1
|
Mandal T, Brandt N, Tempra C, Javanainen M, Fábián B, Chiantia S. A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1867:184388. [PMID: 39401729 DOI: 10.1016/j.bbamem.2024.184388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Cellular membranes are composed of lipids typically organized in a double-leaflet structure. Interactions between these two leaflets - often referred to as interleaflet coupling - play a crucial role in various cellular processes. Despite extensive study, the mechanisms governing such interactions remain incompletely understood. Here, we investigate the effects of interleaflet coupling from a specific point of view, i.e. by comparing diffusive dynamics in bilayers and monolayers, focusing on potential lipid-specific interactions between opposing leaflets. Through quantitative fluorescence microscopy techniques, we characterize lipid diffusion and mean molecular area in monolayers and bilayers composed of different lipids. Our results suggest that the observed decrease in bilayer lipid diffusion compared to monolayers depends on lipid identity. Furthermore, our analysis suggests that lipid acyl chain structure and spatial configuration at the bilayer may strongly influence interleaflet interactions and dynamics in bilayers. These findings provide insights into the role of lipid structure in mediating interleaflet coupling and underscore the need for further experimental investigations to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Titas Mandal
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Nadine Brandt
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Matti Javanainen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; Unit of Physics, Tampere University, 33720 Tampere, Finland
| | - Balázs Fábián
- Max Planck Institute of Biophysics, Department of Theoretical Biophysics, Max-von-Laue-Street 3, 60438 Frankfurt am Main, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
2
|
Adrien V, Rayan G, Astafyeva K, Broutin I, Picard M, Fuchs P, Urbach W, Taulier N. How to best estimate the viscosity of lipid bilayers. Biophys Chem 2021; 281:106732. [PMID: 34844029 DOI: 10.1016/j.bpc.2021.106732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 11/02/2022]
Abstract
The viscosity of lipid bilayers is a property relevant to biological function, as it affects the diffusion of membrane macromolecules. To determine its value, and hence portray the membrane, various literature-reported techniques lead to significantly different results. Herein we compare the results issuing from two widely used techniques to determine the viscosity of membranes: the Fluorescence Lifetime Imaging Microscopy (FLIM), and Fluorescence Recovery After Photobleaching (FRAP). FLIM relates the time of rotation of a molecular rotor inserted into the membrane to the macroscopic viscosity of a fluid. Whereas FRAP measures molecular diffusion coefficients. This approach is based on a hydrodynamic model connecting the mobility of a membrane inclusion to the viscosity of the membrane. We show that: This article emphasizes the pitfalls to be avoided and the rules to be observed in order to obtain a value of the bilayer viscosity that characterizes the bilayer instead of interactions between the bilayer and the embedded probe.
Collapse
Affiliation(s)
- Vladimir Adrien
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France; Université de Paris, CNRS, Laboratoire CiTCoM, 75006 Paris, France; Sorbonne Université, AP-HP Department of Psychiatry, Hôpital Saint-Antoine, Paris, France
| | - Gamal Rayan
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| | - Ksenia Astafyeva
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Isabelle Broutin
- Université de Paris, CNRS, Laboratoire CiTCoM, 75006 Paris, France
| | - Martin Picard
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, F-75005 Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, F-75005 Paris, France
| | - Patrick Fuchs
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France; Université de Paris, UFR Sciences du Vivant, 75013 Paris, France
| | - Wladimir Urbach
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France
| | - Nicolas Taulier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France
| |
Collapse
|
3
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
4
|
Kelley EG, Butler PD, Ashkar R, Bradbury R, Nagao M. Scaling relationships for the elastic moduli and viscosity of mixed lipid membranes. Proc Natl Acad Sci U S A 2020; 117:23365-23373. [PMID: 32883879 PMCID: PMC7519290 DOI: 10.1073/pnas.2008789117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The elastic and viscous properties of biological membranes play a vital role in controlling cell functions that require local reorganization of the membrane components as well as dramatic shape changes such as endocytosis, vesicular trafficking, and cell division. These properties are widely acknowledged to depend on the unique composition of lipids within the membrane, yet the effects of lipid mixing on the membrane biophysical properties remain poorly understood. Here, we present a comprehensive characterization of the structural, elastic, and viscous properties of fluid membranes composed of binary mixtures of lipids with different tail lengths. We show that the mixed lipid membrane properties are not simply additive quantities of the single-component analogs. Instead, the mixed membranes are more dynamic than either of their constituents, quantified as a decrease in their bending modulus, area compressibility modulus, and viscosity. While the enhanced dynamics are seemingly unexpected, we show that the measured moduli and viscosity for both the mixed and single-component bilayers all scale with the area per lipid and collapse onto respective master curves. This scaling links the increase in dynamics to mixing-induced changes in the lipid packing and membrane structure. More importantly, the results show that the membrane properties can be manipulated through lipid composition the same way bimodal blends of surfactants, liquid crystals, and polymers are used to engineer the mechanical properties of soft materials, with broad implications for understanding how lipid diversity relates to biomembrane function.
Collapse
Affiliation(s)
- Elizabeth G Kelley
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899;
| | - Paul D Butler
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996
| | - Rana Ashkar
- Physics Department, Virginia Tech, Blacksburg, VA 20461
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 20461
| | - Robert Bradbury
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408
| | - Michihiro Nagao
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716
| |
Collapse
|
5
|
Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020; 8:284. [PMID: 32411705 PMCID: PMC7198703 DOI: 10.3389/fcell.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are – irrespective of their size – commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| |
Collapse
|
6
|
Leung SSW, Brewer J, Bagatolli LA, Thewalt JL. Measuring molecular order for lipid membrane phase studies: Linear relationship between Laurdan generalized polarization and deuterium NMR order parameter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183053. [DOI: 10.1016/j.bbamem.2019.183053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023]
|
7
|
Roux M, Bonnet V, Djedaïni-Pilard F. Ordering of Saturated and Unsaturated Lipid Membranes near Their Phase Transitions Induced by an Amphiphilic Cyclodextrin and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14376-14387. [PMID: 31564102 DOI: 10.1021/acs.langmuir.9b02082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
When inserted in membranes of dimyristoyl phosphatidylcholine (DMPC), methylated β-cyclodextrins with one (TrimβMLC) or two (TrimβDLC) lauryl acyl chains grafted onto the hydrophilic cavity exert a "cholesterol-like ordering effect", by straightening the acyl chains in the fluid phase at temperatures near the chain melting transition. This effect may be related to pretransitional events such as the "anomalous swelling" known to occur with saturated phosphatidylcholine membranes. To investigate this model, order profiles and bilayer thicknesses of DMPC and unsaturated 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) membranes containing amphiphilic cyclodextrins or cholesterol were determined by deuterium NMR. The pure lipid membranes display both a qualitatively similar chain ordering upon cooling in the fluid phase, more important at the chain extremity, which gets more pronounced near their fluid-to-gel transitions. Both membranes show a bilayer thickness increase by ∼0.5 Å just above their transition, as observed previously with saturated phosphatidylcholines of various chain lengths. Membrane-insertion of 5% TrimβMLC or cholesterol induces an important ordering of the DMPC acyl chains just above the transition, which is also more pronounced at the chain extremity. There is an additional increase of the bilayer thickness, most probably due to a deep insertion of these amphiphilic molecules, facilitated by increased bilayer softness in the anomalous swelling regime. These effects are more important with TrimβMLC than with cholesterol. By contrast, no enhanced acyl chain ordering was observed when approaching the transition of TrimβMLC-containing POPC membranes, as a possible consequence of an eventual lack of anomalous swelling in unsaturated lipid membranes. Insertion of higher concentrations of TrimβMLC was found to induce a magnetic orientation of the DMPC membranes in the fluid phase with 10% of this derivative, coupled with the appearance of a broad isotropic component when the concentration is raised to 20%. No membrane orientation or isotropic component was detected with TrimβMLC-containing POPC membranes.
Collapse
Affiliation(s)
- Michel Roux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Université Paris-Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette cedex , France
| | - Véronique Bonnet
- LG2A, UMR7378 , Université de Picardie Jules Verne , F-80039 Amiens , France
| | | |
Collapse
|
8
|
Nyholm TKM, Engberg O, Hautala V, Tsuchikawa H, Lin KL, Murata M, Slotte JP. Impact of Acyl Chain Mismatch on the Formation and Properties of Sphingomyelin-Cholesterol Domains. Biophys J 2019; 117:1577-1588. [PMID: 31610877 DOI: 10.1016/j.bpj.2019.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/30/2022] Open
Abstract
Lateral segregation and the formation of lateral domains are well-known phenomena in ternary lipid bilayers composed of an unsaturated (low gel-to-liquid phase transition temperature (Tm)) phospholipid, a saturated (high-Tm) phospholipid, and cholesterol. The formation of lateral domains has been shown to be influenced by differences in phospholipid acyl chain unsaturation and length. Recently, we also showed that differential interactions of cholesterol with low- and high-Tm phospholipids in the bilayer can facilitate phospholipid segregation. Now, we have investigated phospholipid-cholesterol interactions and their role in lateral segregation in ternary bilayers composed of different unsaturated phosphatidylcholines (PCs) with varying acyl chain lengths, N-palmitoyl-D-erythro-sphingomyelin (PSM), and cholesterol. Using deuterium NMR spectroscopy, we determined how PSM was influenced by the acyl chain composition in surrounding PC environments and correlated this with the affinity of cholestatrienol (a fluorescent cholesterol analog) for PSM in the different PC environments. Results from a combination of time-resolved fluorescence measurements of trans-parinaric acid and Förster resonance energy transfer experiments showed that the relative affinity of cholesterol for phospholipids determined the degree to which the sterol promoted domain formation. From Förster resonance energy transfer, deuterium NMR, and differential scanning calorimetry results, it was clear that cholesterol also influenced both the thermostability of the domains and the degree of order in and outside the PSM-rich domains. The results of this study have shown that the affinity of cholesterol for both low-Tm and high-Tm phospholipids and the effects of low- and high-Tm phospholipids on each other influence both lateral structure and domain properties in complex bilayers. We envision that similar effects also contribute to lateral heterogeneity in even more complex biological membranes.
Collapse
Affiliation(s)
- Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland.
| | - Oskar Engberg
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Victor Hautala
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kai-Lan Lin
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku Finland
| |
Collapse
|
9
|
Pfeil MP, Pyne ALB, Losasso V, Ravi J, Lamarre B, Faruqui N, Alkassem H, Hammond K, Judge PJ, Winn M, Martyna GJ, Crain J, Watts A, Hoogenboom BW, Ryadnov MG. Tuneable poration: host defense peptides as sequence probes for antimicrobial mechanisms. Sci Rep 2018; 8:14926. [PMID: 30297841 PMCID: PMC6175903 DOI: 10.1038/s41598-018-33289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/26/2018] [Indexed: 02/02/2023] Open
Abstract
The spread of antimicrobial resistance stimulates discovery strategies that place emphasis on mechanisms circumventing the drawbacks of traditional antibiotics and on agents that hit multiple targets. Host defense peptides (HDPs) are promising candidates in this regard. Here we demonstrate that a given HDP sequence intrinsically encodes for tuneable mechanisms of membrane disruption. Using an archetypal HDP (cecropin B) we show that subtle structural alterations convert antimicrobial mechanisms from native carpet-like scenarios to poration and non-porating membrane exfoliation. Such distinct mechanisms, studied using low- and high-resolution spectroscopy, nanoscale imaging and molecular dynamics simulations, all maintain strong antimicrobial effects, albeit with diminished activity against pathogens resistant to HDPs. The strategy offers an effective search paradigm for the sequence probing of discrete antimicrobial mechanisms within a single HDP.
Collapse
Affiliation(s)
- Marc-Philipp Pfeil
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alice L B Pyne
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Valeria Losasso
- STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Hasan Alkassem
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Peter J Judge
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Martyn Winn
- STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
| | | | - Jason Crain
- IBM Research, Yorktown Heights, NY, 10598, USA
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| |
Collapse
|
10
|
Shaghaghi M, Keyvanloo A, Huang Z, Szoka FC, Thewalt JL. Constrained Versus Free Cholesterol in DPPC Membranes: A Comparison of Chain Ordering Ability Using Deuterium NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14405-14413. [PMID: 29120186 DOI: 10.1021/acs.langmuir.7b03299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report here the first exploration of the nature of the hydrophobic region of bilayer membranes formed from sterol-modified phospholipids [Huang, Z.; Szoka, F. C., Sterol-Modified Phospholipids: Cholesterol and Phospholipid Chimeras with Improved Biomembrane Properties. J. Am. Chem. Soc. 2008, 130 (46), 15702-15712] & [Ding, J.; Starling, A. P.; East, J. M.; Lee, A. G., Binding Sites for Cholesterol on Ca(2+)-ATPase Studied by Using a Cholesterol-Containing Phospholipid. Biochemistry 1994, 33 (16), 4974-4979]. Using 2H NMR spectroscopy, we present our results for the phase behavior and acyl chain ordering of multilamellar vesicles (MLVs) of a sterol-modified phospholipid, 1-cholesterylhemisuccinoyl-2-palmitoyl(d31)-sn-glycero-3-phosphocholine (hereafter referred to as CholPPC-d31). We compared our results with the conformational order induced by cholesterol at various concentrations in 1-palmitoyl,2-palmitoyl(d31)-sn-glycero-3-phosphocholine (DPPC-d31)/cholesterol membranes. On the basis of the existing literature [Foglia, F.; Barlow, D. J.; Szoka, F. C.; Huang, Z.; Rogers, S. E.; Lawrence, M. J., Structural Studies of the Monolayers and Bilayers Formed by a Novel Cholesterol-Phospholipid Chimera. Langmuir 2011, 27 (13), 8275-8281], we expected to find that the deuterated palmitoyl chain in CholPPC-d31 membranes had an order parameter profile similar to the deuterated palmitoyl chain of sn-2 labeled DPPC-d31 in MLVs of a mixture of DPPC-d31 with 40 mol % unconstrained cholesterol. Our data indicate that the ordering ability of cholesterol in CholPPC is significantly reduced compared to free cholesterol in DPPC. This result emphasizes that cholesterol molecules must be free to move in the bilayers to reach their maximum ordering ability. In other words, when compared to unconstrained cholesterol, the constrained cholesterol moiety in CholPPC causes nonoptimal chain packing.
Collapse
Affiliation(s)
| | | | - Zhaohua Huang
- Merrimack Pharmaceuticals , One Kendall Square, Suite B7201, Cambridge, Massachusetts 02139, United States
| | - Francis C Szoka
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California , San Francisco, California 94143, United States
| | | |
Collapse
|
11
|
Sherman PJ, Separovic F, Bowie JH. The investigation of membrane binding by amphibian peptide agonists of CCK2R using (31)P and (2)H solid-state NMR. Peptides 2014; 55:98-102. [PMID: 24582625 DOI: 10.1016/j.peptides.2014.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 11/24/2022]
Abstract
It has been proposed that some neuropeptides may be anchored to the cell membranes prior to attaching to the adjacent active sites of transmembrane receptors. The three amphibian skin neuropeptides signiferin 1 [RLCIPYIIPC(OH)] (smooth muscle active and immunomodulator), riparin 1.1 [[RLCIPVIFPC(OH)] (immunomodulator) and rothein 1 [SVSNIPESIGF(OH)] (immunomodulator) act via CCK2 transmembrane receptors. A combination of (31)P and (2)H solid state NMR studies of each of these three peptides in eukaryotic phospholipid models at 25°C shows that rothein 1 does not interact with the membrane at all. In contrast, both of the cyclic disulfides signiferin 1 and riparin 1.1 interact with phospholipid head groups and partially penetrate into the upper leaflet of the model bilayer, but to different extents. These interactions are not sufficiently effective to cause disruption of the lipid bilayer since the peptides are not antimicrobial, anticancer, antifungal nor active against enveloped viruses.
Collapse
Affiliation(s)
- Patrick J Sherman
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria 3010, Australia.
| | - John H Bowie
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
12
|
Ghosh A, Sonavane U, Joshi R. Multiscale modelling to understand the self-assembly mechanism of human β2-adrenergic receptor in lipid bilayer. Comput Biol Chem 2014; 48:29-39. [DOI: 10.1016/j.compbiolchem.2013.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 11/27/2022]
|
13
|
Brown KL, Conboy JC. Lipid Flip-Flop in Binary Membranes Composed of Phosphatidylserine and Phosphatidylcholine. J Phys Chem B 2013; 117:15041-50. [DOI: 10.1021/jp409672q] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Krystal L. Brown
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - John C. Conboy
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Horner A, Akimov SA, Pohl P. Long and short lipid molecules experience the same interleaflet drag in lipid bilayers. PHYSICAL REVIEW LETTERS 2013; 110:268101. [PMID: 23848924 PMCID: PMC4486369 DOI: 10.1103/physrevlett.110.268101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 05/29/2023]
Abstract
Membrane interleaflet viscosity ηe affects tether formation, phase separation into domains, cell shape changes, and budding. Contrary to the expected contribution to interleaflet coupling from interdigitation, the slide of lipid patches in opposing monolayers conferred the same value ηe≈3×10(9) J s m-4 for the friction experienced by the ends of both short and long chain fluorescent lipid analogues. Consistent with the weak dependence of the translational diffusion coefficient on lipid length, the in-layer viscosity was, albeit length dependent, much smaller than ηe.
Collapse
Affiliation(s)
- Andreas Horner
- Institut für Biophysik, Johannes Kepler Universität, Gruberstrasse 40, 4020 Linz, Austria
| | - Sergey A. Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospekt 31/4, Moscow 119071, Russian Federation
- National University of Science and Technology “MISiS”, Leninskiy prospekt 4, Moscow 119049, Russian Federation
| | - Peter Pohl
- Institut für Biophysik, Johannes Kepler Universität, Gruberstrasse 40, 4020 Linz, Austria
| |
Collapse
|
15
|
Rabinovich AL, Ripatti PO, Balabaev NK. Molecular dynamics investigation of bond ordering of unsaturated lipids in monolayers. J Biol Phys 2013; 25:245-62. [PMID: 23345701 DOI: 10.1023/a:1005180027451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular dynamics simulations of three model lipid monolayers of 2,3-diacyl-D-glycerolipids, that contained stearoyl (18:0) in the position 3 and oleoyl (18:ω9cis), linoleoyl (18:2ω6cis), or linolenoyl (18:3ω3cis) in the position 2, have been carried out. The simulation systems consisted of 24 lipid molecules arranged in a rectangular simulation cell, with periodic boundary conditions in the surface plane. 1 nanosecond simulations were performed at T = 295 K. C-C and C-H bond order parameter profiles and the bond orientation distributions about the monolayer normal have been calculated. The relation of the distributions to the order parameters was analyzed in terms of maxima and widths of the distributions. The cis double bond order parameter is found to be higher than those of adjacent single C-C bonds. The widths of the two distributions of C-H bonds of the cis double bond segment in di- and triunsaturated molecules are much smaller than that obtained for methylene group located between the double bonds. The bond orientation distribution function widths depend on both the segment location in the chain and the segment chemical structure.
Collapse
Affiliation(s)
- A L Rabinovich
- Institute of Biology, Karelian Scientific Center, Russian Academy of Sciences, Pushkinskaja 11, Petrozavodsk, 185610 Russia
| | | | | |
Collapse
|
16
|
Kindt JT. Atomistic simulation of mixed-lipid bilayers: mixed methods for mixed membranes. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.561434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Atomistic simulations of bicelle mixtures. Biophys J 2010; 98:2895-903. [PMID: 20550902 DOI: 10.1016/j.bpj.2010.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 11/22/2022] Open
Abstract
Mixtures of long- and short-tail phosphatidylcholine lipids are known to self-assemble into a variety of aggregates combining flat bilayerlike and curved micellelike features, commonly called bicelles. Atomistic simulations of bilayer ribbons and perforated bilayers containing dimyristoylphosphatidylcholine (DMPC, di-C(14) tails) and dihexanoylphosphatidylcholine (DHPC, di-C(6) tails) have been carried out to investigate the partitioning of these components between flat and curved microenvironments and the stabilization of the bilayer edge by DHPC. To approach equilibrium partitioning of lipids on an achievable simulation timescale, configuration-bias Monte Carlo mutation moves were used to allow individual lipids to change tail length within a semigrand-canonical ensemble. Since acceptance probabilities for direct transitions between DMPC and DHPC were negligible, a third component with intermediate tail length (didecanoylphosphatidylcholine, di-C(10) tails) was included at a low concentration to serve as an intermediate for transitions between DMPC and DHPC. Strong enrichment of DHPC is seen at ribbon and pore edges, with an excess linear density of approximately 3 nm(-1). The simulation model yields estimates for the onset of edge stability with increasing bilayer DHPC content between 5% and 15% DHPC at 300 K and between 7% and 17% DHPC at 323 K, higher than experimental estimates. Local structure and composition at points of close contact between pores suggest a possible mechanism for effective attractions between pores, providing a rationalization for the tendency of bicelle mixtures to aggregate into perforated vesicles and perforated sheets.
Collapse
|
18
|
Sherman PJ, Jackway RJ, Gehman JD, Praporski S, McCubbin GA, Mechler A, Martin LL, Separovic F, Bowie JH. Solution Structure and Membrane Interactions of the Antimicrobial Peptide Fallaxidin 4.1a: An NMR and QCM Study. Biochemistry 2009; 48:11892-901. [DOI: 10.1021/bi901668y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Patrick J. Sherman
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Rebecca J. Jackway
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - John D. Gehman
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria 3010, Australia
| | | | | | - Adam Mechler
- School of Chemistry, Monash University, Victoria 3800, Australia
| | | | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria 3010, Australia
| | - John H. Bowie
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
19
|
Qin SS, Yu ZW, Yu YX. Structural characterization on the gel to liquid-crystal phase transition of fully hydrated DSPC and DSPE bilayers. J Phys Chem B 2009; 113:8114-23. [PMID: 19453146 DOI: 10.1021/jp808779r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural properties of fully hydrated distearoylphosphatidylcholine (DSPC) and distearoylphosphatidylethanolamine (DSPE) bilayers near the main phase transition were investigated using molecular dynamics simulations on the basis of a united-atom model. Although largely similar in their molecular structures, the two lipids were found with different molecular packing modes at temperatures below the phase transition. For DSPC, three packing modes, namely, cross-tilt, partially interdigitated, and "mixed" gel phases, were observed, while, for DSPE, the lipid tails were almost perpendicular to the lipid surface. Above the main transition temperature, both lipid bilayers transformed into a disordered liquid-crystal phase with marked greater area per lipid and gauche % of the acyl chains and smaller bilayer thickness and order parameter, in comparison with the gel phase. The transformation process of liquid-crystal to gel phase was proved to experience the nucleation and growth stages in a hexagonal manner. The electron density profiles of some major components of both lipid bilayers at various temperatures have been calculated, and the results reveal that both lipid bilayers have less interdigitation around the main transition temperature.
Collapse
Affiliation(s)
- Shan-Shan Qin
- Key Lab of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | | | | |
Collapse
|
20
|
Zheng N, Geehan J, Whitmore MD. Self-consistent field theory of two-component phospholipid membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051922. [PMID: 17677113 DOI: 10.1103/physreve.75.051922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Indexed: 05/16/2023]
Abstract
This paper extends and applies a self-consistent field theory of compressible, fully hydrated phospholipid bilayers to binary mixtures. The mixtures contain two kinds of lipids, which have identical head groups but different acyl chain lengths. The formalism we develop allows for the calculation of a range of thermodynamic and structural properties for systems at equilibrium, including the compatibility of the two components, the equilibrium phase, the bilayer thickness, the orientational order parameter profiles, and the ordering environment as a function of depth within the layer. Our focus in this paper is on the mutual effects of the different chains on each other, and the effects of the local environment on the order parameter of each segment in the chains, for systems in the fluid phase. We include an analysis of a feature of the order parameter profile identified as a "second plateau" by Morrow and co-workers [Biochemistry 32, 290 (1993)].
Collapse
Affiliation(s)
- Nan Zheng
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
21
|
Michonova-Alexova EI, Sugár IP. Component and state separation in DMPC/DSPC lipid bilayers: a Monte Carlo simulation study. Biophys J 2002; 83:1820-33. [PMID: 12324404 PMCID: PMC1302275 DOI: 10.1016/s0006-3495(02)73947-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper a two-state, two-component, Ising-type model is used to simulate the lateral distribution of the components and gel/fluid state acyl chains in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) lipid bilayers. The same model has been successful in calculating the excess heat capacity curves, the fluorescence recovery after photobleaching (FRAP) threshold temperatures, the most frequent center-to-center distances between DSPC clusters, and the fractal dimensions of gel clusters (Sugar, I. P., T. E. Thompson, and R. L. Biltonen, 1999. Biophys. J. 76:2099-2110). Depending on the temperature and mole fraction the population of the cluster size is either homogeneous or inhomogeneous. In the inhomogeneous population the size of the largest cluster scales with the size of the system, while the rest of the clusters remain small with increasing system size. In a homogeneous population, however, every cluster remains small with increasing system size. For both compositional and fluid/gel state clusters, threshold temperatures-the so-called percolation threshold temperatures-are determined where change in the type of the population takes place. At a given mole fraction, the number of percolation threshold temperatures can be 0, 1, 2, or 3. By plotting these percolation threshold temperatures on the temperature/mole fraction plane, the diagrams of component and state separation of DMPC/DSPC bilayers are constructed. In agreement with the small-angle neutron scattering measurements, the component separation diagram shows nonrandom lateral distribution of the components not only in the gel-fluid mixed phase region, but also in the pure gel and pure fluid regions. A combined diagram of component and state separation is constructed to characterize the lateral distribution of lipid components and gel/fluid state acyl chains in DMPC/DSPC mixtures. While theoretical phase diagrams of two component mixtures can be constructed only in the case of first-order transitions, state and component separation diagrams can be constructed whether or not the system is involved in first-order transition. The effects of interchain interactions on the component and state separation diagrams are demonstrated on three different models. The influences of state and component separation on the in-plane and off-plane membrane reactions are discussed.
Collapse
|
22
|
Yamamoto T, Ikemoto N. T-tubule depolarization-induced local events in the ryanodine receptor, as monitored with the fluorescent conformational probe incorporated by mediation of peptide A. J Biol Chem 2002; 277:984-92. [PMID: 11682466 DOI: 10.1074/jbc.m102347200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is a considerable controversy about the postulated role of the Thr(671)-Leu(690) (peptide A) region of the dihydropyridine (DHP) receptor alpha1 II-III loop. Here we report that peptide A introduced the fluorescence probe methyl coumarin acetamido (MCA) in a well defined region of the ryanodine receptor (RyR), A-site, in a specific manner. Depolarization of the T-tubule moiety of the triad induced a rapid increase of the fluorescence intensity of the MCA attached to the A-site. Other RyR agonists, which activate the RyR without mediation of the DHP receptor (e.g. caffeine, polylysine, and peptide A), induced Ca(2+) release without producing such an MCA fluorescence increase. Both magnitudes of the fluorescence change and Ca(2+) release increased with the increase in the degree of T-tubule depolarization. MCA fluorescence increase at the A-site and subsequent sarcoplasmic reticulum Ca(2+) release were blocked by blocking of the DHP receptor-to-RyR communication. These results may be accounted for by two alternative models as follows. (a) Upon T-tubule depolarization a portion of the DHP receptor comes close to the RyR, forming a hydrophobic interface (within such an interface the A-site is located), or (b) T-tubule depolarization may produce a local conformational change in the A-site-containing region of the RyR that is not necessarily within the DHP receptor/RyR junction.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | |
Collapse
|
23
|
Yamamoto T, Rodriguez J, Ikemoto N. Ca2+-dependent dual functions of peptide C. The peptide corresponding to the Glu724-Pro760 region (the so-called determinant of excitation-contraction coupling) of the dihydropyridine receptor alpha 1 subunit II-III loop. J Biol Chem 2002; 277:993-1001. [PMID: 11682472 DOI: 10.1074/jbc.m105837200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both in vivo and in vitro studies suggest that the Glu(724)-Pro(760) (peptide C) region of the dihydropyridine receptor alpha1 II-III loop is important for excitation-contraction coupling, although its actual function has not yet been elucidated. According to our recent studies, peptide C inhibits Ca(2+) release induced by T-tubule depolarization or peptide A. Here we report that peptide C has Ca(2+)-dependent dual functions on the skeletal muscle ryanodine receptor. Thus, at above-threshold [Ca(2+)]s (> or =0.1 microm) peptide C blocked peptide A-induced activation of the ryanodine receptor (ryanodine binding and Ca(2+) release); peptide C also blocked T-tubule depolarization-induced Ca(2+) release. However, at sub-threshold [Ca(2+)]s (<0.1 microm), peptide C enhanced ryanodine binding and induced Ca(2+) release. If peptide A was present, together with peptide C, both peptides produced additive activation effects. Neither peptide A nor peptide C produced any appreciable effect on the cardiac muscle ryanodine receptor at both high (1.0 microm) and low (0.01 microm) Ca(2+) concentrations. These results suggest the possibility that the in vivo counterpart of peptide C retains both activating and blocking functions of the skeletal muscle-type excitation-contraction coupling.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | |
Collapse
|
24
|
Sugár IP, Michonova-Alexova E, Chong PL. Geometrical properties of gel and fluid clusters in DMPC/DSPC bilayers: Monte Carlo simulation approach using a two-state model. Biophys J 2001; 81:2425-41. [PMID: 11606260 PMCID: PMC1301714 DOI: 10.1016/s0006-3495(01)75890-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this paper the geometrical properties of gel and fluid clusters of equimolar dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) lipid bilayers are calculated by using an Ising-type model (Sugar, I. P., T. E. Thompson, and R. L. Biltonen. 1999. Biophys. J. 76:2099-2110). The model is able to predict the following properties in agreement with the respective experimental data: the excess heat capacity curves, fluorescence recovery after photobleaching (FRAP) threshold temperatures at different mixing ratios, the most frequent center-to-center distance between DSPC clusters, and the fractal dimension of gel clusters. In agreement with the neutron diffraction and fluorescence microscopy data, the simulations show that below the percolation threshold temperature of gel clusters many nanometer-size gel clusters co-exist with one large gel cluster of size comparable with the membrane surface area. With increasing temperature the calculated effective fractal dimension and capacity dimension of gel and fluid clusters decrease and increase, respectively, within the (0, 2) interval. In the region of the gel-to-fluid transition the following geometrical properties are independent from the temperature and the state of the cluster: 1) the cluster perimeter linearly increases with the number of cluster arms at a rate of 8.2 nm/arm; 2) the average number of inner islands in a cluster increases with increasing cluster size, S, according to a power function of 0.00427 x S(1.3); 3) the following exponential function describes the average size of an inner island versus the size of the host cluster, S: 1 + 1.09(1 - e(-0.0072xS)). By means of the equations describing the average geometry of the clusters the process of the association of clusters is investigated.
Collapse
Affiliation(s)
- I P Sugár
- Department of Biomathematical Sciences, The Mount Sinai Medical Center, New York, New York 10029, USA.
| | | | | |
Collapse
|
25
|
Sugár IP, Biltonen RL. Structure-function relationships in two-component phospholipid bilayers: Monte Carlo simulation approach using a two-state model. Methods Enzymol 2001; 323:340-72. [PMID: 10944759 DOI: 10.1016/s0076-6879(00)23373-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- I P Sugár
- Department of Biomathematical Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
26
|
Separovic F, Cornell B, Pace R. Orientation dependence of NMR relaxation time, T(1rho), in lipid bilayers. Chem Phys Lipids 2000; 107:159-67. [PMID: 11090845 DOI: 10.1016/s0009-3084(00)00168-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The orientation dependence of the low frequency NMR relaxation time, T(1rho), of protons in aligned phospholipid bilayers was measured using 13C cross polarisation and direct proton experiments. The contribution of intra- and inter-molecular interactions to proton T(1rho) was determined by using dimyristoyl phosphatidylcholine (DMPC) with one hydrocarbon chain deuterated and dispersed in perdeuterated DMPC. The results indicated that intramolecular motions on the kHz timescale were the major cause of T(1rho) relaxation in phospholipid bilayers.
Collapse
Affiliation(s)
- F Separovic
- School of Chemistry, University of Melbourne, Vic. 3010, Australia.
| | | | | |
Collapse
|
27
|
Sugár IP, Thompson TE, Biltonen RL. Monte Carlo simulation of two-component bilayers: DMPC/DSPC mixtures. Biophys J 1999; 76:2099-110. [PMID: 10096905 PMCID: PMC1300183 DOI: 10.1016/s0006-3495(99)77366-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this paper, we describe a relatively simple lattice model of a two-component, two-state phospholipid bilayer. Application of Monte Carlo methods to this model permits simulation of the observed excess heat capacity versus temperature curves of dimyristoylphosphatidylcholine (DMPC)/distearoylphosphatidylcholine (DSPC) mixtures as well as the lateral distributions of the components and properties related to these distributions. The analysis of the bilayer energy distribution functions reveals that the gel-fluid transition is a continuous transition for DMPC, DSPC, and all DMPC/DSPC mixtures. A comparison of the thermodynamic properties of DMPC/DSPC mixtures with the configurational properties shows that the temperatures characteristics of the configurational properties correlate well with the maxima in the excess heat capacity curves rather than with the onset and completion temperatures of the gel-fluid transition. In the gel-fluid coexistence region, we also found excellent agreement between the threshold temperatures at different system compositions detected in fluorescence recovery after photobleaching experiments and the temperatures at which the percolation probability of the gel clusters is 0.36. At every composition, the calculated mole fraction of gel state molecules at the fluorescence recovery after photobleaching threshold is 0.34 and, at the percolation threshold of gel clusters, it is 0.24. The percolation threshold mole fraction of gel or fluid lipid depends on the packing geometry of the molecules and the interchain interactions. However, it is independent of temperature, system composition, and state of the percolating cluster.
Collapse
Affiliation(s)
- I P Sugár
- Departments of Biomathematical Sciences and Physiology/Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
28
|
Saiki Y, El-Hayek R, Ikemoto N. Involvement of the Glu724-Pro760 region of the dihydropyridine receptor II-III loop in skeletal muscle-type excitation-contraction coupling. J Biol Chem 1999; 274:7825-32. [PMID: 10075674 DOI: 10.1074/jbc.274.12.7825] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous study (El-Hayek, R., Antoniu, B., Wang, J. P., Hamilton, S. L., and Ikemoto, N. (1995) J. Biol. Chem. 270, 22116-22118) suggested the hypothesis that skeletal muscle-type excitation-contraction coupling is regulated by two domains (activating and blocking) of the II-III loop of the dihydropyridine receptor alpha1 subunit. We investigated this hypothesis by examining conformational changes in the ryanodine receptor induced by synthetic peptides and by transverse tubular system (T-tubule) depolarization. Peptide A, corresponding to the Thr671-Leu690 region, rapidly changed the ryanodine receptor conformation from a blocked state (low fluorescence of the conformational probe, methyl coumarin acetamide, attached specifically to the ryanodine receptor) to an activated state (high methyl coumarin acetamide fluorescence) as T-tubule depolarization did. Peptide C, corresponding to the Glu724-Pro760 region, blocked both conformational changes induced by peptide A and T-tubule depolarization. Its ability to block peptide A-induced and depolarization-induced activation was considerably impaired by replacing the portion of peptide C corresponding to the Phe725-Pro742 region of the loop with cardiac muscle-type sequence. These results are consistent with the model that depolarization-induced activation of excitation-contraction coupling and blocking/repriming are mediated by the peptide A region and the peptide C region (containing the critical Phe725-Pro742 sequence) of the II-III loop, respectively.
Collapse
Affiliation(s)
- Y Saiki
- Boston Biomedical Research Institute, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
29
|
Crowell KJ, Macdonald PM. Surface charge response of the phosphatidylcholine head group in bilayered micelles from phosphorus and deuterium nuclear magnetic resonance. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1416:21-30. [PMID: 9889304 DOI: 10.1016/s0005-2736(98)00206-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Solid-state phosphorus (31P) and deuterium (2H) nuclear magnetic resonance (NMR) spectroscopy over the temperature range of 25-50 degreesC were used to investigate bilayered micelles (bicelles) composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1, 2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the presence of either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG) or the cationic lipid 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP). The 31P-NMR spectra demonstrate that bicellar structures form with DMPG/DMPC ratios ranging from 0 to 50/50 and with DMTAP/DMPC ratios from 0 to 40/60, while the overall concentration of DHPC remains constant. The formation of bicelles containing charged amphiphiles is contingent upon the presence of NaCl, with 50 mM NaCl being sufficient for bicelle formation at all concentrations of charged amphiphile investigated, while 150 mM NaCl affords better resolution of the various 31P-NMR resonance signals. The 2H-NMR spectra demonstrate that the quadrupolar splittings (Deltanu) of head group-deuterated DMPC change inversely as a function of the amount of negative versus positive charge present, and that the changes for deuterons on the alpha-carbon are opposite in sense to those for deuterons on the beta-carbon. This indicates that head group-deuterated phosphatidylcholine functions as a molecular voltmeter in bicelles in much the same fashion as it does in spherical vesicles.
Collapse
Affiliation(s)
- K J Crowell
- Department of Chemistry, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ont. L5L 1A2, Canada
| | | |
Collapse
|
30
|
Liu C, Paprica A, Petersen NO. Effects of size of macrocyclic polyamides on their rate of diffusion in model membranes. Biophys J 1997; 73:2580-7. [PMID: 9370452 PMCID: PMC1181160 DOI: 10.1016/s0006-3495(97)78287-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A series of homologous amphiphilic molecules with surface areas in the range of 0.3 nm2 to 3.0 nm2 were prepared and used to investigate the diffusion in model dimyristoylphosphatidylcholine membranes as a function of temperature. The diffusion behavior of smaller molecules can be described by the interfacial viscosity limited free area theory promoted by Vaz and his co-workers, and that of the larger molecules can best be modeled by a recent interpretation of the theoretical description proposed by Evans and Sackmann. The experimental data show that the rate of diffusion is controlled by the size of the molecules at the interface of the lipid membrane, and provide evidence for a view of the membrane as a hydrodynamic triple layer with a low-viscosity central layer encased by two more viscous, yet fluid, layers.
Collapse
Affiliation(s)
- C Liu
- Department of Chemistry, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
31
|
el-Hayek R, Antoniu B, Wang J, Hamilton SL, Ikemoto N. Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem 1995; 270:22116-8. [PMID: 7673188 DOI: 10.1074/jbc.270.38.22116] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In an attempt to identify and characterize functional domains of the rabbit skeletal muscle dihydropyridine receptor alpha 1 subunit II-III loop, we synthesized several peptides corresponding to different regions of the loop: peptides A, B, C, C1, C2, D (cf. Fig. 1). Peptide A (Thr671-Leu690) activated [3H]ryanodine binding to, and induced Ca2+ release from, rabbit skeletal muscle triads, but none of the other peptides had such effects. Peptide A-induced Ca2+ release and activation of ryanodine binding were partially suppressed by an equimolar concentration of peptide C (Glu724-Pro760) but were not affected by the other peptides. These results suggest that the short stretch in the II-III loop, Thr671-Leu690, is responsible for triggering SR Ca2+ release, while the other region, Glu724-Pro760, functions as a blocker of the release trigger. A hypothesis is proposed to account for how these subdomains interact with the sarcoplasmic reticulum Ca2+ release channel protein during excitation-contraction coupling.
Collapse
Affiliation(s)
- R el-Hayek
- Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
32
|
Otten D, Beyer K. Chain length mismatch and packing constraints of free fatty acids in a hexagonal detergent host phase. A wide line deuterium NMR study. Chem Phys Lipids 1995. [DOI: 10.1016/0009-3084(95)02472-u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|