1
|
Stephani J, Gerhards L, Khairalla B, Solov’yov IA, Brand I. How do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration. ACS Infect Dis 2024; 10:763-778. [PMID: 38259029 PMCID: PMC10862549 DOI: 10.1021/acsinfecdis.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in the inner leaflet. Molecular dynamics simulations revealed that the positively charged helical C-terminus of melittin anchors rapidly into the hydrophilic headgroup region of KLA, while the flexible N-terminus makes contacts with the phosphate groups of KLA, supporting melittin penetration into the boundary between the hydrophilic and hydrophobic regions of the lipids. Electrochemical techniques confirmed the binding of melittin to the model membrane. To probe the peptide conformation and orientation during interaction with the membrane, polarization modulation infrared reflection absorption spectroscopy was used. The measurements revealed conformational changes in the peptide, accompanied by reorientation and translocation of the peptide at the membrane surface. The study suggests that melittin insertion into the outer membrane affects its permeability and capacitance but does not disturb the membrane's bilayer structure, indicating a distinct mechanism of the peptide action on the outer membrane of Gram-negative bacteria.
Collapse
Affiliation(s)
- Justus
C. Stephani
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Bishoy Khairalla
- Department
of Chemistry, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
- Research
Center Neurosensory Science, Carl von Ossietzky
University of Oldenburg, 26111 Oldenburg, Germany
- CeNaD—Center
for Nanoscale Dynamics, Carl von Ossietzky
University of Oldenburg, 26111 Oldenburg, Germany
| | - Izabella Brand
- Department
of Chemistry, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
2
|
Harfmann D, Florea A. Experimental envenomation with honeybee venom melittin and phospholipase A2 induced multiple ultrastructural changes in adrenocortical mitochondria. Toxicon 2023; 229:107136. [PMID: 37116588 DOI: 10.1016/j.toxicon.2023.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Bee stings represent a public health subject, but the mechanisms involved in bee venom toxicity are not yet fully understood. To evaluate the reactions of adrenocortical cells, through which organisms respond to stress, two honeybee venom components: melittin (Mlt) and phospholipase A2 (PLA2) were tested as potential chemical stressors. Modifications were investigated with transmission electron microscopy and microanalysis. A single dose of Mlt (31 mg/kg) or PLA2 (9.3 mg/kg) was injected in rats of groups ML and PL; daily doses of Mlt (350 μg/kg) or PLA2 (105 μg/kg) were injected 30 days in rats of groups M30 and P30. Adrenocortical cells in ML group showed ultrastructural degenerative alterations of nuclei, endoplasmic reticulum, and mitochondria that exhibited lipid inclusions and mitochondrial cristae (MC) re-organized into mono- or multimembrane large vesicles, and whorls of membranes. Many MC were degenerated. In the M30 group, similar ultrastructural changes, but of lower amplitude were noted; lipid cytosolic droplets were heterogenous. MC diameters in Mlt groups (melittin treated groups) were significantly higher than in control (C) group. In PL group, mitochondria contained large lipid inclusions, vesicular MC of different sizes and multiple membranes, and debris, or whorl structures. In P30 group MC were tubular with increased diameters. In both PLA2 groups (PLA2 treated groups) MC were significantly larger than in C group. We concluded that Mlt and PLA2 were powerful stressors, toxic at the tested doses, cellular reactions concerning in all groups mainly mitochondria, but also other cellular compartments. Apart from degenerative regression of MC, the rearrangement of tubular MC occurred into one or multiple large multimembrane vesicular MC. Reactions to the high doses were more pronounced, with the highest amplitude in ML group, and the lowest in P30 group.
Collapse
Affiliation(s)
- Diana Harfmann
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Brand I, Khairalla B. Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study. Faraday Discuss 2021; 232:68-85. [PMID: 34542116 DOI: 10.1039/d0fd00039f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cell membrane of Gram-negative bacteria interacting with an antimicrobial peptide presents a complex supramolecular assembly. Fabrication of models of bacterial cell membranes remains a large experimental challenge. Langmuir-Blodgett and Langmuir-Schaefer (LS-LB) transfer makes possible the deposition of multicomponent asymmetric lipid bilayers onto a gold surface. Two lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and di[3-deoxy-D-manno-octulosonyl]-lipid A (KLA) were used to deposit a model of the outer membrane of Gram-negative bacteria on the Au(111) substrate. The use of gold as the solid substrate enables control of the membrane potential. Molecular scale changes in the model membrane exposed to physiological electric fields and interacting with melittin antimicrobial peptide are discussed in this paper. The interaction of the outer membrane with melittin leads to an increase in the membrane capacitance and permeability to ions and water. The stability of the outer membrane with bound melittin decreases at positive membrane potentials. In situ polarization modulation infrared reflection absorption spectroscopy is used to investigate membrane potential-dependent changes in the structure of the outer membrane interacting with melittin. The hydration of the ester carbonyl groups is not affected by the interaction with melittin. However, the orientation and hydrogen bond network with the carboxylate groups in KLA changes drastically after POPE-KLA bilayer interacts with melittin. We propose that the positively charged groups in the amino acids present at the C-terminus of the peptide interact directly with the polar head group of KLA. Simultaneously, the packing order in hydrocarbon chains in the membrane with bound melittin increases. A hydrophobic match between the chains in the lipids and the peptide, which spans the membrane, seems to be responsible for the ordering of the hydrocarbon chains region of the bilayer. The N-terminus enters into the hydrophobic region of the membrane and forms a channel to the hydrophilic head groups in POPE.
Collapse
Affiliation(s)
- Izabella Brand
- Department of Chemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| | - Bishoy Khairalla
- Department of Chemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
4
|
Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, AlAjmi MF, Hassan M, Wahabi HA, Hegazy MEF, Algethami AF, Büttner S, El-Seedi HR. Bee Venom Composition: From Chemistry to Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:459-484. [DOI: 10.1016/b978-0-444-64181-6.00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Abstract
Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.
Collapse
|
6
|
Islam SMA, Yeasmin S, Islam MS, Islam MS. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:85-92. [PMID: 28319863 DOI: 10.1016/j.ecoenv.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 02/07/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme.
Collapse
Affiliation(s)
- Shah Md Asraful Islam
- Department of Plant Pathology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh.
| | - Shabina Yeasmin
- Department of Forest Products, IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Shariful Islam
- Department of Agricultural Chemistry, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| |
Collapse
|
7
|
Boisselier É, Demers É, Cantin L, Salesse C. How to gather useful and valuable information from protein binding measurements using Langmuir lipid monolayers. Adv Colloid Interface Sci 2017; 243:60-76. [PMID: 28372794 DOI: 10.1016/j.cis.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
This review presents data on the influence of various experimental parameters on the binding of proteins onto Langmuir lipid monolayers. The users of the Langmuir methodology are often unaware of the importance of choosing appropriate experimental conditions to validate the data acquired with this method. The protein Retinitis pigmentosa 2 (RP2) has been used throughout this review to illustrate the influence of these experimental parameters on the data gathered with Langmuir monolayers. The methods detailed in this review include the determination of protein binding parameters from the measurement of adsorption isotherms, infrared spectra of the protein in solution and in monolayers, ellipsometric isotherms and fluorescence micrographs.
Collapse
Affiliation(s)
- Élodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| | - Éric Demers
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Line Cantin
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
8
|
Giménez D, Sánchez-Muñoz OL, Salgado J. Direct observation of nanometer-scale pores of melittin in supported lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3146-58. [PMID: 25705986 DOI: 10.1021/la504293q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Melittin is the most studied membrane-active peptide and archetype within a large and diverse group of pore formers. However, the molecular characteristics of melittin pores remain largely unknown. Herein, we show by atomic force microscopy (AFM) that lipid monolayers in the presence of melittin are decorated with numerous regularly shaped circular pores that can be distinguished from nonspecific monolayer defects. The specificity of these pores is reinforced through a statistical evaluation of depressions found in Langmuir-Blodgett monolayers in the presence and absence of melittin, which eventually allows characterization of the melittin-induced pores at a quantitative low-resolution level. We observed that the large majority of pores exhibit near-circular symmetry and a Gaussian distribution in size, with a mean diameter of ∼8.7 nm. A distinctive feature is a ring of material found around the pores, made by, on average, three positive peaks, with a height over the level of the lipidic background of ∼0.23 nm. This protruding rim is most likely due to the presence of melittin near the pore border. Although the current resolution of the AFM images in the {x, y} plane does not allow distinction of the specific organization of the peptide molecules, these results provide an unprecedented view of melittin pores formed in lipidic interfaces and open new perspectives for future structural investigations of these and other pore-forming peptides and proteins using supported monolayers.
Collapse
Affiliation(s)
- Diana Giménez
- Institute of Molecular Science (ICMol), University of Valencia. C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
| | - Orlando L Sánchez-Muñoz
- Institute of Molecular Science (ICMol), University of Valencia. C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
| | - Jesús Salgado
- Institute of Molecular Science (ICMol), University of Valencia. C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
9
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
10
|
Dannehl C, Gutsmann T, Brezesinski G. Surface activity and structures of two fragments of the human antimicrobial LL-37. Colloids Surf B Biointerfaces 2013; 109:129-35. [PMID: 23624281 DOI: 10.1016/j.colsurfb.2013.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Two fragments of the antimicrobial peptide LL-37 (LL-32 and LL-20) have been characterized in adsorption layers at the air/buffer interface by infrared reflection absorption spectroscopy (IRRAS) and X-ray reflectivity (XR) measurements. As shown in previous work, LL-32 exhibits an increased antimicrobial activity compared to LL-37, while LL-20 is almost not active. It is shown in this work that the peptides differ drastically in their surface activity (equilibrium adsorption pressure) and their secondary structure, when they are adsorbed to the air/buffer interface. As concluded from the CD spectra, both peptides are unstructured in bulk. That means that the adsorption of the peptides to the air/buffer interface is connected to a secondary structure change. While LL-32 transforms into an α-helix lying flat at the buffer surface, with a helix diameter of 17Å, LL-20 adopts a partly unstructured conformation. The dichroic ratio of LL-20 is reduced and the electron density profile shows the formation of a second layer. The ability of LL-32 to form a complete α-helical structure at the interface is in good agreement with its higher antimicrobial activity.
Collapse
Affiliation(s)
- Claudia Dannehl
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | | | | |
Collapse
|
11
|
Tatulian SA, Garg P, Nemec KN, Chen B, Khaled AR. Molecular basis for membrane pore formation by Bax protein carboxyl terminus. Biochemistry 2012; 51:9406-19. [PMID: 23110300 DOI: 10.1021/bi301195f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bax protein plays a key role in mitochondrial membrane permeabilization and cytochrome c release upon apoptosis. Our recent data have indicated that the 20-residue C-terminal peptide of Bax (BaxC-KK; VTIFVAGVLTASLTIWKKMG), when expressed intracellularly, translocates to the mitochondria and exerts lethal effect on cancer cells. Moreover, the BaxC-KK peptide, as well as two mutants where the two lysines are replaced with glutamate (BaxC-EE) or leucine (BaxC-LL), have been shown to form relatively large pores in lipid membranes, composed of up to eight peptide molecules per pore. Here the pore structure is analyzed by polarized Fourier transform infrared, circular dichroism, and fluorescence experiments on the peptides reconstituted in phospholipid membranes. The peptides assume an α/β-type secondary structure within membranes. Both β-strands and α-helices are significantly (by 30-60 deg) tilted relative to the membrane normal. The tryptophan residue embeds into zwitterionic membranes at 8-9 Å from the membrane center. The membrane anionic charge causes a deeper insertion of tryptophan for BaxC-KK and BaxC-LL but not for BaxC-EE. Combined with the pore stoichiometry determined earlier, these structural constraints allow construction of a model of the pore where eight peptide molecules form an "α/β-ring" structure within the membrane. These results identify a strong membranotropic activity of Bax C-terminus and propose a new mechanism by which peptides can efficiently perforate cell membranes. Knowledge on the pore forming mechanism of the peptide may facilitate development of peptide-based therapies to kill cancer or other detrimental cells such as bacteria or fungi.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida, United States.
| | | | | | | | | |
Collapse
|
12
|
Matysiak J, Schmelzer CEH, Neubert RHH, Kokot ZJ. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. J Pharm Biomed Anal 2010; 54:273-8. [PMID: 20850943 DOI: 10.1016/j.jpba.2010.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/30/2010] [Accepted: 08/15/2010] [Indexed: 10/19/2022]
Abstract
The aim of the study was to comprehensively characterize different honeybee venom samples applying two complementary mass spectrometry methods. 41 honeybee venom samples of different bee strains, country of origin (Poland, Georgia, and Estonia), year and season of the venom collection were analyzed using MALDI-TOF and nanoESI-QqTOF-MS. It was possible to obtain semi-quantitative data for 12 different components in selected honeybee venom samples using MALDI-TOF method without further sophisticated and time consuming sample pretreatment. Statistical analysis (ANOVA) has shown that there are qualitative and quantitative differences in the composition between honeybee venom samples collected over different years. It has also been demonstrated that MALDI-TOF spectra can be used as a "protein fingerprint" of honeybee venom in order to confirm the identity of the product. NanoESI-QqTOF-MS was applied especially for identification purposes. Using this technique 16 peptide sequences were identified, including melittin (12 different breakdown products and precursors), apamine, mast cell degranulating peptide and secapin. Moreover, the significant achievement of this study is the fact that the new peptide (HTGAVLAGV+Amidated (C-term), M(r)=822.53Da) has been discovered in bee venom for the first time.
Collapse
Affiliation(s)
- Jan Matysiak
- Department of Inorganic & Analytical Chemistry, Poznań University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland
| | | | | | | |
Collapse
|
13
|
Phospholipid flip-flop modulated by transmembrane peptides WALP and melittin. J Struct Biol 2009; 168:37-52. [PMID: 19508895 DOI: 10.1016/j.jsb.2009.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/21/2022]
Abstract
Select transmembrane proteins found in biogenic membranes are known to facilitate rapid bidirectional flip-flop of lipids between the membrane leaflets, while others have no little or no effect. The particular characteristics which determine the extent to which a protein will facilitate flip-flop are still unknown. To determine if the relative polarity of the transmembrane protein segment influences its capacity for facilitation of flip-flop, we have studied lipid flip-flop dynamics for bilayers containing the peptides WALP(23) and melittin. WALP(23) is used as a model hydrophobic peptide, while melittin consists of both hydrophobic and hydrophilic residues. Sum-frequency vibrational spectroscopy (SFVS) was used to characterize the bilayers and determine the kinetics of flip-flop for the lipid component, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), within the mixed bilayers. The kinetic data were utilized to determine the activation thermodynamics for DSPC flip-flop in the presence of the peptides. Melittin was found to significantly reduce the free energy barrier to DSPC flip-flop when incorporated into the bilayer at 1mol.%, while incorporation of WALP(23) at the same concentration led to a more modest reduction of the free energy barrier. The possible mechanisms by which these peptides facilitate flip-flop are analyzed and discussed in terms of the observed activation thermodynamics.
Collapse
|
14
|
Okada T, Sano M, Yamamoto Y, Muramatsu H. Evaluation of interaction forces between profilin and designed peptide probes by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:4050-5. [PMID: 18335966 DOI: 10.1021/la703344u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We evaluated the binding affinity of peptide probes for profilin (protein) using force curve measurement techniques and atomic force microscopy (AFM). The peptide probes designed and synthesized for this investigation were H-A3GP5GP5GP5G-OH (1), H-A3GP5G-OH (2), H-A3G7-OH (3), and H-A3G-OH (4). Each peptide probe was immobilized on a cantilever tip, and the interaction force to profilin, immobilized on a mica substrate, was examined by force curve measurements. The retraction forces obtained showed a sequence-dependent affinity of the peptide probe for profilin. The retraction force for peptide probe 1 was the largest of the four probes examined, and it confirmed that peptide probe 1 has high affinity for profilin. The single molecular retraction force between peptide probe 1 and profilin was estimated to be 96 pN, as determined by Gaussian fitting to the histogram of the retraction forces.
Collapse
Affiliation(s)
- Tomoko Okada
- School of Bionics, Tokyo University of Technology, Katakura, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Cationic peptide-induced remodelling of model membranes: Direct visualization by in situ atomic force microscopy. J Struct Biol 2008; 162:121-38. [DOI: 10.1016/j.jsb.2007.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/01/2007] [Accepted: 11/06/2007] [Indexed: 02/04/2023]
|
16
|
Desmeules P, Penney SE, Desbat B, Salesse C. Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers. Biophys J 2007; 93:2069-82. [PMID: 17526567 PMCID: PMC1959526 DOI: 10.1529/biophysj.106.103481] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/17/2007] [Indexed: 01/16/2023] Open
Abstract
It has been postulated that myristoylation of peripheral proteins would facilitate their binding to membranes. However, the exact involvement of this lipid modification in membrane binding is still a matter of debate. Proteins containing a Ca(2+)-myristoyl switch where the extrusion of their myristoyl group is dependent on calcium binding is best illustrated by the Ca(2+)-binding recoverin, which is present in retinal rod cells. The parameters responsible for the modulation of the membrane binding of recoverin are still largely unknown. This study was thus performed to determine the involvement of different parameters on recoverin membrane binding. We have used surface pressure measurements and PM-IRRAS spectroscopy to monitor the adsorption of myristoylated and nonmyristoylated recoverin onto phospholipid monolayers in the presence and absence of calcium. The adsorption curves have shown that the myristoyl group and hydrophobic residues of myristoylated recoverin strongly accelerate membrane binding in the presence of calcium. In the case of nonmyristoylated recoverin in the presence of calcium, hydrophobic residues alone are responsible for its much faster monolayer binding than myristoylated and nonmyristoylated recoverin in the absence of calcium. The infrared spectra revealed that myristoylated and nonmyristoylated recoverin behave very different upon adsorption onto phospholipid monolayers. Indeed, PM-IRRAS spectra indicated that the myristoyl group allows a proper orientation and organization as well as faster and stronger binding of myristoylated recoverin to lipid monolayers compared to nonmyristoylated recoverin. Simulations of the spectra have allowed us to postulate that nonmyristoylated recoverin changes conformation and becomes hydrated at large extents of adsorption as well as to estimate the orientation of myristoylated recoverin with respect to the monolayer plane. In addition, adsorption measurements and electrophoresis of trypsin-treated myristoylated recoverin in the presence of zinc or calcium demonstrated that recoverin has a different conformation but a similar extent of monolayer binding in the presence of such ions.
Collapse
Affiliation(s)
- Philippe Desmeules
- Unité de Recherche en Opthalmologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Département d'Opthalmologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
17
|
Lad MD, Birembaut F, Clifton LA, Frazier RA, Webster JRP, Green RJ. Antimicrobial peptide-lipid binding interactions and binding selectivity. Biophys J 2007; 92:3575-86. [PMID: 17325007 PMCID: PMC1853145 DOI: 10.1529/biophysj.106.097774] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/22/2007] [Indexed: 11/18/2022] Open
Abstract
Surface pressure measurements, external reflection-Fourier transform infrared spectroscopy, and neutron reflectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-(phosphor-rac-(1-glycerol)) (DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). All three peptides have been shown to penetrate DPPC lipid layers by surface pressure, and this was confirmed for the melittin-DPPC interaction by neutron reflectivity measurements. Adsorption of peptide was, however, minimal, with a maximum of 0.4 mg m(-2) seen for melittin adsorption compared to 2.1 mg m(-2) for adsorption to DPPG (from 0.7 microM solution). The mode of binding to DPPG was shown to depend on the distribution of basic residues within the peptide alpha-helix, although in all cases adsorption below the lipid layer was shown to dominate over insertion within the layer. Melittin adsorption to DPPG altered the lipid layer structure observed through changes in the external reflection-Fourier transform infrared lipid spectra and neutron reflectivity. This lipid disruption was not observed for magainin or cecropin. In addition, melittin binding to both lipids was shown to be 50% greater than for either magainin or cecropin. Adsorption to the bare air-water interface was also investigated and surface activity followed the trend melittin>magainin>cecropin. External reflection-Fourier transform infrared amide spectra revealed that melittin adopted a helical structure only in the presence of lipid, whereas magainin and cecropin adopted helical structure also at an air-water interface. This behavior has been related to the different charge distributions on the peptide amino acid sequences.
Collapse
Affiliation(s)
- Mitaben D Lad
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Andrushchenko VV, Vogel HJ, Prenner EJ. Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1596-608. [PMID: 16956577 DOI: 10.1016/j.bbamem.2006.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 06/29/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
Structural changes for a series of antimicrobial peptides in various solvents were investigated by a combined approach of FTIR and CD spectroscopy. The well-characterized and potent antimicrobial peptides indolicidin and tritrpticin were studied along with several analogs of tritrpticin, including Tritrp1 (amidated analog of tritrpticin), Tritrp2 (analog of Tritrp1 with Arg-->Lys substitutions), Tritrp3 (analog of Tritrp1 with Pro-->Ala substitutions) and Tritrp4 (analog of Tritrp1 with Trp-->Tyr substitutions). All peptides were studied in aqueous buffer, ethanol and in the presence of dodecylphosphocholine (DPC) micelles. It was shown that tritrpticin and its analogs preferentially adopt turn structures in all solvents studied. The turn structures formed by the tritrpticin analogs bound to DPC micelles are more compact and more conformationally restricted compared to indolicidin. While several peptides showed a slight propensity for an alpha-helical conformation in ethanol, this trend was only strong for Tritrp3, which also adopted a largely alpha-helical structure with DPC micelles. Tritrp3 also demonstrated along with Tritrp1 the highest ability to interact with DPC micelles, while Tritrp2 and Tritrp4 showed the weakest interaction.
Collapse
Affiliation(s)
- Valery V Andrushchenko
- Department of Biological Sciences, University of Calgary, 2500 University Dr, NW, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
19
|
Dluhy R, Shanmukh S, Morita SI. The application of two-dimensional correlation spectroscopy to surface and interfacial analysis. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Lad MD, Birembaut F, Frazier RA, Green RJ. Protein–lipid interactions at the air/water interface. Phys Chem Chem Phys 2005; 7:3478-85. [PMID: 16273149 DOI: 10.1039/b506558p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.
Collapse
Affiliation(s)
- Mitaben D Lad
- School of Chemistry, The University of Reading, PO Box 224, Whiteknights, Reading, UKRG6 6AD
| | | | | | | |
Collapse
|
21
|
Saccani J, Castano S, Beaurain F, Laguerre M, Desbat B. Stabilization of phospholipid multilayers at the air-water interface by compression beyond the collapse: a BAM, PM-IRRAS, and molecular dynamics study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:9190-9197. [PMID: 15461505 DOI: 10.1021/la0489920] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Compression beyond the collapse of phospholipid monolayers on a modified Langmuir trough has revealed the formation of stable multilayers at the air-water interface. Those systems are relevant new models for studying the properties of biological membranes and for understanding the nature of interactions between membranes and peptides or proteins. The collapse of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-[phospho-l-serine] (DOPS), 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-phosphocholine (DOPC), and 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-[phospho-1-rac-glycerol] (DOPG) monolayers has been investigated by isotherm measurements, Brewster angle microscopy (BAM), and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). In the cases of DMPC and DOPS, the collapse of the monolayers revealed the formation of bilayer and trilayer structures, respectively. The DMPC bilayer stability has been analyzed also by a molecular dynamics study. The collapse of the DOPC and DOPG systems shows a different behavior, and the Brewster angle microscopy reveals the formation of luminous bundles, which can be interpreted as diving multilayers in the subphase.
Collapse
Affiliation(s)
- J Saccani
- Laboratoire de Physico-Chimie Moléculaire, UMR 5803-CNRS, 351 cours de la Libération, 33405 Talence Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Rigler P, Ulrich WP, Vogel H. Controlled immobilization of membrane proteins to surfaces for fourier transform infrared investigations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:7901-7903. [PMID: 15350050 DOI: 10.1021/la049002d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We show that it is possible to immobilize membrane proteins uniformly and reversibly as self-assembled (sub)monolayers on nitrilotriacetic acid-covered sensor surfaces via hexahistidine sequences present either in the protein or in lipid membranes. Fourier transform infrared spectra of such self-assembled (sub)monolayers deliver important structural information of the membrane proteins and are suited to screen the function of cellular receptors.
Collapse
|
23
|
Meister A, Kerth A, Blume A. Interaction of Sodium Dodecyl Sulfate with Dimyristoyl-sn-glycero-3-phosphocholine Monolayers Studied by Infrared Reflection Absorption Spectroscopy. A New Method for the Determination of Surface Partition Coefficients. J Phys Chem B 2004. [DOI: 10.1021/jp0499631] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annette Meister
- Institute of Physical Chemistry, Martin Luther University Halle-Wittenberg, Mühlpforte 1, D-06108 Halle, Germany
| | - Andreas Kerth
- Institute of Physical Chemistry, Martin Luther University Halle-Wittenberg, Mühlpforte 1, D-06108 Halle, Germany
| | - Alfred Blume
- Institute of Physical Chemistry, Martin Luther University Halle-Wittenberg, Mühlpforte 1, D-06108 Halle, Germany
| |
Collapse
|
24
|
Miao W, Du X, Liang Y. Molecular Recognition of 1-(2-Octadecyloxycarbonylethyl)cytosine Monolayers to Guanosine at the Air−Water Interface Investigated by Infrared Reflection−Absorption Spectroscopy. J Phys Chem B 2003. [DOI: 10.1021/jp035880t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wangen Miao
- Key Laboratory of Mesoscopic Chemistry, Ministry of Education, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry, Ministry of Education, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yingqiu Liang
- Key Laboratory of Mesoscopic Chemistry, Ministry of Education, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
25
|
Lavoie H, Blaudez D, Vaknin D, Desbat B, Ocko BM, Salesse C. Spectroscopic [correction of eSpectroscopic] and structural properties of valine gramicidin A in monolayers at the air-water interface. Biophys J 2002; 83:3558-69. [PMID: 12496123 PMCID: PMC1302431 DOI: 10.1016/s0006-3495(02)75356-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Monomolecular films of valine gramicidin A (VGA) were investigated in situ at the air-water interface by x-ray reflectivity and x-ray grazing incidence diffraction as well as polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). These techniques were combined to obtain information on the secondary structure and the orientation of VGA and to characterize the shoulder observed in its pi-A isotherm. The thickness of the film was obtained by x-ray reflectivity, and the secondary structure of VGA was monitored using the frequency position of the amide I band. The PM-IRRAS spectra were compared with the simulated ones to identify the conformation adopted by VGA in monolayer. At large molecular area, VGA shows a disordered secondary structure, whereas at smaller molecular areas, VGA adopts an anti-parallel double-strand intertwined beta(5.6) helical conformation with 30 degrees orientation with respect to the normal with a thickness of 25 A. The interface between bulk water and the VGA monolayer was investigated by x-ray reflectivity as well as by comparing the experimental and the simulated PM-IRRAS spectra on D(2)O and H(2)O, which suggested the presence of oriented water molecules between the bulk and the monolayer.
Collapse
Affiliation(s)
- Hugo Lavoie
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Lavoie H, Desbat B, Vaknin D, Salesse C. Structure of rhodopsin in monolayers at the air-water interface: a PM-IRRAS and X-ray reflectivity study. Biochemistry 2002; 41:13424-34. [PMID: 12416988 DOI: 10.1021/bi026004t] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monomolecular films of the membrane protein rhodopsin have been investigated in situ at the air-water interface by polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and X-ray reflectivity in order to find conditions that retain the protein secondary structure. The spreading of rhodopsin at 0 or 5 mN m(-1) followed by a 30 min incubation time at 21 degrees C resulted in the unfolding of rhodopsin, as evidenced from the large increase of its molecular area, its small monolayer thickness, and the extensive formation of beta-sheets at the expense of the alpha-helices originally present in rhodopsin. In contrast, when spreading is performed at 5 or 10 mN m(-1) followed by an immediate compression at, respectively, 4 or 21 degrees C, the secondary structure of rhodopsin is retained, and the thickness of these films is in good agreement with the size of rhodopsin determined from its crystal structure. The amide I/amide II ratio also allowed to determine that the orientation of rhodopsin only slightly changes with surface pressure and it remains almost unchanged when the film is maintained at 20 mN m(-1) for 120 min at 4 degrees C. In addition, the PM-IRRAS spectra of rod outer segment disk membranes in monolayers suggest that rhodopsin also retained its secondary structure in these films.
Collapse
Affiliation(s)
- Hugo Lavoie
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Québec, Canada
| | | | | | | |
Collapse
|
27
|
Ronzon F, Desbat B, Chauvet JP, Roux B. Behavior of a GPI-anchored protein in phospholipid monolayers at the air-water interface. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1560:1-13. [PMID: 11958771 DOI: 10.1016/s0005-2736(01)00405-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The interaction between alkaline phosphatase (AP), a glycosylphosphatidylinositol (GPI)-anchored protein (AP-GPI), and phospholipids was monitored using Langmuir isotherms and PM-IRRAS spectroscopy. AP-GPI was injected under C16 phospholipid monolayers with either a neutral polar head (1,2-dipalmitoyl-sn-glycero-3-phosphocholine monohydrate (DPPC)) or an anionic polar head (1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS)). The increase in molecular area due to the injection of protein depended on the surface pressure and the type of phospholipid. At all surface pressures, it was highest in the case of DPPS monolayers. The surface elasticity coefficient E, determined from the pi-A diagrams, allowed to deduct that the AP-GPI-phospholipid mixtures presented a molecular arrangement less condensed than the corresponding pure phospholipid films. PM-IRRAS spectra suggested different protein-lipid interactions as a function of the nature of the lipids. AP-GPI modified the organization of the DPPS deuterated chains whereas AP-GPI affected only the polar group of DPPC at low surface pressure (8 mN/m). Different protein hydration layers between the DPPC and DPPS monolayers were suggested to explain these results. PM-IRRAS spectra of AP-GPI in the presence of lipids showed a shape similar to those collected for pure AP-GPI, indicating a similar orientation of AP-GPI in the presence or absence of phospholipids, where the active sites of the enzyme are turned outside of the membrane.
Collapse
Affiliation(s)
- Frédéric Ronzon
- Laboratoire de Physico-Chimie Biologique, UMR 5013, Université Claude Bernard Lyon I, Villeurbanne, France.
| | | | | | | |
Collapse
|
28
|
Ronzon F, Desbat B, Chauvet JP, Roux B. Penetration of a GPI-anchored protein into phospholipid monolayers spread at the air/water interface. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00271-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Wen X, Franses EI. Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film. Colloids Surf A Physicochem Eng Asp 2001. [DOI: 10.1016/s0927-7757(01)00596-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Pemberton JE, Chamberlain JR. Raman spectroscopy of model membrane monolayers of dipalmitoylphosphatidic acid at the air-water interface using surface enhancement from buoyant thin silver films. Biopolymers 2000; 57:103-16. [PMID: 10766961 DOI: 10.1002/(sici)1097-0282(2000)57:2<103::aid-bip7>3.0.co;2-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel method for the acquisition of surface enhanced Raman (SER) spectra of model membranes of dipalmitoylphosphatidic acid (DPPA) in Langmuir layers at the air-water interface is reported. The approach is based on the electrochemical formation of a buoyant thin layer of coalesced silver colloids in the vicinity of the phosphatidic acid head groups at the interface. This Ag layer is an excellent platform for SER scattering, which shows the spectral features from all parts of the molecule and water between the Ag surface and the DPPA layer. The observation of the spectral response from the phosphatidic acid head groups is of particular significance, allowing insight into their chemical state and orientation at the air-water interface.
Collapse
Affiliation(s)
- J E Pemberton
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
31
|
|
32
|
Maget-Dana R. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1462:109-40. [PMID: 10590305 DOI: 10.1016/s0005-2736(99)00203-5] [Citation(s) in RCA: 435] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erudites of the antiquity already knew the calming effect of oil films on the sea waves. But one had to wait until 1774 to read the first scientific report on oil films from B. Franklin and again 1878 to learn the thermodynamic analysis on adsorption developed by J. Gibbs. Then, in 1891, Agnes Pockels described a technique to manipulate oil films by using barriers. Finally, in 1917, I. Langmuir introduced the experimental and theoretical modern concepts on insoluble monolayers. Since that time, and because it has been found to provide invaluable information at the molecular scale, the monolayer technique has been more and more extensively used, and, during the past decade, an explosive increase in the number of publications has occurred. Over the same period, considerable and ever-increasing interest in the antimicrobial peptides of various plants, bacteria, insects, amphibians and mammals has grown. Because many of these antimicrobial peptides act at the cell membrane level, the monolayer technique is entirely suitable for studying their physicochemical and biological properties. This review describes monolayer experiments performed with some of these antimicrobial peptides, especially gramicidin A, melittin, cardiotoxins and defensin A. After giving a few basic notions of surface chemistry, the surface-active properties of these peptides and their behavior when they are arranged in monomolecular films are reported and discussed in relation to their tridimensional structure and their amphipathic character. The penetration of these antimicrobial peptides into phospholipid monolayer model membranes, as well as their interactions with lipids in mixed films, are also emphasized.
Collapse
Affiliation(s)
- R Maget-Dana
- Centre de Biophysique Moléculaire, rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
33
|
Reflection–absorption FT–IR spectroscopy of vinyl octadecanoate at the air/water interface. Colloids Surf A Physicochem Eng Asp 1999. [DOI: 10.1016/s0927-7757(99)00074-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
|
35
|
Goormaghtigh E, Raussens V, Ruysschaert JM. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:105-85. [PMID: 10393271 DOI: 10.1016/s0304-4157(99)00004-0] [Citation(s) in RCA: 452] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- E Goormaghtigh
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces, P. O. Box 206/2, Université Libre de Bruxelles, Campus Plaine, B-1050, Brussels, Belgium.
| | | | | |
Collapse
|
36
|
Schwarz G, Taylor SE. Polymorphism and interactions of a viral fusion peptide in a compressed lipid monolayer. Biophys J 1999; 76:3167-75. [PMID: 10354441 PMCID: PMC1300285 DOI: 10.1016/s0006-3495(99)77468-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
With a view toward possible new insights into viral fusion mechanisms, we have investigated the HIV-1 gp41 fusion peptide in a monomolecular film of the biomembrane lipid palmitoyloleoylphosphatidylcholine. Its surface activity at an air/water interface was measured under equilibrium conditions, using the conventional Langmuir trough technique. Through a novel thermodynamic analysis, the partial molecular area of the peptide in the lipid moiety could be determined as a function of the lateral pressure and the interfacial peptide/lipid ratio. This indicates an orientation of the peptide backbone parallel to the lipid hydrocarbon tails. The molecular area decreases significantly upon monolayer compression, suggesting a conformational transition from a somewhat compact configuration to a more extended, presumably beta-strand structure when a lipid packing density is approached that is generally believed to mimic the physical state of a biological membrane. Up to a lateral pressure of approximately 15 mN/m, practically all peptide inserts into the lipid monolayer. At higher compression a distinct partitioning into the aqueous subphase is observed. Under these conditions the data also reflect a strong aggregation of the lipid-associated peptide. Beyond a critical peptide/lipid ratio, the peptide's area requirement was found to become substantially enhanced, possibly because of the formation of water-filled pores.
Collapse
Affiliation(s)
- G Schwarz
- Department of Biophysical Chemistry, Biocenter of the University, University of Basel, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
37
|
Lu JR, Su TJ, Thomas RK. Structural Conformation of Bovine Serum Albumin Layers at the Air-Water Interface Studied by Neutron Reflection. J Colloid Interface Sci 1999; 213:426-437. [PMID: 10222084 DOI: 10.1006/jcis.1999.6157] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption of bovine serum albumin (BSA) at the air-water interface has been studied by specular neutron reflection. The variation of the adsorbed amount and the total thickness of the BSA layer with respect to bulk BSA concentration was determined at pH 5, close to its isoelectric point (IP). While the surface excess showed a steady increase with bulk concentration the thickness of the protein layer was found to be close to the short axial length of 40 Å of the globular solution structure of BSA at concentrations below 0.1 g dm-3, suggesting that BSA molecules adsorb with their long axes parallel to the surface of water. At 1 g dm-3 the adsorbed layer can be modeled as an upper layer of 40 Å with a volume fraction of 0.4 and a sublayer of 30 Å underneath the top main layer with a volume fraction of 0.12. The results suggest that, although there is some structural deformation accompanying adsorption, there is no denaturation. The extent of immersion of the BSA in water was determined by performing the measurements in D2O and in a mixture of H2O and D2O whose contrast matches that of BSA. The signal is then only from the part of the layer out of water. At pH 5 this layer was about 10 +/- 5 Å at a bulk concentration of 5 x 10(-4) g dm-3 and decreased to 5 +/- 3 Å at 1 g dm-3. The fraction of the BSA layer immersed in water therefore varies from about 70 to over 90%. The effect of pH on the adsorption was examined at two BSA concentrations. While pH had little effect on the adsorption at a low BSA concentration of 5 x 10(-3) g dm-3, both surface excess and layer thickness showed pronounced peaks at pH 5 at the higher concentration of 1 g dm-3. The increased adsorption at pH 5 is attributed to the reduced lateral electrostatic repulsion around the IP. This adsorption pattern became less pronounced when the total ionic strength was increased from 0.02 to 1 M, indicating that the electrolyte screens the electrostatic repulsions within the adsorbed layer. Copyright 1999 Academic Press.
Collapse
Affiliation(s)
- JR Lu
- Department of Chemistry, University of Surrey, Guildford, GU2 5XH, United Kingdom
| | | | | |
Collapse
|
38
|
Wu F, Flach CR, Seaton BA, Mealy TR, Mendelsohn R. Stability of annexin V in ternary complexes with Ca2+ and anionic phospholipids: IR studies of monolayer and bulk phases. Biochemistry 1999; 38:792-9. [PMID: 9888820 DOI: 10.1021/bi9819677] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Annexin V (AxV) is a member of a family of proteins that exhibit functionally relevant Ca2+-dependent binding to anionic phospholipid membranes. Protein structure and stability as a function of Ca2+ and phospholipids was studied by bulk phase infrared (IR) spectroscopy and by IR reflection-absorption spectroscopy (IRRAS) of monolayers in situ at the air/water (A/W) interface. Bulk phase experiments revealed that AxV undergoes an irreversible thermal denaturation at approximately 45-50 degreesC, as shown by the appearance of amide I bands at 1617 and 1682 cm-1. However, some native secondary structure is retained, even at 60 degreesC, consistent with a partially unfolded "molten globule" state. Formation of the Ca2+/phospholipid/protein ternary complex significantly protects the protein from thermal denaturation as compared to AxV alone, Ca2+/AxV, or lipid/AxV mixtures. Stabilization of AxV secondary structure by a DMPA monolayer in the presence of Ca2+ was also observed by IRRAS. Spectra of an adsorbed AxV film in the presence or absence of Ca2+ showed a 10 cm-1 shift in the amide I mode, corresponding to loss of ordered structure at the A/W interface. In both the bulk phase and IRRAS experiments, protection against H-->D exchange in AxV was enhanced only in the ternary complex. The combined data suggest that the secondary structure of AxV is strongly affected by the Ca2+/membrane component of the ternary complex whereas lipid conformational order is unchanged by protein.
Collapse
Affiliation(s)
- F Wu
- Department of Chemistry, Newark College, Rutgers University, New Jersey 07102, USA
| | | | | | | | | |
Collapse
|
39
|
Castano S, Desbat B, Laguerre M, Dufourcq J. Structure, orientation and affinity for interfaces and lipids of ideally amphipathic lytic LiKj(i=2j) peptides. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1416:176-94. [PMID: 9889361 DOI: 10.1016/s0005-2736(98)00220-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The behavior of lytic ideally amphipathic peptides of generic composition LiKj(i=2j) and named LKn, n=i+j, is investigated in situ by the monolayer technique combined with the recently developed polarization modulation IR spectroscopy (PMIRRAS). A change in the secondary structure occurs versus peptide length. Peptides longer than 12 residues fold into alpha-helices at interfaces as expected from their design, while enough shorter peptides, from 9 down to 5 residues, form intermolecular antiparallel beta-sheets. Analysis of experimental and calculated PMIRRAS spectra in the amide I and II regions show that peptides are flat oriented at the interfaces. Structures and orientation are preserved whatever the nature of the interface, air/water or DMPC monolayer, and the lateral pressure. Peptide partition constants, KaffPi, are estimated from isobar surface increases of DMPC monolayers. They strongly increase when Pi decreases from 30 mN/m to 8 mN/m and they vary with peptide length with an optimum for 12 residues. This non-monotonous dependence fits with data obtained in bilayers and follows the hemolytic activity of the peptides. Lipid perturbations due to peptide insertion essentially detected on the PO4- and CO bands indicate disorder of the lipid head groups. Lysis induced on membranes by such peptides is proposed to first result from their flat asymmetric insertion.
Collapse
Affiliation(s)
- S Castano
- Centre de Recherche Paul Pascal, CNRS, Avenue A. Schweitzer, 33600, Pessac, France
| | | | | | | |
Collapse
|
40
|
Sinnamon B, Dluhy R, Barnes G. Reflection–absorption FT-IR spectroscopy of pentadecanoic acid at the air/water interface. Colloids Surf A Physicochem Eng Asp 1999. [DOI: 10.1016/s0927-7757(98)00866-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
R. Lu J. Chapter 2. Neutron reflection study of globular protein adsorption at planar interfaces. ACTA ACUST UNITED AC 1999. [DOI: 10.1039/pc095003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Dicko A, Bourque H, Pézolet M. Study by infrared spectroscopy of the conformation of dipalmitoylphosphatidylglycerol monolayers at the air–water interface and transferred on solid substrates. Chem Phys Lipids 1998. [DOI: 10.1016/s0009-3084(98)00084-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Wu F, Gericke A, Flach CR, Mealy TR, Seaton BA, Mendelsohn R. Domain structure and molecular conformation in annexin V/1,2-dimyristoyl-sn-glycero-3-phosphate/Ca2+ aqueous monolayers: a Brewster angle microscopy/infrared reflection-absorption spectroscopy study. Biophys J 1998; 74:3273-81. [PMID: 9635781 PMCID: PMC1299668 DOI: 10.1016/s0006-3495(98)78034-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Annexins comprise a family of proteins that exhibit a Ca2+-dependent binding to phospholipid membranes that is possibly relevant to their in vivo function. Although substantial structural information about the ternary (protein/lipid/Ca2+) interaction in bulk phases has been derived from a variety of techniques, little is known about the temporal and spatial organization of ternary monolayer films. The effect of Ca2+ on the interactions between annexin V (AxV) and anionic DMPA monolayers was therefore investigated using three complementary approaches: surface pressure measurements, infrared reflection-absorption spectroscopy (IRRAS), and Brewster angle microscopy (BAM). In the absence of Ca2+, the injection of AxV into an aqueous subphase beneath a DMPA monolayer initially in a liquid expanded phase produced BAM images revealing domains of protein presumably surrounded by liquid-expanded lipid. The protein-rich areas expanded with time, resulting in reduction of the area available to the DMPA and, eventually, in the formation of condensed lipid domains in spatial regions separate from the protein film. There was thus no evidence for a specific binary AxV/lipid interaction. In contrast, injection of AxV/Ca2+ at a total Ca2+ concentration of 10 microM beneath a DMPA monolayer revealed no pure protein domains, but rather the slow formation of pinhead structures. This was followed by slow (>2 h) rigidification of the whole film accompanied by an increase in surface pressure, and connection of solid domains to form a structure resembling strings of pearls. These changes were characteristic of this specific ternary interaction. Acyl chain conformational order of the DMPA, as measured by nu(sym)CH2 near 2850 cm(-1), was increased in both the AxV/DMPA and AxV/DMPA/Ca2+ monolayers compared to either DMPA monolayers alone or in the presence of Ca2+. The utility of the combined structural and temporal information derived from these three complementary techniques for the study of monolayers in situ at the air/water interface is evident from this work.
Collapse
Affiliation(s)
- F Wu
- Department of Chemistry, Newark College of Arts and Sciences, Rutgers University, New Jersey 07102, USA
| | | | | | | | | | | |
Collapse
|
44
|
Dieudonné, D, Gericke A, Flach CR, Jiang X, Farid RS, Mendelsohn R. Propensity for Helix Formation in the Hydrophobic Peptides K2(LA)x (x = 6, 8, 10, 12) in Monolayer, Bulk, and Lipid-Containing Phases. Infrared and Circular Dichroism Studies. J Am Chem Soc 1998. [DOI: 10.1021/ja9724046] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Darline Dieudonné,
- Contribution from the Department of Chemistry, Rutgers University, Newark College of Arts and Science, 73 Warren Street, Newark, New Jersey 07102
| | - Arne Gericke
- Contribution from the Department of Chemistry, Rutgers University, Newark College of Arts and Science, 73 Warren Street, Newark, New Jersey 07102
| | - Carol R. Flach
- Contribution from the Department of Chemistry, Rutgers University, Newark College of Arts and Science, 73 Warren Street, Newark, New Jersey 07102
| | - Xin Jiang
- Contribution from the Department of Chemistry, Rutgers University, Newark College of Arts and Science, 73 Warren Street, Newark, New Jersey 07102
| | - Ramy S. Farid
- Contribution from the Department of Chemistry, Rutgers University, Newark College of Arts and Science, 73 Warren Street, Newark, New Jersey 07102
| | - Richard Mendelsohn
- Contribution from the Department of Chemistry, Rutgers University, Newark College of Arts and Science, 73 Warren Street, Newark, New Jersey 07102
| |
Collapse
|