1
|
Abstract
Among thousands of homo-oligomeric protein structures, there is a small but growing subset of ‘domain-swapped’ proteins. The term ‘domain swapping,’ originally coined by D. Eisenberg, describes a scenario in which two or more polypeptide chains exchange identical units for oligomerization. This type of assembly could play a role in disease-related aggregation and amyloid formation or as a specific mechanism for regulating function. This chapter introduces terms and features concerning domain swapping, summarizes ideas about its putative mechanisms, reports on domain-swapped structures collected from the literature, and describes a few notable examples in detail.
Collapse
|
2
|
Lawson CL, Benoff B, Berger T, Berman HM, Carey J. E. coli trp repressor forms a domain-swapped array in aqueous alcohol. Structure 2004; 12:1099-108. [PMID: 15274929 PMCID: PMC3228604 DOI: 10.1016/j.str.2004.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 03/15/2004] [Indexed: 01/07/2023]
Abstract
The E. coli trp repressor (trpR) homodimer recognizes its palindromic DNA binding site through a pair of flexible helix-turn-helix (HTH) motifs displayed on an intertwined helical core. Flexible N-terminal arms mediate association between dimers bound to tandem DNA sites. The 2.5 A X-ray structure of trpR crystallized in 30% (v/v) isopropanol reveals a substantial conformational rearrangement of HTH motifs and N-terminal arms, with the protein appearing in the unusual form of an ordered 3D domain-swapped supramolecular array. Small angle X-ray scattering measurements show that the self-association properties of trpR in solution are fundamentally altered by isopropanol.
Collapse
Affiliation(s)
- Catherine L Lawson
- Rutgers University, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
3
|
Grillo AO, Royer CA. The basis for the super-repressor phenotypes of the AV77 and EK18 mutants of trp repressor. J Mol Biol 2000; 295:17-28. [PMID: 10623505 DOI: 10.1006/jmbi.1999.3317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA-binding properties of two super-repressor mutants of the Escherichia coli trp repressor, EK18 and AV77, have been investigated using steady-state fluorescence anisotropy measurements, in order to further elucidate the basis for their super-repressor phenotypes. Several suggestions have been previously proposed as the basis for the super-repressor phenotype of EK18 and AV77. For the negative to positive charge change EK18 mutant, increased electrostatic interactions between the EK18 mutant and the operator and increased protein-protein interactions between EK18 dimers have been suggested as contributing to the super-repressor phenotype of this mutant. We show that EK18 dimers actually bind to wild-type and variant operator sequences with a decrease in apparent cooperativity and an increase in affinity, compared to WTTR dimers. Thus, the EK18 super-repressor phenotype is not due to increased cooperative binding between EK18 dimers. These results support the hypothesis that the super-repressor phenotype of EK18 arises from increased electrostatic interactions between the mutant and DNA. In the case of the AV77 mutant, weaker binding affinity of apo-AV77 to non-specific DNA, increased selectivity of binding of AV77 for the operator, and a higher population of folded functional AV77 dimers available to bind the operator under limiting L-Trp conditions in vivo, have been proposed for the super-repressor phenotype of this mutant. We show that like the EK18 mutant, apoAV77 binds with higher affinity to non-specific DNA compared to apo-WTTR and that the holo-AV77 mutant does not bind with higher selectivity to the operator, has had been previously proposed. We therefore conclude that the super-repressor phenotype of the AV77 mutant is due to an increase in the population of folded, functional AV77 dimers, under limiting L-Trp conditions in vivo.
Collapse
Affiliation(s)
- A O Grillo
- School of Pharmacy, University of Wisconsin-Madison, 425 N. Charter St, Madison, WI 53706, USA
| | | |
Collapse
|
4
|
Chae YK, Abildgaard F, Royer CA, Markley JL. Oligomerization of the EK18 mutant of the trp repressor of Escherichia coli as observed by NMR spectroscopy. Arch Biochem Biophys 1999; 371:35-40. [PMID: 10525287 DOI: 10.1006/abbi.1999.1394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of the trp repressor system of Escherichia coli is frequently modeled by a single equilibrium, that between the aporepressor (TR) and the corepressor, l-tryptophan (Trp), at their intracellular concentrations. The actual mechanism, which is much more complex and more finely tuned, involves multiple equilibria: TR and Trp association, TR oligomerization, specific and nonspecific binding of various states of TR to DNA, and interactions between these various species and ions. TR in isolation exists primarily as a homodimer, but the state of oligomerization increases as the TR concentration goes up and/or the salt concentration goes down, leading to species with lower affinity for DNA. We have used multinuclear, multidimensional NMR spectroscopy to investigate structural changes that accompany the oligomerization of TR. For these investigations, the superrepressor mutant EK18 (TR with Glu 18 replaced by Lys) was chosen because it exhibits less severe oligomerization at higher protein concentration than other known variants; this made it possible to study the dimer to tetramer oligomerization step by NMR. The NMR results suggest that the interaction between TR dimers is structurally linked to folding of the DNA binding domain and that it likely involves direct contacts between the C-terminal residues of the C-helix of one dimer with the next dimer. This implies that oligomerization can compete with DNA binding and thus serves as a factor in the fine-tuning of gene expression.
Collapse
Affiliation(s)
- Y K Chae
- Department of Biochemistry and National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
5
|
Abstract
The bacterial repressor protein, trp repressor, is one of the best studied transcriptional regulatory proteins in terms of function, structure, dynamics and stability. Despite these significant advances, the structural and energetic basis for the specific recognition of its operator sites by trp repressor remains poorly understood. In fact, recognition in this system is controled by the binding of the co-repressor ligand, l-tryptophan, as well as by conformational and dynamic properties of the operator targets, DNA sequence-dependent control of the oligomerization properties of the repressor, water-mediated interactions, and specific interactions involving the peptide backbone and phosphate moieties. Moreover, only one direct contact between the protein and the DNA is evident from the crystallographically determined structure of the complex. In an attempt to better define how the various sequence elements in the operator target contribute to this complex control of affinity and cooperativity of trp repressor binding, we have studied the binding of trp repressor to a series of mutated operator targets using fluorescence anisotropy, which provides very high quality data allowing fairly precise estimations of the affinities involved. We conclude from these studies that even on very small (25 bp) targets, the repressor binds slightly cooperatively, populating a 2:1 dimer/DNA complex, and then at higher concentrations a third dimer is bound with significantly lower affinity, revealing an inherent asymmetry in the trpEDCBA-derived target. Investigation of the basis for the asymmetry implicates the identity of the second base in the so-called structural half-site GNACT, which apparently influences the switch between tandem and simple binding. Mutation of the C or the T bases in the structural half-site abolishes all specificity in binding, and alteration of the single direct contact, the G of the structural half-site, or the central TTAA significantly lowers the affinity of the dimer for its site, without modifying the apparent cooperativity. Finally, we note that the order of affinity is conserved in the absence of the co-repressor, and moreover, it is in all cases significantly higher than that observed for holo-repressor binding to non-specific DNA, indicating that one cannot simply equate apo-repressor and non-specific binding.
Collapse
Affiliation(s)
- A O Grillo
- School of Pharmacy, University of Wisconsin-Madison, 425 N. Charter, Madison, WI, 53706, USA
| | | | | |
Collapse
|
6
|
Jin L, Fukayama JW, Pelczer I, Carey J. Long-range effects on dynamics in a temperature-sensitive mutant of trp repressor. J Mol Biol 1999; 285:361-78. [PMID: 9878412 DOI: 10.1006/jmbi.1998.2311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutant tryptophan repressor (TrpR) protein containing the substitution of phenylalanine for leucine 75 has been isolated following a genetic screen for temperature-sensitive mutations. Two-dimensional (2D) 1H NMR spectra indicate an overall very similar fold for the purified mutant and wild-type proteins. Circular dichroism spectropolarimetry indicates an increased helix content relative to the wild-type protein, and a slightly higher urea denaturation midpoint for the mutant protein, although there is no difference in thermal stability. Fluorescence spectra indicate a more buried environment for one or both tryptophan residues in the mutant protein. The rate of proton-deuterium exchange-out for the resolved indole ring protons of the two tryptophan residues was quantified from NMR spectra of mutant and wild-type proteins and found to be approximately 50% faster in the wild-type protein. The mutant protein binds the corepressor l-tryptophan (l-Trp) approximately ten times more weakly than does the wild-type protein, but in l-Trp excess its DNA-binding affinity is only two to fivefold weaker. Taken together the results imply that, despite its conservative chemical character and surface location at the C terminus of helix one in the helix-turn-helix DNA recognition motif, this mutational change confers long-range effects on the dynamics of the protein's secondary and tertiary structure without substantially altering its fold, and with relatively minor effects on protein function.
Collapse
Affiliation(s)
- L Jin
- Chemistry Department, Princeton University, Frick Laboratory, Washington Road & William Street, Princeton, NJ, 08544-1009, USA
| | | | | | | |
Collapse
|
7
|
Margeat E, Le Grimellec C, Royer CA. Visualization of trp repressor and its complexes with DNA by atomic force microscopy. Biophys J 1998; 75:2712-20. [PMID: 9826594 PMCID: PMC1299945 DOI: 10.1016/s0006-3495(98)77715-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We used tapping mode atomic force microscopy to visualize the protein/protein and the protein/DNA complexes involved in transcriptional regulation by the trp repressor (TR). Plasmid fragments bearing the natural operators trp EDCBA and trp R, as well as nonspecific fragments, were deposited onto mica in the presence of varying concentrations of TR and imaged. In the presence of L-tryptophan, both specific and nonspecific complexes of TR with DNA are apparent, as well as free TR assemblies directly deposited onto the mica surface. We observed the expected decrease in specificity of TR for its operators with increasing protein concentration (1-5 nM). This loss of DNA-binding specificity is accompanied by the formation of large protein assemblies of varying sizes on the mica surface, consistent with the known tendency of the repressor to oligomerize in solution. When the co-repressor is omitted, no repressor molecules are seen, either on the plasmid fragments or free on the mica surface, probably because of the formation of larger aggregates that are removed from the surface upon washing. All these findings support a role for protein/protein interactions as an additional mechanism of transcriptional regulation by the trp repressor.
Collapse
Affiliation(s)
- E Margeat
- Centre de Biochimie Structurale, INSERM U 414-CNRS UMR 9955-Université Montpellier I, Montpellier, France
| | | | | |
Collapse
|
8
|
Probing the relation between protein structure and intrinsic tryptophan fluorescence using superrepressor mutants of thetrp repressor. J Fluoresc 1998. [DOI: 10.1007/bf02758230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Mackintosh SG, McDermott PF, Hurlburt BK. Mutational analysis of the NH2-terminal arms of the trp repressor indicates a multifunctional domain. Mol Microbiol 1998; 27:1119-27. [PMID: 9570398 DOI: 10.1046/j.1365-2958.1998.00721.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NH2-terminal arms of the Escherichia coli trp repressor have been implicated in three functions: formation of repressor-operator complexes via association with non-operator DNA; stabilization of repressor oligomers bound to DNA; and oligomerization of the aporepressor in the absence of DNA. To begin to examine the structural aspects of the arms that are responsible for these varied activities, we generated an extensive set of deletion and substitution mutants and measured the activities of these mutants in vivo using reporter gene fusions. Deletion of any part of the arms resulted in a significant decrease in repressor activity at both the trp and the trpR operons. Positions 4, 5 and 6 were the most sensitive to missense changes. Most substitutions at these positions resulted in repressors with less than 5% of the activity of the wild-type trp repressor. A large percentage of the missense mutants were more active than the wild-type repressor in medium containing tryptophan and less active in medium without tryptophan. This phenotype can be explained in terms of altered oligomerization of both the repressor and the aporepressor. Also, nine super-repressor mutants, resulting from substitutions clustered at both ends of the arms, were found. Our results support the hypothesis that the NH2-terminal arm of the trp repressor is a multifunctional domain and reveal structural components likely to be involved in the various functions.
Collapse
Affiliation(s)
- S G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | |
Collapse
|
10
|
Haran TE. Statistical and structural analysis of trp binding sites: comparison of natural and in vitro selected sequences. J Biomol Struct Dyn 1998; 15:689-701. [PMID: 9514246 DOI: 10.1080/07391102.1998.10508985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two different modes can be used when the trp repressor binds to trp binding sites. In the "full-site mode" each repressor molecule is bound to a DNA target containing at least two conserved five base pair tracts separated by eight base pairs. The binding of the repressor to natural trp operators is of this kind. In the "half-site mode" two repressor molecules are sequence-specifically bound, with infinite cooperativity, to two abutting DNA pentamers. We present evidence suggesting that the sequences obtained by a recent in vitro selection assay (Czernik et al. J. Biol. Chem. 269, 27869-27875, 1994) were selected by the binding of two repressor molecules, and that the repressor is bound to most of these sequences using the half-site mode. Using the results of the selection assay, and the set of natural trp binding sites, we characterize the different sequence requirements of the "full-site" versus the "half-site" binding modes. A statistical analysis of the information content of these binding sites shows that functional information on protein binding modes can be extracted from a set of DNA binding sites by comparing the information content of two different DNA populations, or sub-populations. Furthermore, it shows that the binding of proteins to sequences selected by a functional in vitro assay do not necessarily mimic the binding of the protein to the natural targets, even if the information content is similar in the two DNA target populations, i.e., even if the stringency of the selection assay is adequate for locating natural-like sequences. In addition, we show that the structural requirements for protein-DNA interactions can be achieved by different conformations at the base-pair level. Differences in the structural characteristics of different base-pair steps can be used to determine the binding mode and differential binding affinity, which can be utilized in the regulation of several binding sites by a single specific protein.
Collapse
Affiliation(s)
- T E Haran
- Department of Biology, Technion, Technion City, Haifa, Israel.
| |
Collapse
|
11
|
Löster K, Josić D. Analysis of protein aggregates by combination of cross-linking reactions and chromatographic separations. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 699:439-61. [PMID: 9392387 DOI: 10.1016/s0378-4347(97)00215-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemical cross-linking provides a method that covalently bridges near-neighbour associations within proteins and protein aggregates. Combined with chromatographic separations and protein-chemical methods, it may be used to localize and to investigate three-dimensional relations as present under natural conditions. This paper reviews the chemistry and application of cross-linking reagents and the development of combination experimental approaches in view of chromatographic separations and cross-linking reactions. Investigations of homooligomeric and heterooligomeric protein associations as well as conformational analysis are presented.
Collapse
Affiliation(s)
- K Löster
- Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Berlin-Dahlem, Germany
| | | |
Collapse
|
12
|
Kavanoor M, Eftink MR. Characterization of the role of side-chain interactions in the binding of ligands to apo trp repressor: pH dependence studies. Biophys Chem 1997; 66:43-55. [PMID: 9203330 DOI: 10.1016/s0301-4622(97)00002-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pH dependence of the association of apo trp repressor with the series of ligands, tryptophan, tryptamine, indole propionic acid (IPA), and trans-beta-indole acrylic acid (IAA), has been studied using fluorescence titrations and isothermal titration microcalorimetry (ITC). The purpose of such a comparison of ligands and the pH dependency studies is to reveal the role played by the side-chain functional groups in the energetics of the binding of the ligands to the protein. We find that, whereas the binding of tryptamine and IPA have essentially no pH dependence between pH 6 and 10, the binding of tryptophan and IAA depends on pH. For IAA, the affinity drops between pH 6 and 10, consistent with a shift in pKa of some group on the protein from a value of pKa 7.4 to 7.9 upon binding of this ligand. The affinity of IAA also drops below pH 5, but shows saturable binding at pH 2-3, where the protein has previously been found to exist as a partially folded monomeric state. For tryptophan, the pH dependence data indicate that the equilibrium is complicated. We present a model to describe the data in which the alpha-ammonium group of tryptophan has its pKa shifted upward upon binding (i.e. preferential binding of the protonated form of this functional group) and in which the pKa of an unknown group on the protein also has its pKa increased.
Collapse
Affiliation(s)
- M Kavanoor
- Department of Chemistry, University of Mississippi, University 38677, USA
| | | |
Collapse
|
13
|
Brown MP, Royer C. Fluorescence spectroscopy as a tool to investigate protein interactions. Curr Opin Biotechnol 1997; 8:45-9. [PMID: 9013650 DOI: 10.1016/s0958-1669(97)80156-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent advances in the use of fluorescence spectroscopy to study protein interactions have primarily involved combinations of classic fluorescence techniques, novel probe and coupling chemistries, and advances in laser excitation and detection capabilities. For example, new coupling strategies for fluorescent probes have allowed the first determination of the DeltaG° describing the insertion of a protein into a membrane. Fluorescently labeled oligonucleotides with specific protein-binding sequences have been used to study both protein-DNA associations and oligonucleotide hybridization using anisotropy changes. The first kinetic data describing a DNA-protein binding event was collected with stopped-flow fluorescence instrumentation. Combining scanning fluctuation correlation spectroscopy with a two-photon excitation source improved this technique so that it may now be used to study protein self-associations.
Collapse
Affiliation(s)
- MP Brown
- University of Wisconsin-Madison School of Pharmacy 425 North Charter Street Madison WI 53706 USA
| | | |
Collapse
|
14
|
Günes C, Staacke D, von Wilcken-Bergmann B, Müller-Hill B. Co-operative binding of two Trp repressor dimers to alpha- or beta-centred trp operators. Mol Microbiol 1996; 20:375-84. [PMID: 8733235 DOI: 10.1111/j.1365-2958.1996.tb02624.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha-centred trp operator binds one dimer of the Trp repressor, whereas the beta-centred trp operator binds two dimers of the Trp repressor (Carey et al., 1991; Haran et al., 1992). The Trp repressor with a Tyr-Gly-7 substitution binds almost as well as the wild-type Trp repressor to the alpha-centred trp operator, but it does not bind to the beta-centred trp operator. This confirms that Tyr-7 is involved in the interaction between Trp repressor dimers, as seen in the crystal structure (Lawson and Carey, 1993). Further experiments with alpha-centred trp operator variants showed that positions +/-1 of the alpha-centred trp operators play a crucial role in tetramerisation. The two innermost base pairs of the alpha-centred trp operator are not involved in contacts with the dimer of the Trp repressor binding to it. However, substitutions in these positions (T-A to G-T) effectively transform the alpha-centred trp operator into a beta-centred trp operator, and thus encourage the binding of two Trp repressor dimers to this operator. Finally, we demonstrate, with suitable heterodimers, that one subunit of each dimer suffices to bind to a beta-centred trp operator.
Collapse
Affiliation(s)
- C Günes
- Institut für Genetik der Universität zu Köln, Germany
| | | | | | | |
Collapse
|
15
|
Czernik PJ, Shin DS, Hurlburt BK. Functional selection and characterization of DNA binding sites for trp repressor of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46867-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|