay suggests the energy transfer directly from F689 to the reaction center chlorophyll P680. The contribution of F689, which increases only at low temperature, explains the unusually broad and variable bandwidth of F695 at low temperature. Global analysis revealed the three types of excitation energy transfer/dissipation processes: (1) energy transfer from the peripheral antenna to the three core antenna bands F685, F689, and F695 with time constants of 29 and 171 ps at 77 and 4 K, respectively; (2) between the three core bands (0.18 and 0.82 ns); and (3) the decays of F689 (0.69 and 3.02 ns) and F695 (2.18 and 4.37 ns). The retardations of these energy transfer rates and the slow F689 decay rate produced the strong blue shift of the PS II fluorescence upon the cooling below 77 K.
Collapse
Affiliation(s)
- Masayuki Komura
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
26
|
Santabarbara S, Agostini G, Heathcote P, Carbonera D. A fluorescence detected magnetic resonance investigation of the carotenoid triplet states associated with photosystem II of isolated spinach thylakoid membranes. PHOTOSYNTHESIS RESEARCH 2005; 86:283-96. [PMID: 16172946 DOI: 10.1007/s11120-005-2840-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/24/2005] [Indexed: 05/04/2023]
Abstract
The carotenoid triplet populations associated with the fluorescence emission chlorophyll forms of Photosystem II have been investigated in isolated spinach thylakoid membranes by means of fluorescence detected magnetic resonance in zero field (FDMR). The spectra collected in the 680-690 nm emission range, have been fitted by a global analysis procedure. At least five different carotenoid triplet states coupled to the terminal emitting chlorophyll forms of PS II, peaking at 682 nm, 687 nm and 692 nm, have been characterised. The triplets associated with the outer antenna emission forms, at 682 nm, have zero field splitting parameters |D| = 0.0385 cm-1, |E| = 0.00367 cm-1; |D| = 0.0404 cm-1, |E| = 0.00379 cm-1 and |D| = 0.0386 cm-1, |E| = 0.00406 cm-1 which are very similar to those previously reported for the xanthophylls of the isolated LHC II complex. Therefore the FDMR spectra recorded in this work provide insights into the organisation of the LHC II complex in the unperturbed environment represented by thylakoid membranes. The additional carotenoid triplet populations, detected by monitoring the chlorophyll emission at 687 and 692 nm, are assigned to carotenoids bound to inner antenna complexes and hence attributed to beta-carotene molecules.
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, UK.
| | | | | | | |
Collapse
|
27
|
Groot ML, Pawlowicz NP, van Wilderen LJGW, Breton J, van Stokkum IHM, van Grondelle R. Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc Natl Acad Sci U S A 2005; 102:13087-92. [PMID: 16135567 PMCID: PMC1196200 DOI: 10.1073/pnas.0503483102] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Indexed: 11/18/2022] Open
Abstract
Despite the apparent similarity between the plant Photosystem II reaction center (RC) and its purple bacterial counterpart, we show in this work that the mechanism of charge separation is very different for the two photosynthetic RCs. By using femtosecond visible-pump-mid-infrared probe spectroscopy in the region of the chlorophyll ester and keto modes, between 1,775 and 1,585 cm(-1), with 150-fs time resolution, we show that the reduction of pheophytin occurs on a 0.6- to 0.8-ps time scale, whereas P+, the precursor state for water oxidation, is formed after approximately 6 ps. We conclude therefore that in the Photosystem II RC the primary charge separation occurs between the "accessory chlorophyll" Chl(D1) and the pheophytin on the so-called active branch.
Collapse
Affiliation(s)
- Marie Louise Groot
- Faculty of Sciences, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Krausz E, Hughes JL, Smith PJ, Pace RJ, Arsköld SP. Assignment of the low-temperature fluorescence in oxygen-evolving photosystem II. PHOTOSYNTHESIS RESEARCH 2005; 84:193-9. [PMID: 16049774 DOI: 10.1007/s11120-004-7078-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/02/2004] [Indexed: 05/03/2023]
Abstract
Low-temperature absorption and fluorescence spectra of fully active cores and membrane-bound PS II preparations are compared. Detailed temperature dependence of fluorescence spectra between 5 and 70 K are presented as well as 1.7-K fluorescence line-narrowed (FLN) spectra of cores, confirming that PS II emission is composite. Spectra are compared to those reported for LHCII, CP43, CP47 and D1/D2/cytit b559 subunits of PS II. A combination of subunit spectra cannot account for emission of active PS II. The complex temperature dependence of PS II fluorescence is interpretable by noting that excitation transfer from CP43 and CP47 to the reaction centre is slow, and strongly dependent on the precise energy at which a 'slow-transfer' pigment in CP43 or CP47 is located within its inhomogeneous distribution. PS II fluorescence arises from CP43 and CP47 'slow-transfer' states, convolved by this dependence. At higher temperatures, thermally activated excitation transfer to the PS II charge-separating system bypasses such bottlenecks. As the charge-separating state of active PS II absorbs at >700 nm, PS II emission in the 680-700 nm region is unlikely to arise from reaction centre pigments. PS II emission at physiological temperatures is discussed in terms of these results.
Collapse
Affiliation(s)
- Elmars Krausz
- Research School of Chemistry, Australian National University, Building 35 Science Road, Canberra, ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
29
|
Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP. Origin of the F685 and F695 fluorescence in photosystem II. PHOTOSYNTHESIS RESEARCH 2005; 84:173-80. [PMID: 16049771 DOI: 10.1007/s11120-005-0478-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 01/12/2005] [Indexed: 05/03/2023]
Abstract
The emission spectra of CP47-RC and core complexes of Photosystem II (PS II) were measured at different temperatures and excitation wavelengths in order to establish the origin of the emission and the role of the core antenna in the energy transfer and charge separation processes in PS II. Both types of particles reveal strong dependences of spectral shape and yield on temperature. The results indicate that the well-known F-695 emission at 77 K arises from excitations that are trapped on a red-absorbing CP47 chlorophyll, whereas the F-685 nm emission at 77 K arises from excitations that are transferred slowly from 683 nm states in CP47 and CP43 to the RC, where they are trapped by charge separation. We conclude that F-695 at 77 K originates from the low-energy part of the inhomogeneous distribution of the 690 nm absorbing chlorophyll of CP47, while at 4 K the fluorescence originates from the complete distribution of the 690 nm chlorophyll of CP47 and from the low-energy part of the inhomogeneous distribution of one or more CP43 chlorophylls.
Collapse
Affiliation(s)
- Elena G Andrizhiyevskaya
- Faculty of Sciences, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Santabarbara S, Carbonera D. Carotenoid Triplet States Associated with the Long-Wavelength-Emitting Chlorophyll Forms of Photosystem I in Isolated Thylakoid Membranes. J Phys Chem B 2004; 109:986-91. [PMID: 16866470 DOI: 10.1021/jp047077k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carotenoid triplet populations associated with the long-wavelength-emitting chlorophyll forms of photosystem I (PS I)(dagger) have been investigated in isolated spinach thylakoids by means of fluorescence-detected magnetic resonance in zero field. The spectra collected in the 730-800 nm emission range can be globally fitted assuming the presence of four different carotenoid triplet states coupled to long-wavelength-emitting forms of PS I, having zero-field-splitting parameters /D/ = 0.0359 cm(-1) and /E/ = 0.00371 cm(-1), /D/ = 0.0382 cm(-1) and /E/ = 0.00388 cm(-1), /D/ = 0.0395 cm(-1) and /E/ = 0.00397 cm(-1), and /D/ = 0.0405 cm(-1) and /E/ = 0.00411 cm(-1). On the basis of the triplet-associated fluorescence emission profile, it is suggested that those triplets are associated with light-harvesting complex I, the peripheral antenna complex of PS I.
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom.
| | | |
Collapse
|
31
|
Raszewski G, Saenger W, Renger T. Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophys J 2004; 88:986-98. [PMID: 15556979 PMCID: PMC1305170 DOI: 10.1529/biophysj.104.050294] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the structural analysis of photosystem II of Thermosynechococcus elongatus, a detailed calculation of optical properties of reaction-center (D1-D2) complexes is presented applying a theory developed previously. The calculations of absorption, linear dichroism, circular dichroism, fluorescence spectra, all at 6 K, and the temperature-dependence of the absorption spectrum are used to extract the local optical transition energies of the reaction-center pigments, the so-called site energies, from experimental data. The site energies are verified by calculations and comparison with seven additional independent experiments. Exciton relaxation and primary electron transfer in the reaction center are studied using the site energies. The calculations are used to interpret transient optical data. Evidence is provided for the accessory chlorophyll of the D1-branch as being the primary electron donor and the location of the triplet state at low temperatures.
Collapse
Affiliation(s)
- Grzegorz Raszewski
- Institut für Chemie (Kristallographie), Freie Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
32
|
Germano M, Gradinaru CC, Shkuropatov AY, van Stokkum IHM, Shuvalov VA, Dekker JP, van Grondelle R, van Gorkom HJ. Energy and electron transfer in photosystem II reaction centers with modified pheophytin composition. Biophys J 2004; 86:1664-72. [PMID: 14990494 PMCID: PMC1304002 DOI: 10.1016/s0006-3495(04)74235-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Energy and electron transfer in Photosystem II reaction centers in which the photochemically inactive pheophytin had been replaced by 13(1)-deoxo-13(1)-hydroxy pheophytin were studied by femtosecond transient absorption-difference spectroscopy at 77 K and compared to the dynamics in untreated reaction center preparations. Spectral changes induced by 683-nm excitation were recorded both in the Q(Y) and in the Q(X) absorption regions. The data could be described by a biphasic charge separation. In untreated reaction centers the major component had a time constant of 3.1 ps and the minor component 33 ps. After exchange, time constants of 0.8 and 22 ps were observed. The acceleration of the fast phase is attributed in part to the redistribution of electronic transitions of the six central chlorin pigments induced by replacement of the inactive pheophytin. In the modified reaction centers, excitation of the lowest energy Q(Y) transition produces an excited state that appears to be localized mainly on the accessory chlorophyll in the active branch (B(A) in bacterial terms) and partially on the active pheophytin H(A). This state equilibrates in 0.8 ps with the radical pair. B(A) is proposed to act as the primary electron donor also in untreated reaction centers. The 22-ps (pheophytin-exchanged) or 33-ps (untreated) component may be due to equilibration with the secondary radical pair. Its acceleration by H(B) exchange is attributed to a faster reverse electron transfer from B(A) to. After exchange both and are nearly isoenergetic with the excited state.
Collapse
Affiliation(s)
- M Germano
- Biophysics Department, Huygens Laboratory, Leiden University, 2300 RA Leiden, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Durrant JR, Haque SA, Palomares E. Towards optimisation of electron transfer processes in dye sensitised solar cells. Coord Chem Rev 2004. [DOI: 10.1016/j.ccr.2004.03.014] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Riley K, Jankowiak R, Rätsep M, Small GJ, Zazubovich V. Evidence for Highly Dispersive Primary Charge Separation Kinetics and Gross Heterogeneity in the Isolated PS II Reaction Center of Green Plants. J Phys Chem B 2004. [DOI: 10.1021/jp049562l] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K. Riley
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| | - R. Jankowiak
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| | - M. Rätsep
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| | - G. J. Small
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| | - V. Zazubovich
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| |
Collapse
|
35
|
Andrizhiyevskaya EG, Frolov D, van Grondelle R, Dekker JP. On the role of the CP47 core antenna in the energy transfer and trapping dynamics of Photosystem II. Phys Chem Chem Phys 2004. [DOI: 10.1039/b411977k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Pashenko S, Proskuryakov I, Germano M, van Gorkom H, Gast P. Triplet state in photosystem II reaction centers as studied by 130 GHz EPR. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00324-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Losi A, Yruela I, Reus M, Holzwarth AR, Braslavsky SE. Structural changes upon excitation of D1-D2-Cyt b559 photosystem II reaction centers depend on the beta-carotene content. Photochem Photobiol Sci 2003; 2:722-9. [PMID: 12911219 DOI: 10.1039/b301282d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Different preparations of D1-D2-Cyt b559 complexes from spinach with different beta-carotene (Car) content [on average from <0.5 to 2 per reaction center (RC)] were studied by means of laser-induced optoacoustic spectroscopy. phiP680(+)Pheo(-) does not depend on the preparation (or on the Car content) inasmuch as the magnitude of the prompt heat (produced within 20 ns) does not vary for the different samples upon excitation at 675 and 620 nm. The energy level of the primary charge-separated state, P680(+)Pheo(-), was determined as EP680(+)Pheo(-) = 1.55 eV. Thus, an enthalpy change accompanying charge separation from excited P680 of deltaH*P680Pheo-->P680(+)Pheo(-) = -0.27 eV is obtained. Calculations using the heat evolved during the time-resolved decay of P680(+)Pheo(-) (< or = 100 ns) affords a triplet (3[P680Pheo]) quantum yield phi3[P680Pheo] = 0.5 +/- 0.14. The structural volume change, deltaV1, corresponding to the formation of P680(+)Pheo(-), strongly depends on the Car content; it is ca. -2.5 A3 molecule(-1) for samples with <0.5 Car on average, decreases (in absolute value) to -0.5 +/- 0.2 A3 for samples with an average of 1 Car, and remains the same for samples with two Cars per RC. This suggests that the Car molecules induce changes in the ground-state RC conformation, an idea which was confirmed by preferential excitation of Car with blue light, which produced different carotene triplet lifetimes in samples with 2 Car compared to those containing less carotene. We conclude that the two beta-carotenes are not structurally equivalent. Upon blue-light excitation (480 nm, preferential carotene absorption) the fraction of energy stored is ca. 60% for the 9Chl-2Car sample, whereas it is 40% for the preparations with one or less Cars on average, indicating different paths of energy distribution after Car excitation in these RCs with remaining chlorophyll antennae.
Collapse
Affiliation(s)
- Aba Losi
- Max-Planck-Institut für Strahlenchemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
38
|
de Weerd FL, Dekker JP, van Grondelle R. Dynamics of β-Carotene-to-Chlorophyll Singlet Energy Transfer in the Core of Photosystem II. J Phys Chem B 2003. [DOI: 10.1021/jp027737q] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank L. de Weerd
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Jan P. Dekker
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Shiang JJ, Yoder LM, Sension RJ. Structure and Function in the Isolated Reaction-Center Complex of Photosystem II. 2. Models for Energy Relaxation and Charge Separation in a Protein Matrix. J Phys Chem B 2003. [DOI: 10.1021/jp021983k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph J. Shiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Laurie M. Yoder
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Roseanne J. Sension
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
40
|
Barter LMC, Durrant JR, Klug DR. A quantitative structure-function relationship for the Photosystem II reaction center: supermolecular behavior in natural photosynthesis. Proc Natl Acad Sci U S A 2003; 100:946-51. [PMID: 12538865 PMCID: PMC298706 DOI: 10.1073/pnas.0136891100] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure-function relationship for the PSII reaction center.
Collapse
Affiliation(s)
- Laura M C Barter
- Department of Chemistry, Imperial College, London SW7 2AY, United Kingdom
| | | | | |
Collapse
|
41
|
Haque SA, Park T, Holmes AB, Durrant JR. Transient optical studies of interfacial energetic disorder at nanostructured dye-sensitised inorganic/organic semiconductor heterojunctions. Chemphyschem 2003; 4:89-93. [PMID: 12596471 DOI: 10.1002/cphc.200390014] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saif A Haque
- Centre for Electronic Materials and Devices, Department of Chemistry, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
42
|
|
43
|
Vassiliev S, Lee CI, Brudvig GW, Bruce D. Structure-based kinetic modeling of excited-state transfer and trapping in histidine-tagged photosystem II core complexes from synechocystis. Biochemistry 2002; 41:12236-43. [PMID: 12356326 DOI: 10.1021/bi0262597] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlorophyll fluorescence decay kinetics in photosynthesis are dependent on processes of excitation energy transfer, charge separation, and electron transfer in photosystem II (PSII). The interpretation of fluorescence decay kinetics and their accurate simulation by an appropriate kinetic model is highly dependent upon assumptions made concerning the homogeneity and activity of PSII preparations. While relatively simple kinetic models assuming sample heterogeneity have been used to model fluorescence decay in oxygen-evolving PSII core complexes, more complex models have been applied to the electron transport impaired but more highly purified D1-D2-cyt b(559) preparations. To gain more insight into the excited-state dynamics of PSII and to characterize the origins of multicomponent fluorescence decay, we modeled the emission kinetics of purified highly active His-tagged PSII core complexes with structure-based kinetic models. The fluorescence decay kinetics of PSII complexes contained a minimum of three exponential decay components at F(0) and four components at F(m). These kinetics were not described well with the single radical pair energy level model, and the introduction of either static disorder or a dynamic relaxation of the radical pair energy level was required to simulate the fluorescence decay adequately. An unreasonably low yield of charge stabilization and wide distribution of energy levels was required for the static disorder model, and we found the assumption of dynamic relaxation of the primary radical pair to be more suitable. Comparison modeling of the fluorescence decay kinetics from PSII core complexes and D1-D2-cyt b(559) reaction centers indicated that the rates of charge separation and relaxation of the radical pair are likely altered in isolated reaction centers.
Collapse
Affiliation(s)
- Sergei Vassiliev
- Department of Biology, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | | | | | | |
Collapse
|
44
|
Zehetner A, Scheer H, Siffel P, Vacha F. Photosystem II reaction center with altered pigment-composition: reconstitution of a complex containing five chlorophyll a per two pheophytin a with modified chlorophylls. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:21-8. [PMID: 12351215 DOI: 10.1016/s0005-2728(02)00282-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pigment-depleted Photosystem II reaction centers (PS II-RCs) from a higher plant (pea) containing five chlorophyll a (Chl) per two pheophytin a (Phe), were treated with Chl and several derivatives under exchange conditions [FEBS Lett. 434 (1998) 88]. The resulting reconstituted complexes were compared to those obtained by pigment exchange of "conventional" PS II-RCs containing six Chl per two Phe. (1) The extraction of one Chl is fully reversible. (2) The site of extraction is the same as the one into which previously extraneous pigments have been exchanged, most likely the peripheral D1-H118. (3) Introducing an efficient quencher (Ni-Chl) into this site results in only 25% reduction of fluorescence, indicating incomplete energy equilibration among the "core" and peripheral chlorophylls.
Collapse
Affiliation(s)
- Andrea Zehetner
- Department Biologie I-Botanik, Universität München, Menzinger Str. 67, D-80638, Munich, Germany
| | | | | | | |
Collapse
|
45
|
Modulating interfacial electron transfer dynamics in dye sensitised nanocrystalline metal oxide films. J Photochem Photobiol A Chem 2002. [DOI: 10.1016/s1010-6030(02)00071-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Diner BA, Rappaport F. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:551-80. [PMID: 12221988 DOI: 10.1146/annurev.arplant.53.100301.135238] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent progress in two-dimensional and three-dimensional electron and X-ray crystallography of Photosystem II (PSII) core complexes has led to major advances in the structural definition of this integral membrane protein complex. Despite the overall structural and kinetic similarity of the PSII reaction centers to their purple non-sulfur photosynthetic bacterial homologues, the different cofactors and subtle differences in their spatial arrangement result in significant differences in the energetics and mechanism of primary charge separation. In this review we discuss some of the recent spectroscopic, structural, and mutagenic work on the primary and secondary electron transfer reactions in PSII, stressing what is experimentally novel, what new insights have appeared, and where questions of interpretation remain.
Collapse
Affiliation(s)
- Bruce A Diner
- CR&D, Experimental Station, E. I. du Pont de Nemours & Co., Wilmington, Delaware 19880-0173, USA.
| | | |
Collapse
|
47
|
Yoder LM, Cole AG, Sension RJ. Structure and function in the isolated reaction center complex of Photosystem II: energy and charge transfer dynamics and mechanism. PHOTOSYNTHESIS RESEARCH 2002; 72:147-58. [PMID: 16228514 DOI: 10.1023/a:1016180616774] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The dynamics of energy and charge transfer in the Photosystem II reaction center complex is an area of great interest today. These processes occur on a time scale ranging from femtoseconds to tens of picoseconds or longer. Steady-state and ultrafast spectroscopy techniques have provided a great deal of quantitative and qualitative data that have led to varied interpretations and phenomenological models. More recently, microscopic models that identify specific charge separated states have been introduced, and offer more insight into the charge transfer mechanism. The structure and energetics of PS II reaction centers are reviewed, emphasizing the effects on the dynamics of the initial charge transfer.
Collapse
Affiliation(s)
- Laurie M Yoder
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA,
| | | | | |
Collapse
|
48
|
Barter L, Schilstra M, Barber J, Durrant J, Klug D. Are the trapping dynamics in Photosystem II sensitive to QA redox potential? J Photochem Photobiol A Chem 2001. [DOI: 10.1016/s1010-6030(01)00506-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Prokhorenko VI, Holzwarth AR. Primary Processes and Structure of the Photosystem II Reaction Center: A Photon Echo Study,. J Phys Chem B 2000. [DOI: 10.1021/jp002323n] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valentin I. Prokhorenko
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45413 Mülheim a.d. Ruhr, Germany
| | - Alfred R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45413 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
50
|
Dekker JP, Van Grondelle R. Primary charge separation in Photosystem II. PHOTOSYNTHESIS RESEARCH 2000; 63:195-208. [PMID: 16228430 DOI: 10.1023/a:1006468024245] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this Minireview, we discuss a number of issues on the primary photosynthetic reactions of the green plant Photosystem II. We discuss the origin of the 683 and 679 nm absorption bands of the PS II RC complex and suggest that these forms may reflect the single-site spectrum with dominant contributions from the zero-phonon line and a pronounced approximately 80 cm(-1) phonon side band, respectively. The couplings between the six central RC chlorins are probably very similar and, therefore, a 'multimer' model arises in which there is no 'special pair' and in which for each realization of the disorder the excitation may be dynamically localized on basically any combination of neighbouring chlorins. The key features of our model for the primary reactions in PS II include ultrafast (<500 fs) energy transfer processes within the multimer, 'slow' ( approximately 20 ps) energy transfer processes from peripheral RC chlorophylls to the RC multimer, ultrafast charge separation (<500 fs) with a low yield starting from the singlet-excited 'accessory' chlorophyll of the active branch, cation transfer from this 'accessory' chlorophyll to a 'special pair' chlorophyll and/or charge separation starting from this 'special pair' chlorophyll ( approximately 8 ps), and slow relaxation ( approximately 50 ps) of the radical pair by conformational changes of the protein. The charge separation in the PS II RC can probably not be described as a simple trap-limited or diffusion-limited process, while for the PS II core and larger complexes the transfer of the excitation energy to the PS II RC may be rate limiting.
Collapse
Affiliation(s)
- J P Dekker
- Faculty of Sciences, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands,
| | | |
Collapse
|