1
|
Extracellular phosphate enhances the function of F508del-CFTR rescued by CFTR correctors. J Cyst Fibros 2021; 20:843-850. [PMID: 34020896 PMCID: PMC8503924 DOI: 10.1016/j.jcf.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
CFTR correctors rescue the plasma membrane expression of F508del-CFTR. Extracellular phosphate enhances F508del-CFTR function rescued by CFTR correctors. Cystic fibrosis airway epithelia express the phosphate transporter SLC34A2. Extracellular phosphate levels might contribute to variable drug responses.
Background: The clinical response to cystic fibrosis transmembrane conductance regulator (CFTR) modulators varies between people with cystic fibrosis (CF) of the same genotype, in part through the action of solute carriers encoded by modifier genes. Here, we investigate whether phosphate transport by SLC34A2 modulates the function of F508del-CFTR after its rescue by CFTR correctors. Methods: With Fischer rat thyroid (FRT) cells heterologously expressing wild-type and F508del-CFTR and fully-differentiated CF and non-CF human airway epithelial cells, we studied SLC34A2 expression and the effects of phosphate on CFTR-mediated transepithelial ion transport. F508del-CFTR was trafficked to the plasma membrane by incubation with different CFTR correctors (alone or in combination) or by low temperature. Results: Quantitative RT-PCR demonstrated that both FRT and primary airway epithelial cells express SLC34A2 mRNA and no differences were found between cells expressing wild-type and F508del-CFTR. For both heterologously expressed and native F508del-CFTR rescued by either VX-809 or C18, the magnitude of CFTR-mediated Cl− currents was dependent on the presence of extracellular phosphate. However, this effect of phosphate was not detected with wild-type and low temperature-rescued F508del-CFTR Cl− currents. Importantly, the modulatory effect of phosphate was observed in native CF airway cells exposed to VX-445, VX-661 and VX-770 (Trikafta) and was dependent on the presence of both sodium and phosphate. Conclusions: Extracellular phosphate modulates the magnitude of CFTR-mediated Cl− currents after F508del-CFTR rescue by clinically-approved CFTR correctors. This effect likely involves electrogenic phosphate transport by SLC34A2. It might contribute to inter-individual variability in the clinical response to CFTR correctors.
Collapse
|
2
|
Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Proc Natl Acad Sci U S A 2020; 117:21740-21746. [PMID: 32817533 PMCID: PMC7474675 DOI: 10.1073/pnas.2007910117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel is essential for epithelial salt-water balance. CFTR mutations cause cystic fibrosis, a lethal incurable disease. In cells CFTR is activated through the cAMP signaling pathway, overstimulation of which during cholera leads to CFTR-mediated intestinal salt-water loss. Channel activation is achieved by phosphorylation of its regulatory (R) domain by cAMP-dependent protein kinase catalytic subunit (PKA). Here we show using two independent approaches--an ATP analog that can drive CFTR channel gating but is unsuitable for phosphotransfer by PKA, and CFTR mutants lacking phosphorylatable serines--that PKA efficiently opens CFTR channels through simple binding, under conditions that preclude phosphorylation. Unlike when phosphorylation happens, CFTR activation by PKA binding is completely reversible. Thus, PKA binding promotes release of the unphosphorylated R domain from its inhibitory position, causing full channel activation, whereas phosphorylation serves only to maintain channel activity beyond termination of the PKA signal. The results suggest two levels of CFTR regulation in cells: irreversible through phosphorylation, and reversible through R-domain binding to PKA--and possibly also to other members of a large network of proteins known to interact with the channel.
Collapse
|
3
|
Aleksandrov AA, Cui L, Riordan JR. Relationship between nucleotide binding and ion channel gating in cystic fibrosis transmembrane conductance regulator. J Physiol 2009; 587:2875-86. [PMID: 19403599 PMCID: PMC2718247 DOI: 10.1113/jphysiol.2009.170258] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/23/2009] [Indexed: 12/23/2022] Open
Abstract
We have employed rate-equilibrium free energy relationship (REFER) analysis to characterize the dynamic events involved in the allosteric regulation of cystic fibrosis transmembrane conductance regulator (CFTR) function. A wide range of different hydrolysable and poorly hydrolysable nucleoside triphosphates were used to elucidate the role of ATP hydrolysis in CFTR function. The linearity of the REFER plots and Phi values near unity for all ligands tested implies that CFTR channel gating is a reversible thermally driven process with all structural reorganization in the binding site(s) completed prior to channel opening. This is consistent with the requirement for nucleotide binding for channel opening. However, the channel structural transition from the open to the closed state occurs independently of any events in the binding sites. Similar results were obtained on substitution of amino acids at coupling joints between both nucleotide binding domains (NBD) and cytoplasmic loops (CL) in opposite halves of the protein, indicating that any structural reorganization there also had occurred in the channel closed state. The fact that fractional Phi values were not observed in either of these distant sites suggests that there may not be a deterministic 'lever-arm' mechanism acting between nucleotide binding sites and the channel gate. These findings favour a stochastic coupling between binding and gating in which all structural transitions are thermally driven processes. We speculate that increase of channel open state probability is due to reduction of the number of the closed state configurations available after physical interaction between ligand bound NBDs and the channel.
Collapse
Affiliation(s)
- Andrei A Aleksandrov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
4
|
Csanády L, Nairn AC, Gadsby DC. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. ACTA ACUST UNITED AC 2006; 128:523-33. [PMID: 17043148 PMCID: PMC2151586 DOI: 10.1085/jgp.200609558] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
CFTR is the only ABC (ATP-binding cassette) ATPase known to be an ion channel. Studies of CFTR channel function, feasible with single-molecule resolution, therefore provide a unique glimpse of ABC transporter mechanism. CFTR channel opening and closing (after regulatory-domain phosphorylation) follows an irreversible cycle, driven by ATP binding/hydrolysis at the nucleotide-binding domains (NBD1, NBD2). Recent work suggests that formation of an NBD1/NBD2 dimer drives channel opening, and disruption of the dimer after ATP hydrolysis drives closure, but how NBD events are translated into gate movements is unclear. To elucidate conformational properties of channels on their way to opening or closing, we performed non-equilibrium thermodynamic analysis. Human CFTR channel currents were recorded at temperatures from 15 to 35°C in inside-out patches excised from Xenopus oocytes. Activation enthalpies(ΔH‡) were determined from Eyring plots. ΔH‡ was 117 ± 6 and 69 ± 4 kJ/mol, respectively, for opening and closure of partially phosphorylated, and 96 ± 6 and 73 ± 5 kJ/mol for opening and closure of highly phosphorylated wild-type (WT) channels. ΔH‡ for reversal of the channel opening step, estimated from closure of ATP hydrolysis–deficient NBD2 mutant K1250R and K1250A channels, and from unlocking of WT channels locked open with ATP+AMPPNP, was 43 ± 2, 39 ± 4, and 37 ± 6 kJ/mol, respectively. Calculated upper estimates of activation free energies yielded minimum estimates of activation entropies (ΔS‡), allowing reconstruction of the thermodynamic profile of gating, which was qualitatively similar for partially and highly phosphorylated CFTR. ΔS‡ appears large for opening but small for normal closure. The large ΔH‡ and ΔS‡ (TΔS‡ ≥ 41 kJ/mol) for opening suggest that the transition state is a strained channel molecule in which the NBDs have already dimerized, while the pore is still closed. The small ΔS‡ for normal closure is appropriate for cleavage of a single bond (ATP's beta-gamma phosphate bond), and suggests that this transition state does not require large-scale protein motion and hence precedes rehydration (disruption) of the dimer interface.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, 1088 Budapest, Hungary.
| | | | | |
Collapse
|
5
|
Berger AL, Ikuma M, Hunt JF, Thomas PJ, Welsh MJ. Mutations that change the position of the putative gamma-phosphate linker in the nucleotide binding domains of CFTR alter channel gating. J Biol Chem 2002; 277:2125-31. [PMID: 11788611 DOI: 10.1074/jbc.m109539200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is an ATP-binding cassette transporter that contains conserved nucleotide-binding domains (NBDs). In CFTR, the NBDs bind and hydrolyze ATP to open and close the channel. Crystal structures of related NBDs suggest a structural model with an important signaling role for a gamma-phosphate linker peptide that couples bound nucleotide to movement of an alpha-helical subdomain. We mutated two residues in CFTR that the structural model predicts will uncouple effects of nucleotide binding from movement of the alpha-helical subdomain. These residues are Gln-493 and Gln-1291, which may directly connect the ATP gamma-phosphate to the gamma-phosphate linker, and residues Asn-505 and Asn-1303, which may form hydrogen bonds that stabilize the linker. In NBD1, Q493A reduced the frequency of channel opening, suggesting a role for this residue in coupling ATP binding to channel opening. In contrast, N505C increased the frequency of channel opening, consistent with a role for Asn-505 in stabilizing the inactive state of the NBD. In NBD2, Q1291A decreased the effects of pyrophosphate without altering other functions. Mutations of Asn-1303 decreased the rate of channel opening and closing, suggesting an important role for NBD2 in controlling channel burst duration. These findings are consistent with both the bacterial NBD structural model and gating models for CFTR. Our results extend models of nucleotide-induced structural changes from bacterial NBDs to a functional mammalian ATP-binding cassette transporter.
Collapse
Affiliation(s)
- Allan L Berger
- Howard Hughes Medical Institute, Departments of Internal Medicine and Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
6
|
Meyer G, Garavaglia ML, Bazzini C, Bottà G. An anion channel in guinea pig gallbladder epithelial cells is highly permeable to HCO(-)(3). Biochem Biophys Res Commun 2000; 276:312-20. [PMID: 11006123 DOI: 10.1006/bbrc.2000.3400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In guinea pig gallbladder epithelium, a secretion of fluid, secondary to an electrogenic secretion of Cl(-) and HCO(-)(3), is elicited in the presence of a high intracellular concentration of adenosine 3'-5'-cyclic monophosphate (cAMP). The aim of this study was to analyze the effects of secretagogues on the activity of anionic channels in isolated epithelial cells using the patch-clamp technique and measuring the electrical potential difference of the cellular membrane (pd(cm)). In cell-attached configuration, with the microelectrode filled with a solution of N-methylglucamine-Cl, or in inside-out configuration (symmetrical solution), it was possible to demonstrate the presence of an 18-pS Cl(-) channel with linear current/voltage (I/V) relationship and voltage independence; this channel is not activated by cAMP (cell-attached configuration). In inside-out configuration (symmetrical solution), another anionic channel with a conductance of 2.8 pS, voltage independence, and a linear I/V relationship was also identified. This channel was stimulated by cAMP (cell-attached configuration) and by PKA + ATP + cAMP (inside-out configuration). The channel was inhibited by NPPB (10(-5) M), but not by other anionic inhibitors. Measurements of the pd(cm) value suggested that in isolated cells, as in whole tissue, cAMP activates conductance for both Cl(-) and HCO(-)(3). The selectivity of the channel was gluconate < SO(2-)(4) < Cl(-) < Br(-) < I(-) < HCO(-)(3) < SCN(-) and the P(HCO(3))/P(Cl) was 2.6. Some features of the channel resemble those of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and RT-PCR performed on mRNA from isolated epithelial cells detected the presence of a CFTR homologue mRNA. The results obtained indicate that this channel is responsible for the HCO(-)(3) conductance activated by cAMP.
Collapse
Affiliation(s)
- G Meyer
- Dipartimento di Fisiologia e Biochimica Generali, Sezione di Fisiologia Generale, Università degli Studi di Milano, Via Celoria 26, Milan, I-20133, Italy.
| | | | | | | |
Collapse
|
7
|
Nagel G. Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:263-74. [PMID: 10581360 DOI: 10.1016/s0005-2736(99)00162-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genetic disease cystic fibrosis is caused by defects in the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). CFTR belongs to the family of ABC transporters. In contrast to most other members of this family which transport substrates actively across a membrane, the main function of CFTR is to regulate passive flux of substrates across the plasma membrane. Chloride channel activity of CFTR is dependent on protein phosphorylation and presence of nucleoside triphosphates. From electrophysiological studies of CFTR detailed models of its regulation by phosphorylation and nucleotide interaction have evolved. These investigations provide ample evidence that ATP hydrolysis is crucial for CFTR gating. It becomes apparent that the two nucleotide binding domains on CFTR not only diverge strongly in sequence, but also in function. Based on previous models and taking into account new data from pre-steady-state experiments, a refined model for the action of nucleotides at two nucleotide binding domains was recently proposed.
Collapse
Affiliation(s)
- G Nagel
- Max-Planck-Institut für Biophysik, Kennedyallee 70, 60596, Frankfurt/M., Germany
| |
Collapse
|
8
|
Zeltwanger S, Wang F, Wang GT, Gillis KD, Hwang TC. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. J Gen Physiol 1999; 113:541-54. [PMID: 10102935 PMCID: PMC2217165 DOI: 10.1085/jgp.113.4.541] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gating of the cystic fibrosis transmembrane conductance regulator (CFTR) involves a coordinated action of ATP on two nucleotide binding domains (NBD1 and NBD2). Previous studies using nonhydrolyzable ATP analogues and NBD mutant CFTR have suggested that nucleotide hydrolysis at NBD1 is required for opening of the channel, while hydrolysis of nucleotides at NBD2 controls channel closing. We studied ATP-dependent gating of CFTR in excised inside-out patches from stably transfected NIH3T3 cells. Single channel kinetics of CFTR gating at different [ATP] were analyzed. The closed time constant (tauc) decreased with increasing [ATP] to a minimum value of approximately 0.43 s at [ATP] >1.00 mM. The open time constant (tauo) increased with increasing [ATP] with a minimal tauo of approximately 260 ms. Kinetic analysis of K1250A-CFTR, a mutant that abolishes ATP hydrolysis at NBD2, reveals the presence of two open states. A short open state with a time constant of approximately 250 ms is dominant at low ATP concentrations (10 microM) and a much longer open state with a time constant of approximately 3 min is present at millimolar ATP. These data suggest that nucleotide binding and hydrolysis at NBD1 is coupled to channel opening and that the channel can close without nucleotide interaction with NBD2. A quantitative cyclic gating scheme with microscopic irreversibility was constructed based on the kinetic parameters derived from single-channel analysis. The estimated values of the kinetic parameters suggest that NBD1 and NBD2 are neither functionally nor biochemically equivalent.
Collapse
Affiliation(s)
- S Zeltwanger
- Department of Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Pharmacology of CFTR Chloride Channel Activity. Physiol. Rev. 79, Suppl.: S109-S144, 1999. - The pharmacology of cystic fibrosis transmembrane conductance regulator (CFTR) is at an early stage of development. Here we attempt to review the status of those compounds that modulate the Cl- channel activity of CFTR. Three classes of compounds, the sulfonylureas, the disulfonic stilbenes, and the arylaminobenzoates, have been shown to directly interact with CFTR to cause channel blockade. Kinetic analysis has revealed the sulfonylureas and arylaminobenzoates interact with the open state of CFTR to cause blockade. Suggestive evidence indicates the disulfonic stilbenes act by a similar mechanism but only from the intracellular side of CFTR. Site-directed mutagenesis studies indicate the involvement of specific amino acid residues in the proposed transmembrane segment 6 for disulfonic stilbene blockade and segments 6 and 12 for arylaminobenzoate blockade. Unfortunately, these compounds (sulfonylureas, disulfonic stilbenes, arylaminobenzoate) also act at a number of other cellular sites that can indirectly alter the activity of CFTR or the transepithelial secretion of Cl-. The nonspecificity of these compounds has complicated the interpretation of results from cellular-based experiments. Compounds that increase the activity of CFTR include the alkylxanthines, phosphodiesterase inhibitors, phosphatase inhibitors, isoflavones and flavones, benzimidazolones, and psoralens. Channel activation can arise from the stimulation of the cAMP signal transduction cascade, the inhibition of inactivating enzymes (phosphodiesterases, phosphatases), as well as the direct binding to CFTR. However, in contrast to the compounds that block CFTR, a detailed understanding of how the above compounds increase the activity of CFTR has not yet emerged.
Collapse
Affiliation(s)
- B D Schultz
- University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | |
Collapse
|
10
|
Lansdell KA, Kidd JF, Delaney SJ, Wainwright BJ, Sheppard DN. Regulation of murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in Chinese hamster ovary cells. J Physiol 1998; 512 ( Pt 3):751-64. [PMID: 9769419 PMCID: PMC2231228 DOI: 10.1111/j.1469-7793.1998.751bd.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. We investigated the effect of protein kinases and phosphatases on murine cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, expressed in Chinese hamster ovary (CHO) cells, using iodide efflux and the excised inside-out configuration of the patch-clamp technique. 2. The protein kinase C (PKC) activator, phorbol dibutyrate, enhanced cAMP-stimulated iodide efflux. However, PKC did not augment the single-channel activity of either human or murine CFTR Cl- channels that had previously been activated by protein kinase A. 3. Fluoride, a non-specific inhibitor of protein phosphatases, stimulated both human and murine CFTR Cl- channels. However, calyculin A, a potent inhibitor of protein phosphatases 1 and 2A, did not enhance cAMP-stimulated iodide efflux. 4. The alkaline phosphatase inhibitor, (-)-bromotetramisole augmented cAMP-stimulated iodide efflux and, by itself, stimulated a larger efflux than that evoked by cAMP agonists. However, (+)-bromotetramisole, the inactive enantiomer, had the same effect. For murine CFTR, neither enantiomer enhanced single-channel activity. In contrast, both enantiomers increased the open probability (Po) of human CFTR, suggesting that bromotetramisole may promote the opening of human CFTR. 5. As murine CFTR had a low Po and was refractory to stimulation by activators of human CFTR, we investigated whether murine CFTR may open to a subconductance state. When single-channel records were filtered at 50 Hz, a very small subconductance state of murine CFTR was observed that had a Po greater than that of human CFTR. The occupancy of this subconductance state may explain the differences in channel regulation observed between human and murine CFTR.
Collapse
Affiliation(s)
- K A Lansdell
- Human Genetics Unit, Department of Medicine, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
11
|
Abstract
Chloride channels are widely expressed and play important roles in cell volume regulation, transepithelial transport, intracellular pH regulation, and membrane excitability. Most chloride channels have yet to be identified at a molecular level. The ClC gene family and the cystic fibrosis transmembrane conductance regulator (CFTR) are distinct chloride channels expressed in many cell types, and mutations in their genes are the cause of several diseases including myotonias, cystic fibrosis, and kidney stones. Because of their molecular definition and roles in disease, these channels have been studied intensively over the past several years. The focus of this review is on recent studies that have provided new insights into the mechanisms governing the opening and closing, i.e. gating, of the ClC and CFTR chloride channels.
Collapse
Affiliation(s)
- J K Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6100, USA.
| |
Collapse
|
12
|
Mathews CJ, Tabcharani JA, Chang XB, Jensen TJ, Riordan JR, Hanrahan JW. Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride channel. J Physiol 1998; 508 ( Pt 2):365-77. [PMID: 9508802 PMCID: PMC2230889 DOI: 10.1111/j.1469-7793.1998.365bq.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1997] [Accepted: 12/19/1997] [Indexed: 02/06/2023] Open
Abstract
1. The relationship between phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and its gating by nucleotides was examined using the patch clamp technique by comparing strongly phosphorylated wild-type (WT) channels with weakly phosphorylated mutant channels lacking four (4SA) or all ten (10SA) dibasic consensus sequences for phosphorylation by protein kinase A (PKA). 2. The open probability (Po) of strongly phosphorylated WT channels in excised patches was about twice that of 4SA and 10SA channels, after correcting for the number of functional channels per patch by addition of adenylylimidodiphosphate (AMP-PNP). The mean burst durations of WT and mutant channels were similar, and therefore the elevated Po of WT was due to its higher bursting rate. 3. The ATP dependence of the 10SA mutant was shifted to higher nucleotide concentrations compared with WT channels. The relationship between Po and [ATP] was noticeably sigmoid for 10SA channels (Hill coefficient, 1.8), consistent with positive co-operativity between two sites. Increasing ATP concentration to 10 mM caused the Po of both WT and 10SA channels to decline. 4. Wild-type and mutant CFTR channels became locked in open bursts when exposed to mixtures of ATP and the non-hydrolysable analogue AMP-PNP. The rate at which the low phosphorylation mutants became locked open was about half that of WT channels, consistent with Po being the principal determinant of locking rate in WT and mutant channels. 5. We conclude that phosphorylation at 'weak' PKA sites is sufficient to sustain the interactions between the ATP binding domains that mediate locking by AMP-PNP. Phosphorylation of the strong dibasic PKA sites controls the bursting rate and Po of WT channels by increasing the apparent affinity of CFTR for ATP.
Collapse
Affiliation(s)
- C J Mathews
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Berger HA, Travis SM, Welsh MJ. Fluoride stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L305-12. [PMID: 9530164 DOI: 10.1152/ajplung.1998.274.3.l305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While studying the regulation of the cystic fibrosis transmembrane conductance regulator (CFTR), we found that addition of F- to the cytosolic surface of excised, inside-out membrane patches reversibly increased Cl- current in a dose-dependent manner. Stimulation required prior phosphorylation and the presence of ATP. F- increased current even in the presence of deferoxamine, which chelates Al3+, suggesting that stimulation was not due to AlF4-. F- also stimulated current in a CFTR variant that lacked a large part of the R domain, suggesting that the effect was not mediated via this domain. Studies of single channels showed that F- increased the open-state probability by slowing channel closure from bursts of activity; the mean closed time between bursts and single-channel conductance was not altered. These results suggested that F- influenced regulation by the cytosolic domains, most likely the nucleotide-binding domains (NBDs). Consistent with this, we found that mutation of a conserved Walker lysine in NBD2 changed the relative stimulatory effect of F- compared with wild-type CFTR, whereas mutation of the Walker lysine in NBD1 had no effect. Based on these and previous data, we speculate that F- interacts with CFTR, possibly via NBD2, and slows the rate of channel closure.
Collapse
Affiliation(s)
- H A Berger
- Department of Internal Medicine, Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | |
Collapse
|
14
|
Tabcharani JA, Linsdell P, Hanrahan JW. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol 1997; 110:341-54. [PMID: 9379167 PMCID: PMC2229372 DOI: 10.1085/jgp.110.4.341] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1996] [Accepted: 07/11/1997] [Indexed: 02/05/2023] Open
Abstract
Permeation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels by halide ions was studied in stably transfected Chinese hamster ovary cells by using the patch clamp technique. In cell-attached patches with a high Cl pipette solution, the CFTR channel displayed outwardly rectifying currents and had a conductance near the membrane potential of 6.0 pS at 22 degrees C or 8.7 pS at 37 degrees C. The current-voltage relationship became linear when patches were excised into symmetrical, -tris(hydroxymethyl)methyl-2-aminomethane sulfonate (TES)-buffered solutions. Under these conditions, conductance increased from 7.0 pS at 22 degrees C to 10.9 pS at 37 degrees C. The conductance at 22 degrees C was approximately 1.0 pS higher when TES and HEPES were omitted from the solution, suggesting weak, voltage-independent block by pH buffers. The relationship between conductance and Cl activity was hyperbolic and well fitted by a Michaelis-Menten-type function having a of approximately 38 mM and maximum conductance of 10 pS at 22 degrees C. Dilution potentials measured with NaCl gradients indicated high anion selectivity (P/P = 0.003-0.028). Biionic reversal potentials measured immediately after exposure of the cytoplasmic side to various test anions indicated P(1.8) > P(1. 3) > P(1.0) > P(0.17), consistent with a "weak field strength" selectivity site. The same sequence was obtained for external halides, although inward F flow was not observed. Iodide currents were protocol dependent and became blocked after 1-2 min. This coincided with a large shift in the (extrapolated) reversal potential to values indicating a greatly reduced I/Cl permeability ratio (P/P< 0.4). The switch to low I permeability was enhanced at potentials that favored Cl entry into the pore and was not observed in the R347D mutant, which is thought to lack an anion binding site involved in multi-ion pore behavior. Interactions between Cl and I ions may influence I permeation and be responsible for the wide range of P/P ratios that have been reported for the CFTR channel. The low P/P ratio usually reported for CFTR only occurred after entry into an altered permeability state and thus may not be comparable with permeability ratios for other anions, which are obtained in the absence of iodide. We propose that CFTR displays a "weak field strength" anion selectivity sequence.
Collapse
Affiliation(s)
- J A Tabcharani
- Department of Physiology, McGill University, Montréal, Québec Canada H3G 1Y6
| | | | | |
Collapse
|
15
|
Beavis AD, Davatol-Hag H. The mitochondrial inner membrane anion channel is inhibited by DIDS. J Bioenerg Biomembr 1996; 28:207-14. [PMID: 9132420 DOI: 10.1007/bf02110652] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mitochondrial inner membrane anion channel (IMAC) is a channel, identified by flux studies in intact mitochondria, which has a broad anion selectivity and is maintained closed or inactive by matrix Mg2+ and H+. We now present evidence that this channel, like many other chloride/anion channels, is reversibly blocked/inhibited by stilbene-2,2'-disulfonates. Inhibition of malonate transport approaches 100% with IC50 values of 26, 44, and 88 mu M for DIDS, H2-DIDS, and SITS respectively and Hill coefficients < or = 1. In contrast, inhibition of Cl- transport is incomplete, reaching a maximum of about 30% at pH 7.4 and 65% at pH 8.4 with an IC50 which is severalfold higher than that for malonate. The IC50 for malonate transport is decreased about 50% by pretreatment of the mitochondria with N-ethylmaleimide. Raising the assay pH from 7.4 to 8.4 increases the IC50 by about 50%, but under conditions where only the matrix pH is made alkaline the IC50 is decreased slightly. These properties and competition studies suggest that DIDS inhibits by binding to the same site as Cibacron blue 3GA. In contrast, DIDS does not appear to compete with the fluorescein derivative Erythrosin B for inhibition. These findings not only provide further evidence that IMAC may be more closely related to other "Cl-" channels than previously thought, but also suggest that other Cl- channels may be sensitive to some of the many regulators of IMAC which have been identified.
Collapse
Affiliation(s)
- A D Beavis
- Department of Pharmacology, Medical College of Ohio, Toledo 43699-0008, USA
| | | |
Collapse
|
16
|
Carson MR, Welsh MJ. Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins. Biophys J 1995; 69:2443-8. [PMID: 8599650 PMCID: PMC1236481 DOI: 10.1016/s0006-3495(95)80113-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The opening and closing of the CFTR Cl- channel are regulated by ATP hydrolysis at its two nucleotide binding domains (NBDs). However, the mechanism and functional significance of ATP hydrolysis are unknown. Sequence similarity between the NBDs of CFTR and GTP-binding proteins suggested the NBDs might have a structure and perhaps a function like that of GTP-binding proteins. Based on this similarity, we predicted that the terminal residue of the LSGGQ motif in the NBDs of CFTR corresponds to a highly conserved glutamine residue in GTP-binding proteins that directly catalyzes the GTPase reaction. Mutations of this residue in NBD1 or NBD2, which were predicted to increase or decrease the rate of hydrolysis, altered the duration of channel closed and open times in a specific manner without altering ion conduction properties or ADP-dependent inhibition. These results suggest that the NBDs of CFTR, and consequently other ABC transporters, may have a structure and a function analogous to those of GTP-binding proteins. We conclude that the rates of ATP hydrolysis at NBD1 and at NBD2 determine the duration of the two states of the channel, closed and open, much as the rate of GTP hydrolysis by GTP-binding proteins determines the duration of their active state.
Collapse
Affiliation(s)
- M R Carson
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
17
|
Carson MR, Winter MC, Travis SM, Welsh MJ. Pyrophosphate stimulates wild-type and mutant cystic fibrosis transmembrane conductance regulator Cl- channels. J Biol Chem 1995; 270:20466-72. [PMID: 7544788 DOI: 10.1074/jbc.270.35.20466] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A unique feature of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is regulation by ATP through the two cytoplasmic nucleotide-binding domains (NBDs). To better understand this process, we asked how channel activity is affected by inorganic pyrophosphate (PPi), a compound that binds to NBDs in other proteins. PPi and three nonhydrolyzable PPi analogs reversibly stimulated the activity of phosphorylated channels. Kinetic modeling of single channel data demonstrated that PPi affected two distinct steps in channel regulation. First, PPi increased the rate at which channels opened. Second, once channels were open, PPi delayed their closure. PPi could only stimulate channels when it was applied in the presence of ATP. PPi also increased the photolabeling of CFTR by an ATP analog. These two findings suggest that PPi modifies the activity of ATP-dependent CFTR channel gating. Based on these and previous data, we speculate that the effects of PPi are mediated by binding of PPi to NBD2 where it regulates channel opening by NBD1, and then, because it is not hydrolyzed, it slows the rate of NBD2-mediated channel closing. Because PPi stimulated wild-type channels, we tested its effect on CFTR containing the cystic fibrosis mutations: delta F508, R117H, and G551S. PPi stimulated all three. PPi also stimulated endogenous CFTR in the apical membrane of permeabilized T-84 epithelia. These results suggest that PPi or an analog might be of value in the development of new approaches to the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- M R Carson
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|