1
|
Böl M, Kohn S, Leichsenring K, Morales-Orcajo E, Ehret AE. On multiscale tension-compression asymmetry in skeletal muscle. Acta Biomater 2022; 144:210-220. [PMID: 35339701 DOI: 10.1016/j.actbio.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Skeletal muscle tissue shows a clear asymmetry with regard to the passive stresses under tensile and compressive deformation, referred to as tension-compression asymmetry (TCA). The present study is the first one reporting on TCA at different length scales, associated with muscle tissue and muscle fibres, respectively. This allows for the first time the comparison of TCA between the tissue and one of its individual components, and thus to identify the length scale at which this phenomenon originates. Not only the passive stress-stretch characteristics were recorded, but also the volume changes during the axial tension and compression experiments. The study reveals clear differences in the characteristics of TCA between fibres and tissue. At tissue level TCA increases non-linearly with increasing deformation and the ratio of tensile to compressive stresses at the same magnitude of strain reaches a value of approximately 130 at 13.5% deformation. At fibre level instead it initially drops to a value of 6 and then rises again to a TCA of 14. At a deformation of 13.5%, the tensile stress is about 6 times higher. Thus, TCA is about 22 times more expressed at tissue than fibre scale. Moreover, the analysis of volume changes revealed little compressibility at tissue scale whereas at fibre level, especially under compressive stress, the volume decreases significantly. The data collected in this study suggests that the extracellular matrix has a distinct role in amplifying the TCA, and leads to more incompressible tissue behaviour. STATEMENT OF SIGNIFICANCE: This article analyses and compares for the first time the tension-compression asymmetry (TCA) displayed by skeletal muscle at tissue and fibre scale. In addition, the volume changes of tissue and fibre specimens with application of passive tensile and compressive loads are studied. The study identifies a key role of the extracellular matrix in establishing the mechanical response of skeletal muscle tissue: It contributes significantly to the passive stress, it is responsible for the major part of tissue-scale TCA and, most probably, prevents/balances the volume changes of muscle fibres during deformation. These new results thus shed light on the origin of TCA and provide new information to be used in microstructure-based approaches to model and simulate skeletal muscle tissue.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106 Braunschweig, Germany.
| | - Stephan Kohn
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Kay Leichsenring
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Enrique Morales-Orcajo
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Alexander E Ehret
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland; Institute for Mechanical Systems, ETH Zurich, CH-8092, Zürich, Switzerland
| |
Collapse
|
2
|
Böl M, Iyer R, Garcés-Schröder M, Kohn S, Dietzel A. Mechano-geometrical skeletal muscle fibre characterisation under cyclic and relaxation loading. J Mech Behav Biomed Mater 2020; 110:104001. [PMID: 32957260 DOI: 10.1016/j.jmbbm.2020.104001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/18/2020] [Indexed: 12/23/2022]
Abstract
In the present work, mechano-geometrical characterisations of skeletal muscle fibres in two different deformation states, namely, axial tension and axial compression, were realised. In both cases, cyclic and relaxation tests were performed. Additionally, the changes in the volume of the fibres during deformation were recorded to obtain more detailed information about the muscle fibre load transfer mechanisms. To the best of the authors' knowledge, the present experimental investigation of the mechanical and geometrical characteristics of muscle fibres provides a novel comprehensive data set that can be used to obtain a better understanding of muscle fibre load transfer mechanisms and to construct meaningful models. In the present study, it is shown that muscle fibres exhibit incompressibility (5% volume decrease at maximum deformation) under tension and that this feature is more pronounced under compression loading (37% volume decrease at maximum deformation). These findings are particularly interesting and lead to a further understanding of load transfer mechanisms and to the development of new modelling strategies.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| | - Rahul Iyer
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Mayra Garcés-Schröder
- Institute of Semiconductor Technology, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Stephan Kohn
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Andreas Dietzel
- Institute of Micro Technology, Technische Universität Braunschweig, Braunschweig D-38124, Germany
| |
Collapse
|
3
|
Böl M, Iyer R, Dittmann J, Garcés-Schröder M, Dietzel A. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling. Acta Biomater 2019; 92:277-289. [PMID: 31077887 DOI: 10.1016/j.actbio.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Characterisation of the skeletal muscle's passive properties is a challenging task since its structure is dominated by a highly complex and hierarchical arrangement of fibrous components at different scales. The present work focuses on the micromechanical characterisation of skeletal muscle fibres, which consist of myofibrils, by realising three different deformation states, namely, axial tension, axial compression, and transversal compression. To the best of the authors' knowledge, the present study provides a novel comprehensive data set representing of different deformation states. These data allow for a better understanding of muscle fibre load transfer mechanisms and can be used for meaningful modelling approaches. As the present study shows, axial tension and compression experiments reveal a strong tension-compression asymmetry at fibre level. In comparison to the tissue level, this asymmetric behaviour is more pronounced at the fibre scale, elucidating the load transfer mechanism in muscle tissue and aiding in the development of future modelling strategies. Further, a Bayesian hierarchical modelling approach was used to consider the experimental fluctuations in a parameter identification scheme, leading to more comprehensive parameter distributions that reflect the entire observed experimental uncertainty. STATEMENT OF SIGNIFICANCE: This article examines for the first time the mechanical properties of skeletal muscle fibres under axial tension, axial compression, and transversal compression, leading to a highly comprehensive data set. Moreover, a Bayesian hierarchical modelling concept is presented to identify model parameters in a broad way. The results of the deformation states allow a new and comprehensive understanding of muscle fibres' load transfer mechanisms; one example is the effect of tension-compression asymmetry. On the one hand, the results of this study contribute to the understanding of muscle mechanics and thus to the muscle's functional understanding during daily activity. On the other hand, they are relevant in the fields of skeletal muscle multiscale, constitutive modelling.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| | - Rahul Iyer
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Johannes Dittmann
- Institute of Solid Mechanics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Mayra Garcés-Schröder
- Institute of Micro Technology, Technische Universität Braunschweig, Braunschweig D-38124, Germany
| | - Andreas Dietzel
- Institute of Micro Technology, Technische Universität Braunschweig, Braunschweig D-38124, Germany
| |
Collapse
|
4
|
Abstract
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
5
|
Palmer ML, Claflin DR, Faulkner JA, Panchangam A. Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle. J Muscle Res Cell Motil 2011; 32:39-48. [PMID: 21710358 PMCID: PMC3184522 DOI: 10.1007/s10974-011-9250-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Tension and regional average sarcomere length (L(s)) behavior were examined during repeated stretches of single, permeabilized, relaxed muscle fibers isolated from the soleus muscles of rats. We tested the hypothesis that during stretches of single permeabilized fibers, the global fiber strain is distributed non-uniformly along the length of a relaxed fiber in a repeatable pattern. Each fiber was subjected to eight constant-velocity stretch and release cycles with a strain of 32% and strain rate of 54% s(-1). Stretch-release cycles were separated by a 4.5 min interval. Throughout each stretch-release cycle, sarcomere lengths were measured using a laser diffraction technique in which 20 contiguous sectors along the entire length of a fiber segment were scanned within 2 ms. The results revealed that: (1) the imposed length change was not distributed uniformly along the fiber, (2) the first stretch-release cycle differed from subsequent cycles in passive tension and in the distribution of global fiber strain, and (3) a characteristic "signature" for the L(s) response emerged after cycle 3. The findings support the conclusions that longitudinal heterogeneity exists in the passive stiffness of individual muscle fibers and that preconditioning of fibers with stretch-release cycles produces a stable pattern of sarcomere strains.
Collapse
Affiliation(s)
- Mark L Palmer
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
6
|
Yadavalli VK, Forbes JG, Wang K. Nanomechanics of full-length nebulin: an elastic strain gauge in the skeletal muscle sarcomere. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7496-505. [PMID: 19463013 PMCID: PMC2998391 DOI: 10.1021/la9009898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nebulin, a family of giant modular proteins (MW 700-800 kDa), acts as a F-actin thin filament ruler and calcium-linked regulator of actomyosin interaction. The nanomechanics of full length, native rabbit nebulin was investigated with an atomic force microscope by tethering, bracketing, and stretching full-length molecules via pairs of site-specific antibodies that were attached covalently, one to a protein resistant self-assembled monolayer of oligoethylene glycol and the other to the cantilever. Using this new nanomechanics platform that enables the identification of single molecule events via an unbiased analysis of detachment force and distance of all force curves, we showed that nebulin is elastic and extends to approximately 1 microm by external force up to an antibody detachment force of approximately 300-400 pN. Upon stretching, nebulin unravels and yields force spectra with craggy mountain range profiles with variable numbers and heights of force peaks. The peak spacings, analyzed by the model-independent, empirical Hilbert-Huang transform method, displayed underlying periodicities at approximately 15 and approximately 22 nm that may result from the unfolding of one or more nebulin modules between force peaks. Nebulin may act as an elastic strain gauge that interacts optimally with actin only under appropriate strain and stress. This stretch to match protein ruler may also exert a compressive force that stabilizes thin filaments against stress during contraction. We propose that the elasticity of nebulin is integral and essential in the muscle sarcomere.
Collapse
Affiliation(s)
- Vamsi K Yadavalli
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
7
|
Pelin K, Wallgren-Pettersson C. Nebulin—A Giant Chameleon. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-84847-1_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Ranatunga KW. Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest. J Muscle Res Cell Motil 2002; 22:399-414. [PMID: 11964066 DOI: 10.1023/a:1014502610259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The giant muscle protein titin (connectin), contained in the gap filament that connect a thick filament to the Z-line in a sarcomere, is generally considered to be responsible for the passive force (tension) and visco-elasticity in resting striated muscle. However, whether it can account for all the features of the resting tension response remains unclear. In this paper, we examine the basic features of the 'sarcomeric visco-elasticity' in a single resting mammalian muscle fibre and attempt to account for various tension components on the basis of known structural features of a sarcomere. At sarcomere length of approximately 2.6 microm, the force response to a ramp stretch of 2-5% is complex but can be resolved into four functionally different components. The behaviour displayed by the components ranges from pure viscous type (directly proportional to stretch velocity, ranging from 0.1 to 30 lengths s(-1)) to predominantly elastic type (insensitive to stretch velocity at 1-2 s time scale); simulations show two components of visco-elasticity with characteristically different relaxation times. The velocity-sensitive components (only) are enhanced by filament lattice compression (dextran - 500 kD) and by increased medium viscosity (dextran - 12 kD); also, the relaxation time of visco-elasticity is longer with increased medium viscosity. Amplitude of all the components and the relaxation time of visco-elasticity are increased at longer sarcomere length (range approximately 2.5 - 3.0 microm). The study, and quantitative analyses, extend our previous work on intact muscle fibres and suggest that the velocity-sensitive tension components in intact sarcomere arise from interactions between sarcomeric filaments, filament segments and inter-filamentary medium; the two components of visco-elasticity arise from distinct regions of titin (connectin) molecules.
Collapse
Affiliation(s)
- K W Ranatunga
- Department of Physiology, University of Bristol, UK.
| |
Collapse
|
9
|
Ojima K, Lin Z, Bang ML, Holtzer S, Matsuda R, Labeit S, Sweeney H, Holtzer H. Distinct families of Z-line targeting modules in the COOH-terminal region of nebulin. J Cell Biol 2000; 150:553-66. [PMID: 10931867 PMCID: PMC2175182 DOI: 10.1083/jcb.150.3.553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To learn how nebulin functions in the assembly and maintenance of I-Z-I bands, MYC- and GFP- tagged nebulin fragments were expressed in primary cultured skeletal myotubes. Their sites of incorporation were visualized by double staining with anti-MYC, antibodies to myofibrillar proteins, and FITC- or rhodamine phalloidin. Contrary to expectations based on in vitro binding studies, none of the nebulin fragments expressed in maturing myotubes were incorporated selectively into I-band approximately 1.0-micrometer F-alpha-actin-containing thin filaments. Four of the MYC/COOH-terminal nebulin fragments were incorporated exclusively into periodic approximately 0.1-micrometer Z-bands. Whereas both anti-MYC and Rho-phalloidin stained intra-Z-band F-alpha-actin oligomers, only the latter stained the pointed ends of the polarized approximately 1.0-micrometer thin filaments. Z-band incorporation was independent of the nebulin COOH-terminal Ser or SH3 domains. In vitro cosedimentation studies also demonstrated that nebulin SH3 fragments did not bind to F-alpha-actin or alpha-actinin. The remaining six fragments were not incorporated into Z-bands, but were incorporated (a) diffusely throughout the sarcoplasm and into (b) fibrils/patches of varying lengths and widths nested among normal striated myofibrils. Over time, presumably in response to the mediation of muscle-specific homeostatic controls, many of the ectopic MYC-positive structures were resorbed. None of the tagged nebulin fragments behaved as dominant negatives; they neither blocked the assembly nor induced the disassembly of mature striated myofibrils. Moreover, they were not cytotoxic in myotubes, as they were in the fibroblasts and presumptive myoblasts in the same cultures.
Collapse
Affiliation(s)
- K. Ojima
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Z.X. Lin
- Department of Cell Biology, Beijing Institute for Cancer Research, Beijing Medical University, Beijing 100034, China
| | | | - S. Holtzer
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - R. Matsuda
- Department of Life Science, University of Tokyo, Tokyo, Japan 153-8092
| | - S. Labeit
- Department of Anesthesiology and Intensive Operative Care, Klinikum, Mannheim, Germany
| | - H.L. Sweeney
- Department of Physiology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - H. Holtzer
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
10
|
Luo G, Zhang JQ, Nguyen TP, Herrera AH, Paterson B, Horowits R. Complete cDNA sequence and tissue localization of N-RAP, a novel nebulin-related protein of striated muscle. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:75-90. [PMID: 9295142 DOI: 10.1002/(sici)1097-0169(1997)38:1<75::aid-cm7>3.0.co;2-g] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned and sequenced the full-length cDNA of N-RAP, a novel nebulin-related protein, from mouse skeletal muscle. The N-RAP message is specifically expressed in skeletal and cardiac muscle, but is not detected by Northern blot in non-muscle tissues. The full-length N-RAP cDNA contains an open reading frame of 3,525 base pairs which is predicted to encode a protein of 133 kDa. A 587 amino acid region near the C-terminus is 45% identical to the actin binding region of human nebulin, containing more than 2 complete 245 residue nebulin super repeats. The N-terminus contains the consensus sequence of a cysteine-rich LIM domain, which may function in mediating protein-protein interactions. These data suggest that the encoded protein may link actin filaments to some other proteins or structure. We expressed full-length N-RAP in Escherichia coli, as well as the nebulin-like super repeat region of N-RAP (N-RAP-SR) and the region between the LIM domain and N-RAP-SR (N-RAP-IB). An anti-N-RAP antibody raised against a 30 amino acid peptide corresponding to sequence from N-RAP-IB detected recombinant N-RAP and N-RAP-IB, but failed to detect N-RAP-SR. This antibody specifically identified a 185 kDa band as N-RAP on immunoblots of mouse skeletal and cardiac muscle proteins. In an assay of actin binding to electrophoresed and blotted proteins, we detected significant actin binding to expressed nebulin super repeats and N-RAP-SR, but only a trace amount of binding to N-RAP-IB. In immunofluorescence experiments, N-RAP was found to be localized at the myotendinous junction in mouse skeletal muscle and at the intercalated disc in cardiac muscle. Based on its domain organization, actin binding properties, and tissue localization, we propose that N-RAP plays a role in anchoring the terminal actin filaments in the myofibril to the membrane and may be important in transmitting tension from the myofibrils to the extracellular matrix.
Collapse
Affiliation(s)
- G Luo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-2755, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
We investigated the effect of pH on isometric tension in actin filament-reconstituted and thin filament-reconstituted bovine cardiac muscle fibers in the pH range of 6.0-7.4. Thin filament was reconstituted from purified G-actin with either bovine cardiac tropomyosin (Tm) or rabbit skeletal Tm in conjunction with cardiac or skeletal troponin (Tn). Results showed that isometric tension decreased linearly with a decrease in pH. The slope of the pH-tension relation, DeltaF/DeltapH (Deltarelative tension/Deltaunit pH), was 0.28 and 0.44 in control cardiac fibers and skeletal fibers, respectively. In actin filament-reconstituted fibers without regulatory proteins, DeltaF/DeltapH was 0.62, namely larger than that in cardiac or skeletal fibers. When reconstituted with cardiac Tm-Tn complex (nTm), DeltaF/DeltapH recovered to 0.32, close to the value obtained in control cardiac fibers. When reconstituted with skeletal nTm, DeltaF/DeltapH recovered to 0.48, close to the value for control skeletal fibers. To determine whether Tm or Tn is responsible for the inhibitory effects of nTm on the tension decrease caused by reduced pH, thin filament was reconstituted with cardiac Tm and skeletal Tn, or with skeletal Tm and cardiac Tn. When cardiac Tm was used, pH dependence of isometric tension coincided with that of control cardiac fibers. When skeletal Tm was used, the pH dependence coincided with that of control skeletal fibers. Furthermore, closely similar results were obtained in fibers reconstituted with actin and either cardiac or skeletal Tm without Tn. These results demonstrate that Tm but not Tn modulates the pH dependence of active tension.
Collapse
Affiliation(s)
- H Fujita
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | | |
Collapse
|
12
|
Affiliation(s)
- R Horowits
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Ishiwata S, Funatsu T, Fujita H. Contractile properties of thin (actin) filament-reconstituted muscle fibers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 453:319-28; discussion 328-9. [PMID: 9889844 DOI: 10.1007/978-1-4684-6039-1_37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Selective removal and reconstitution of the components of muscle fibers (fibrils) is a useful means of examining the molecular mechanism underlying the formation of the contractile apparatus. In addition, this approach is powerful for examining the structure-function relationship of a specific component of the contractile system. In previous studies, we have achieved the partial structural and functional reconstitution of thin filaments in the skeletal contractile apparatus and full reconstitution in the cardiac contractile apparatus. First, all thin filaments other than short fragments at the Z line were removed by treatment with plasma gelsolin, an actin filament-severing protein. Under these conditions, no active tension could be generated. By incorporating exogenous actin into these thin filament-free fibers, actin filaments were reconstituted by polymerization on the short actin fragments remaining at the Z line, and active tension, which was insensitive to Ca2+, was restored. The active tension after the reconstitution of thin filaments reached as high as 30% of the original level in skeletal muscle, while it reached 140% in cardiac muscle. The augmentation of tension in cardiac muscle is mainly attributable to the elongation of reconstituted filaments, longer than the average length of thin filaments in an intact muscle. These results indicate that a muscle contractile apparatus with a high order structure and function can be constructed by the self-assembly of constituent proteins. Recently, we applied this reconstitution system to the study of the mechanism of spontaneous oscillatory contraction (SPOC) in thin (actin) filament-reconstituted cardiac muscle fibers. As a result, we found that SPOC occurs even in regulatory protein-free actin filament-reconstituted fibers (Fujita & Ishiwata, manuscript submitted), although the SPOC conditions were slightly different from the standard SPOC conditions. This result strongly suggests that spontaneous oscillation is intrinsic to actomyosin motors. We here summarize the contractile properties of the reconstitution system.
Collapse
Affiliation(s)
- S Ishiwata
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo, Japan.
| | | | | |
Collapse
|
14
|
|
15
|
Fujita H, Ishiwata S. Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers. Biophys J 1998; 75:1439-45. [PMID: 9726945 PMCID: PMC1299818 DOI: 10.1016/s0006-3495(98)74062-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Skinned skeletal and cardiac muscle fibers exhibits spontaneous oscillatory contraction (SPOC) in the presence of MgATP, MgADP, and inorganic phosphate (Pi)1 but the molecular mechanism underlying this phenomenon is not yet clear. We have investigated the role of regulatory proteins in SPOC using cardiac muscle fibers of which the actin filaments had been reconstituted without tropomyosin and troponin, according to a previously reported method (Fujita et al., 1996. Biophys. J. 71:2307-2318). That is, thin filaments in glycerinated cardiac muscle fibers were selectively removed by treatment with gelsolin. Then, by adding exogenous actin to these thin filament-free cardiac muscle fibers under polymerizing conditions, actin filaments were reconstituted. The actin filament-reconstituted cardiac muscle fibers generated active tension in a Ca(2+)-insensitive manner because of the lack of regulatory proteins. Herein we have developed a new solvent condition under which SPOC occurs, even in actin filament-reconstituted fibers: the coexistence of 2,3-butanedione 2-monoxime (BDM), a reversible inhibitor of actomyosin interactions, with MgATP, MgADP and Pi. The role of BDM in the mechanism of SPOC in the actin filament-reconstituted fibers was analogous to that of the inhibitory function of the tropomyosin-troponin complex (-Ca2+) in the control fibers. The present results suggest that SPOC is a phenomenon that is intrinsic to the actomyosin motor itself.
Collapse
Affiliation(s)
- H Fujita
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo, Japan
| | | |
Collapse
|
16
|
Fujita H, Yasuda K, Niitsu S, Funatsu T, Ishiwata S. Structural and functional reconstitution of thin filaments in the contractile apparatus of cardiac muscle. Biophys J 1996; 71:2307-18. [PMID: 8913572 PMCID: PMC1233721 DOI: 10.1016/s0006-3495(96)79465-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The muscle contractile apparatus has a highly ordered liquid crystalline structure. The molecular mechanism underlying the formation of this apparatus remains, however, to be elucidated. Selective removal and reconstitution of the components are useful means of examining this mechanism. In addition, this approach is a powerful technique for examining the structure and function of a specific component of the contractile system. In this study we have achieved the structural and functional reconstitution of thin filaments in the cardiac contractile apparatus. First, all thin filaments other than short fragments at the Z line were removed by treatment with gelsolin. Under these conditions no active tension could be generated. By incorporating exogenous actin into these thin filament-free fibers, actin filaments were reconstituted, and active tension, which was insensitive to Ca2+, was restored. The active tension after the reconstitution of thin filaments reached 135 +/- 64% of the original level. The augmentation of tension was attributable to the elongation of reconstituted filaments. As another possibility for augmented tension generation, we suggest the presence of an inhibitory system that was not reconstituted. In any case, the thin filaments of the cardiac contractile apparatus are considered to be assembled so as not to develop the highest degree of tension. Incorporation of the tropomyosin-troponin complex fully restored Ca2+ sensitivity without affecting maximum tension. The present results indicate that a muscle contractile apparatus with a higher order structure and function can be constructed by the self-assembly of constituent proteins.
Collapse
Affiliation(s)
- H Fujita
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
17
|
Yasuda K, Shindo Y, Ishiwata S. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions. Biophys J 1996; 70:1823-9. [PMID: 8785342 PMCID: PMC1225152 DOI: 10.1016/s0006-3495(96)79747-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An isotonic control system for studying dynamic properties of single myofibrils was developed to evaluate the change of sarcomere lengths in glycerinated skeletal myofibrils under conditions of spontaneous oscillatory contraction (SPOC) in the presence of inorganic phosphate and a high ADP-to-ATP ratio. Sarcomere length oscillated spontaneously with a peak-to-peak amplitude of about 0.5 microns under isotonic conditions in which the external loads were maintained constant at values between 1.5 x 10(4) and 3.5 x 10(4) N/m2. The shortening and yielding of sarcomeres occurred in concert, in contrast to the previously reported conditions (isomeric or auxotonic) under which the myofibrillar tension is allowed to oscillate. This synchronous SPOC appears to be at a higher level of synchrony than in the organized state of SPOC previously observed under auxotonic conditions. The period of sarcomere length oscillation did not largely depend on external load. The active tension under SPOC conditions increased as the sarcomere length increased from 2.1 to 3.2 microns, although it was still smaller than the tension under normal Ca2+ contraction (which is on the order of 10(5) N/m2). The synchronous SPOC implies that there is a mechanism for transmitting information between sarcomeres such that the state of activation of sarcomeres is affected by the state of adjacent sarcomeres. We conclude that the change of myofibrillar tension is not responsible for the SPOC of each sarcomere but that it affects the level of synchrony of sarcomere oscillations.
Collapse
Affiliation(s)
- K Yasuda
- Advanced Research Laboratory, Saitama, Japan.
| | | | | |
Collapse
|
18
|
ISHIWATA S. Microscopic analysis of the elastic properties of connectin/titin and nebulin in myofibrils. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0065-227x(96)81669-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Abstract
In developing muscle, relatively little is known about the synthesis and incorporation of the large actin binding protein, nebulin, into the sarcomere. To determine the temporal pattern of nebulin assembly into the myofibrils of differentiating skeletal muscle cells, myofibril assembly was examined by immunofluorescence microscopy. The distribution of nebulin was compared to other myofibrillar and cytoskeletal proteins (myosin, titin, actin, desmin, tubulin). At the onset of differentiation, we observed that nebulin is first seen in a diffuse distribution throughout the cytoplasm. At this time, muscle specific myosin and titin are also distributed in this manner. Myosin and titin become associated with the nascent myofibrils prior to the addition of nebulin. The mature striated pattern of myosin and titin also preceded the development of striations with nebulin. After nebulin becomes organized into a striated pattern, actin filaments separate across the A-band and form thin filaments of uniform length. These patterns of assembly suggest that nebulin is required for restricting the lengths of the thin filaments. We have employed the strategy of using ethyl methane sulfonate and taxol to perturb myofibril assembly to examine interactions critical for the addition of nebulin to the developing sarcomeres. The same temporal pattern of assembly seen in the normal cultures was observed in the ethyl methane sulfonate treated cultures, but at a much slower rate. In cultures treated with the microtubule stabilizing drug taxol, the amount of stress fibers and nascent I-bands was greatly diminished as previously reported by others; however, nebulin was found associated with myofibrils in a mature striated distribution. In addition, our results indicate that the taxol treated cultures contain remnants of the Z-line. These results suggest that nebulin assembly into the myofibril requires interactions or anchorage at the Z-line and within the A-band.
Collapse
Affiliation(s)
- C L Moncman
- Department of Chemistry and Biochemistry, University of Texas at Austin 78712, USA
| | | |
Collapse
|