1
|
Ertl F, Kopanchuk S, Dijon NC, Veikšina S, Tahk MJ, Laasfeld T, Schettler F, Gattor AO, Hübner H, Archipowa N, Köckenberger J, Heinrich MR, Gmeiner P, Kutta RJ, Holliday ND, Rinken A, Keller M. Dually Labeled Neurotensin NTS 1R Ligands for Probing Radiochemical and Fluorescence-Based Binding Assays. J Med Chem 2024; 67:16664-16691. [PMID: 39261089 PMCID: PMC11440508 DOI: 10.1021/acs.jmedchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The determination of ligand-receptor binding affinities plays a key role in the development process of pharmaceuticals. While the classical radiochemical binding assay uses radioligands, fluorescence-based binding assays require fluorescent probes. Usually, radio- and fluorescence-labeled ligands are dissimilar in terms of structure and bioactivity, and can be used in either radiochemical or fluorescence-based assays. Aiming for a close comparison of both assay types, we synthesized tritiated fluorescent neurotensin receptor ligands ([3H]13, [3H]18) and their nontritiated analogues (13, 18). The labeled probes were studied in radiochemical and fluorescence-based (high-content imaging, flow cytometry, fluorescence anisotropy) binding assays. Equilibrium saturation binding yielded well-comparable ligand-receptor affinities, indicating that all these setups can be used for the screening of new drugs. In contrast, discrepancies were found in the kinetic behavior of the probes, which can be attributed to technical differences of the methods and require further studies with respect to the elucidation of the underlying mechanisms.
Collapse
Affiliation(s)
- Fabian
J. Ertl
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Nicola C. Dijon
- School
of Life Sciences, University of Nottingham,
Queen’s Medical Centre, Nottingham NG7 2UH, U.K.
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Franziska Schettler
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraβe
31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Roger J. Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Nicholas D. Holliday
- School
of Life Sciences, University of Nottingham,
Queen’s Medical Centre, Nottingham NG7 2UH, U.K.
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
3
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Inavalli VVGK, Puente Muñoz V, Draffin JE, Tønnesen J. Fluorescence microscopy shadow imaging for neuroscience. Front Cell Neurosci 2024; 18:1330100. [PMID: 38425431 PMCID: PMC10902105 DOI: 10.3389/fncel.2024.1330100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Fluorescence microscopy remains one of the single most widely applied experimental approaches in neuroscience and beyond and is continuously evolving to make it easier and more versatile. The success of the approach is based on synergistic developments in imaging technologies and fluorophore labeling strategies that have allowed it to greatly diversify and be used across preparations for addressing structure as well as function. Yet, while targeted labeling strategies are a key strength of fluorescence microscopy, they reciprocally impose general limitations on the possible types of experiments and analyses. One recent development that overcomes some of these limitations is fluorescence microscopy shadow imaging, where membrane-bound cellular structures remain unlabeled while the surrounding extracellular space is made to fluoresce to provide a negative contrast shadow image. When based on super-resolution STED microscopy, the technique in effect provides a positive image of the extracellular space geometry and entire neuropil in the field of view. Other noteworthy advantages include the near elimination of the adverse effects of photobleaching and toxicity in live imaging, exhaustive and homogeneous labeling across the preparation, and the ability to apply and adjust the label intensity on the fly. Shadow imaging is gaining popularity and has been applied on its own or combined with conventional positive labeling to visualize cells and synaptic proteins in their parenchymal context. Here, we highlight the inherent limitations of fluorescence microscopy and conventional labeling and contrast these against the pros and cons of recent shadow imaging approaches. Our aim is to describe the brief history and current trajectory of the shadow imaging technique in the neuroscience field, and to draw attention to its ease of application and versatility.
Collapse
Affiliation(s)
| | - Virginia Puente Muñoz
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neuronal Excitability Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jonathan E. Draffin
- Neuronal Excitability Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Aligning Science Across Parkinson’s (ASAP), Collaborative Research Network, Chevy Chase, MD, United States
| | - Jan Tønnesen
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neuronal Excitability Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Aligning Science Across Parkinson’s (ASAP), Collaborative Research Network, Chevy Chase, MD, United States
- Instituto Biofisika (CSIC/UPV), Leioa, Spain
| |
Collapse
|
5
|
Gu K, Yu C, Zhou W, Liu C. In Operando Visualization of Elementary Turnovers in Photocatalytic Organic Synthesis. J Phys Chem Lett 2024; 15:717-724. [PMID: 38214912 DOI: 10.1021/acs.jpclett.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We report the in operando visualization of the photocatalytic turnovers on single eosin Y (EY) through a redox-induced photoblinking phenomenon. The photocatalytic cyclization of thiobenzamide (TB) catalyzed by EY was investigated. The analysis of the intensity-versus-time trajectories of single EYs revealed the kinetics and dynamics of the elementary photocatalytic turnovers and the heterogeneity of the activity of individual EYs. The quenching turnover time showed a fast population and a slow population, which could be attributed to the singlet and triplet states of photoexcited EY. The slow quenching turnovers were more dominant at higher TB concentrations. The activity heterogeneity of EYs was studied over a series of reactant concentrations. Excess quenching reagent was found to decrease the percentage of active EYs. The method can be broadly applied to studying the elementary processes of photocatalytic organic reactions in operando.
Collapse
Affiliation(s)
- Kai Gu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Christina Yu
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wenqiao Zhou
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Chunming Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Lu S, Chemla YR. Optical traps induce fluorophore photobleaching by two-photon excitation. Biophys J 2023; 122:4316-4325. [PMID: 37828742 PMCID: PMC10698272 DOI: 10.1016/j.bpj.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Techniques combining optical tweezers with fluorescence microscopy have become increasingly popular. Unfortunately, the high-power, infrared lasers used to create optical traps can have a deleterious effect on dye stability. Previous studies have shown that dye photobleaching is enhanced by absorption of visible fluorescence excitation plus infrared trap photons, a process that can be significantly reduced by minimizing simultaneous exposure to both light sources. Here, we report another photobleaching pathway that results from direct excitation by the trapping laser alone. Our results show that this trap-induced fluorescence loss is a two-photon absorption process, as demonstrated by a quadratic dependence on the intensity of the trapping laser. We further show that, under conditions typical of many trap-based experiments, fluorescence emission of certain fluorophores near the trap focus can drop by 90% within 1 min. We investigate how photostability is affected by the choice of dye molecule, excitation and emission wavelength, and labeled molecule. Finally, we discuss the different photobleaching pathways in combined trap-fluorescence measurements, which guide the selection of optimal dyes and conditions for more robust experimental protocols.
Collapse
Affiliation(s)
- Suoang Lu
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yann R Chemla
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center of the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
7
|
Bard JP, Bolton SG, Howard HJ, McNeill JN, de Faria TP, Zakharov LN, Johnson DW, Pluth MD, Haley MM. 2-λ 5-Phosphaquinolin-2-ones as Non-cytotoxic, Targetable, and pH-Stable Fluorophores. J Org Chem 2023; 88:15516-15522. [PMID: 37852231 DOI: 10.1021/acs.joc.3c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Several phosphaquinolinone derivatives have been synthesized and characterized to explore their usefulness in the realm of cell imaging. Solution-state photophysical properties in both aqueous and organic solutions were collected for these derivatives. Additionally, CCK-8 cell viability assays and fluorescent imaging in HeLa cells incubated with the new heterocyclic derivatives show evidence of favorable cell permeability, cell viability, and moderate intracellular localization when appended with the well-known morpholine targeting motif.
Collapse
Affiliation(s)
- Jeremy P Bard
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
- Department of Chemistry, Washington College, Chestertown, Maryland 21620-1438, United States
| | - Sarah G Bolton
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Holden J Howard
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - J Nolan McNeill
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Thaís P de Faria
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lev N Zakharov
- CAMCOR, University of Oregon, Eugene, Oregon 97403-1433, United States
| | - Darren W Johnson
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
8
|
Gidi Y, Ramos-Sanchez J, Lovell TC, Glembockyte V, Cheah IK, Schnermann MJ, Halliwell B, Cosa G. Superior Photoprotection of Cyanine Dyes with Thio-imidazole Amino Acids. J Am Chem Soc 2023; 145:19571-19577. [PMID: 37658476 DOI: 10.1021/jacs.3c03058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Preventing fluorophore photobleaching and unwanted blinking is crucial for single-molecule fluorescence (SMF) studies. Reductants achieve photoprotection via quenching excited triplet states, yet either require counteragents or, for popular alkyl-thiols, are limited to cyanine dye Cy3 protection. Here, we provide mechanistic and imaging results showing that the naturally occurring amino acid ergothioneine and its analogue dramatically enhance photostability for Cy3, Cy5, and their conformationally restrained congeners, providing a biocompatible universal solution for demanding fluorescence imaging.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sanchez
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Terri C Lovell
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Viktorija Glembockyte
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Martin J Schnermann
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
9
|
Yang P, Zhang Q, Zhang Y, Zhang H, Zhao J, Shi H, Liang L, Huang Y, Zheng Z, Yang H. Aggregation Triggers Red/Near-Infrared Light Hydrogen Production of Organic Dyes with High Efficiency. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Pengju Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hongxia Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jianghong Zhao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Linfeng Liang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yamin Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhanfeng Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Trifoi LA, Dogantzis NP, Hodgson GK, Ortiz PD, Soha SA, Antonescu CN, Botelho RJ, Wylie RS, Impellizzeri S. Single-colour, visible light activation and excitation of the luminescence of a ‘switch-on’ dye and enhancement by silver nanoparticles. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Lee H, Lee S, Han MS. Turn-On Fluorescent pH Probes for Monitoring Alkaline pHs Using Bis[2-(2'-hydroxyphenyl)benzazole] Derivatives. SENSORS (BASEL, SWITZERLAND) 2023; 23:2044. [PMID: 36850652 PMCID: PMC9965889 DOI: 10.3390/s23042044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
For surveilling human health, industries, and the environment, pH monitoring is important. Numerous studies on fluorescent probes have been conducted to monitor various pH ranges. However, fluorescent probes that are capable of sensing alkaline regions are rare. In this study, we propose turn-on-type fluorescent probes for detecting alkaline pHs using bis[2-(2'-hydroxyphenyl)benzazole] (bis(HBX)) derivatives. These probes have high pKa values (from 9.7 to 10.8) and exhibit strong fluorescence intensity and color changes at alkaline pHs. Probes derived from bis(HBX) exhibit good photostability, reversibility, and anti-interference toward pH variations, which can be identified as a certain fluorescence change toward a basic pH. Therefore, compounds would be advantageous to use fluorescent probes for monitoring alkaline pH changes.
Collapse
|
12
|
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Mol Imaging Biol 2023; 25:240-264. [PMID: 36745354 DOI: 10.1007/s11307-023-01800-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.
Collapse
|
13
|
Reaction Monitoring of Rose Bengal Photodegradation in Alcohols using Multivariate Frequency-Domain Dynamic Fluorescence. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Tran Q, Osabe K, Entani T, Wazawa T, Hattori M, Nagai T. Application of Green-enhanced Nano-lantern as a bioluminescent ratiometric indicator for measurement of Arabidopsis thaliana root apoplastic fluid pH. PLANT, CELL & ENVIRONMENT 2022; 45:3157-3170. [PMID: 35864560 PMCID: PMC9542637 DOI: 10.1111/pce.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant root absorbs water and nutrients from the soil, and the root apoplastic fluid (AF) is an important intermediate between cells and the surrounding environment. The acid growth theory suggests that an acidic AF is needed for cell wall expansion during root growth. However, technical limitations have precluded the quantification of root apoplastic fluid pH (AF-pH). Here, we used Green-enhanced Nano-lantern (GeNL), a chimeric protein of the luciferase NanoLuc (Nluc) and the green fluorescent protein mNeonGreen (mNG), as a ratiometric pH indicator based on the pH dependency of bioluminescence resonance energy transfer efficiency from Nluc to mNG. Luminescence spectrum of GeNL changed reciprocally from pH 4.5 to 7.5, with a pKa of 5.5. By fusing GeNL to a novel signal peptide from Arabidopsis thaliana Cellulase 1, we localised GeNL in A. thaliana AF. We visualised AF dynamics at subcellular resolution over 30 min and determined flow velocity in the maturation zone to be 0.97± 0.06 μm/s. We confirmed that the developing root AF is acidic in the pH range of 5.1-5.7, suggesting that the AF-pH is tightly regulated during root elongation. These results support the acid growth theory and provide evidence for AF-pH maintenance despite changes in ambient pH.
Collapse
Affiliation(s)
- Quang Tran
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Kenji Osabe
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Tetsuyuki Entani
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| |
Collapse
|
15
|
Shigemitsu H, Ohkubo K, Sato K, Bunno A, Mori T, Osakada Y, Fujitsuka M, Kida T. Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly. JACS AU 2022; 2:1472-1478. [PMID: 35783162 PMCID: PMC9241013 DOI: 10.1021/jacsau.2c00243] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 05/09/2023]
Abstract
Photosensitizers (PSs) are critical substances with considerable potential for use in non-invasive photomedicine. Type I PSs, which generate reactive radical species by electron transfer from the excited state induced via photoirradiation, attracted much attention because of their suitability for photodynamic therapy (PDT) irrespective of the oxygen concentration. However, most organic PSs are type II, which activates only oxygen, generating singlet oxygen (1O2) via energy transfer from the triplet state. Here, we proposed a strategy to form type I supramolecular PSs (SPSs) utilizing the charge-separated state induced by self-assembly. This was demonstrated using a supramolecular assembly of fluorescein, which is a type II PS in the monomeric state; however, it changes to a type I SPS via self-assembly. The switching mechanism from type II to I via self-assembly was clarified using photophysical and electrochemical analyses, with the type I SPS exhibiting significant PDT effects on cancer cells. This study provides a promising approach for the development of type I PSs based on supramolecular assemblies.
Collapse
Affiliation(s)
- Hajime Shigemitsu
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Frontier
Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Integrated
Frontier Research for Medical Science Division, Institute for Open
and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| | - Kei Ohkubo
- Institute
for Advanced Co-creation Studies, Osaka
University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhide Sato
- Department
of Respiratory Medicine, Nagoya University
Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Institute
for Advanced Research, Nagoya University, Nagoya, Aichi, 464-0814, Japan
| | - Asuka Bunno
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Tadashi Mori
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Yasuko Osakada
- Institute
for Advanced Co-creation Studies, Osaka
University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- The
Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- The
Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Toshiyuki Kida
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Integrated
Frontier Research for Medical Science Division, Institute for Open
and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1
Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
16
|
Im H, Heo E, Song DH, Park J, Park H, Kang K, Chang JB. Fabrication of heterogeneous chemical patterns on stretchable hydrogels using single-photon lithography. SOFT MATTER 2022; 18:4402-4413. [PMID: 35635476 DOI: 10.1039/d2sm00253a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Curved hydrogel surfaces bearing chemical patterns are highly desirable in various applications, including artificial blood vessels, wearable electronics, and soft robotics. However, previous studies on the fabrication of chemical patterns on hydrogels employed two-photon lithography, which is still not widely accessible to most laboratories. This work demonstrates a new patterning technique for fabricating curved hydrogels with chemical patterns on their surfaces without two-photon microscopy. In this work, we show that exposing hydrogels in fluorophore solutions to single photons via confocal microscopy enables the patterning of fluorophores on hydrogels. By applying this technique to highly stretchable hydrogels, we demonstrate three applications: (1) improving pattern resolution by fabricating patterns on stretched hydrogels and then returning the hydrogels to their initial, unstretched length; (2) modifying the local stretchability of hydrogels at a microscale resolution; and (3) fabricating perfusable microchannels with chemical patterns by winding chemically patterned hydrogels around a template, embedding the hydrogels in a second hydrogel, and then removing the template. The patterning method demonstrated in this work may facilitate a better mimicking of the physicochemical properties of organs in tissue engineering and may be used to make hydrogel robots with specific chemical functionalities.
Collapse
Affiliation(s)
- Haeseong Im
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Eunseok Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Dae-Hyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jeongwon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Hyeonbin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
17
|
Tasso TT, Baptista MS. Photosensitized Oxidation of Intracellular Targets: Understanding the Mechanisms to Improve the Efficiency of Photodynamic Therapy. Methods Mol Biol 2022; 2451:261-283. [PMID: 35505023 DOI: 10.1007/978-1-0716-2099-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of improved photosensitizers is a key aspect in the establishment of photodynamic therapy (PDT) as a reliable treatment modality. In this chapter, we discuss how molecular design can lead to photosensitizers with higher selectivity and better efficiency, with focus on the importance of specific intracellular targeting in determining the cell death mechanism and, consequently, the PDT outcome.
Collapse
Affiliation(s)
- Thiago Teixeira Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Carravilla P, Dasgupta A, Zhurgenbayeva G, Danylchuk DI, Klymchenko AS, Sezgin E, Eggeling C. Long-term STED imaging of membrane packing and dynamics by exchangeable polarity-sensitive dyes. BIOPHYSICAL REPORTS 2021; 1:None. [PMID: 34939048 PMCID: PMC8651516 DOI: 10.1016/j.bpr.2021.100023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022]
Abstract
Understanding the plasma membrane nanoscale organization and dynamics in living cells requires microscopy techniques with high spatial and temporal resolution that permit for long acquisition times and allow for the quantification of membrane biophysical properties, such as lipid ordering. Among the most popular super-resolution techniques, stimulated emission depletion (STED) microscopy offers one of the highest temporal resolutions, ultimately defined by the scanning speed. However, monitoring live processes using STED microscopy is significantly limited by photobleaching, which recently has been circumvented by exchangeable membrane dyes that only temporarily reside in the membrane. Here, we show that NR4A, a polarity-sensitive exchangeable plasma membrane probe based on Nile red, permits the super-resolved quantification of membrane biophysical parameters in real time with high temporal and spatial resolution as well as long acquisition times. The potential of this polarity-sensitive exchangeable dye is showcased by live-cell real-time three-dimensional STED recordings of bleb formation and lipid exchange during membrane fusion as well as by STED-fluorescence correlation spectroscopy experiments for the simultaneous quantification of membrane dynamics and lipid packing that correlate in model and live-cell membranes.
Collapse
Affiliation(s)
- Pablo Carravilla
- Leibniz Institute of Photonic Technology e.V., Jena, Germany
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
| | - Anindita Dasgupta
- Leibniz Institute of Photonic Technology e.V., Jena, Germany
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Dmytro I. Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Christian Eggeling
- Leibniz Institute of Photonic Technology e.V., Jena, Germany
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Jena Center for Soft Matter, Jena, Germany
| |
Collapse
|
19
|
Sources of Variability in the Response of Labeled Microspheres and B Cells during the Analysis by a Flow Cytometer. Int J Mol Sci 2021; 22:ijms22158256. [PMID: 34361020 PMCID: PMC8348946 DOI: 10.3390/ijms22158256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
A stochastic model of the flow cytometer measurement process was developed to assess the nature of the observed coefficient of variation (CV%) of the mean fluorescence intensity (MFI) from a population of labeled microspheres (beads). Several sources of variability were considered: the total number of labels on a bead, the path through the laser beam, the optical absorption cross-section, the quantum yield, the numerical aperture of the collection optics, and the photoelectron conversion efficiency of the photomultiplier (PMT) cathode. The variation in the number of labels on a bead had the largest effect on the CV% of the MFI of the bead population. The variation in the path of the bead through the laser beam was minimized using flat-top lasers. The variability in the average optical properties of the labels was of minor importance for beads with sufficiently large number of labels. The application of the bead results to the measured CV% of labeled B cells indicated that the measured CV% was a reliable measure of the variability of antibodies bound per cell. With some modifications, the model can be extended to multicolor flow cytometers and to the study of CV% from cells with low fluorescence signal.
Collapse
|
20
|
Lisovskaya A, Carmichael I, Harriman A. Pulse Radiolysis Investigation of Radicals Derived from Water-Soluble Cyanine Dyes: Implications for Super-resolution Microscopy. J Phys Chem A 2021; 125:5779-5793. [PMID: 34165985 DOI: 10.1021/acs.jpca.1c03776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-induced blinking, an inherent feature of many forms of super-resolution microscopy, has been linked to transient reduction of the fluorescent cyanine dye used as an imaging agent. There is, however, only scant literature information related to one-electron reduced cyanine dyes, especially in an aqueous environment. Here, we examine a small series of cyanine dyes, possessing disparate π-conjugation lengths, under selective reducing or oxidizing conditions. The experiment allows recording of both differential absorption spectra and decay kinetics of the resultant one-electron reduced or oxidized transient species in water. Relative to the ground state, absorption transitions for the various radicals are weak and somewhat broadened but do allow correlation with the π-conjugation length. In all cases, absorption maxima lie to the blue of the main ground-state transition. Under anaerobic conditions, the transient species decay on the microsecond to millisecond time scale, with the mean lifetime depending on molecular structure, radiation dose, and dye concentration. The experimental absorption spectra recorded for the one-electron reduced radicals and the presumed dimer cation radical compare well to spectra obtained from time-dependent density functional theory calculations. The results allow conclusions to be drawn regarding the plausibility of the reduced species being responsible for light-induced blinking in direct stochastic optical reconstruction microscopy.
Collapse
Affiliation(s)
- Alexandra Lisovskaya
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ian Carmichael
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anthony Harriman
- Molecular Photonics Laboratory, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
21
|
Ghithan JH, Noel JM, Roussel TJ, McCall MA, Alphenaar BW, Mendes SB. Photobleaching reduction in modulated super-resolution microscopy. Microscopy (Oxf) 2021; 70:278-288. [PMID: 33064828 DOI: 10.1093/jmicro/dfaa062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Important breakthroughs in far-field imaging techniques have been made since the first demonstrations of stimulated emission depletion (STED) microscopy. To date, the most straightforward and widespread deployment of STED microscopy has used continuous wave (CW) laser beams for both the excitation and depletion of fluorescence emission. A major drawback of the CW STED imaging technique has been photobleaching effects due to the high optical power needed in the depletion beam to reach sub-diffraction resolution. To overcome this hurdle, we have applied a synchronous detection approach based on modulating the excitation laser beam, while keeping the depletion beam at CW operation, and frequency filtering the collected signal with a lock-in amplifier to record solely the super-resolved fluorescence emission. We demonstrate here that such approach allows an important reduction in the optical power of both laser beams that leads to measurable decreases in photobleaching effects in STED microscopy. We report super-resolution images with relatively low powers for both the excitation and depletion beams. In addition, typical unwanted scattering effects and background signal generated from the depletion beam, which invariably arises from mismatches in refractive index in the material composing the sample, are largely reduced by using the modulated STED approach. The capability of acquiring super-resolution images with relatively low power is quite relevant for studying a variety of samples, but particularly important for biological species as exemplified in this work.
Collapse
Affiliation(s)
- Jafar H Ghithan
- University of Louisville, Department of Physics and Astronomy, 215 Eastern Pkwy, Louisville, Kentucky, United States, 40292
| | - Jennifer M Noel
- University of Louisville, Department of Anatomical Sciences and Neurobiology, 511 South Floyd, Louisville, Kentucky, United States, 40202
| | - Thomas J Roussel
- University of Louisville, Department of Bioengineering, J. B. Speed School of Engineering, Louisville, Kentucky, United States, 40292
| | - Maureen A McCall
- University of Louisville, Department of Ophthalmology and Visual Sciences, 301 E. Muhammad Ali Blvd., Louisville, Kentucky, United States, 40202
| | - Bruce W Alphenaar
- University of Louisville, Department of Electrical Engineering, J. B. Speed School of Engineering, Louisville, Kentucky, United States, 40292
| | - Sergio B Mendes
- University of Louisville, Department of Physics and Astronomy, 215 Eastern Pkwy, Louisville, Kentucky, United States, 40292
| |
Collapse
|
22
|
Yang H, Mecha MF, Goebel CP, Cavagnero S. Enhanced nuclear-spin hyperpolarization of amino acids and proteins via reductive radical quenchers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106912. [PMID: 33524671 PMCID: PMC7925436 DOI: 10.1016/j.jmr.2021.106912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) has recently emerged as an effective tool for the hyperpolarization of aromatic amino acids in solution, either in isolation or within proteins. One factor limiting the maximum achievable signal-to-noise ratio in LC-photo-CIDNP is the progressive degradation of the target molecule and photosensitizer upon long-term optical irradiation. Fortunately, this effect does not cause spectral distortions but leads to a progressively smaller signal buildup upon long-term data-collection (e.g. 500 nM tryptophan on a 600 MHz spectrometer after ca. 200 scans). Given that it is generally desirable to minimize the extent of photodamage, we report that low-μM amounts of the reductive radical quenchers vitamin C (VC, i.e., ascorbic acid) or 2-mercaptoethylamine (MEA) enable LC-photo-CIDNP data to be acquired for significantly longer time than ever possible before. This approach increases the sensitivity of LC-photo-CIDNP by more than 100%, with larger enhancement factors achieved in experiments involving more transients. Our results are consistent with VC and MEA acting primarily by reducing transient free radicals of the NMR molecule of interest, thus attenuating the extent of photodamage. The benefits of this reductive radical-quencher approach are highlighted by the ability to collect long-term high-resolution 2D 1H-13C LC-photo-CIDNP data on a dilute sample of the drkN SH3 protein (5 μM).
Collapse
Affiliation(s)
- Hanming Yang
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Miranda F Mecha
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Collin P Goebel
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Edgecomb J, Xie X, Shao Y, El-Khoury PZ, Johnson GE, Prabhakaran V. Mapping Localized Peroxyl Radical Generation on a PEM Fuel Cell Catalyst Using Integrated Scanning Electrochemical Cell Microspectroscopy. Front Chem 2020; 8:572563. [PMID: 33195059 PMCID: PMC7609508 DOI: 10.3389/fchem.2020.572563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding molecular-level transformations resulting from electrochemical reactions is important in designing efficient and reliable energy technologies. In this work, a novel integrated scanning electrochemical cell microspectroscopy (iSECCMS) capability is developed by combining a high spatial resolution electrochemical scanning probe with in situ fluorescence spectroscopy. Using 6-carboxyfluorescein as a fluorescent probe, the iSECCMS platform is employed to measure the effect of the detrimental generation of reactive oxygen species (ROS) formed at the active sites of oxygen reduction reaction (ORR) catalysts. Carbon-supported tantalum-doped titanium oxide (TaTiOx) catalysts, a potential Pt-group-metal-free (PGM-free) cathode material explored for low temperature polymer electrolyte fuel cells (PEFCs), is used as a representative model ORR system, where generation of intermediate H2O2 instead of fully oxidized H2O is a major concern. We establish that the iSECCMS platform provides a novel and versatile capability for spatially resolved mapping of in situ ROS generation and activity during the kinetically-limited ORR and may, therefore, aid the future characterization and development of high-performance PGM-free PEFC cathodes.
Collapse
Affiliation(s)
| | | | | | | | - Grant E. Johnson
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | |
Collapse
|
24
|
Oxygen- and pH-Dependent Photophysics of Fluorinated Fluorescein Derivatives: Non-Symmetrical vs. Symmetrical Fluorination. SENSORS 2020; 20:s20185172. [PMID: 32927830 PMCID: PMC7570907 DOI: 10.3390/s20185172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
Fluorescein, and derivatives of fluorescein, are often used as fluorescent probes and sensors. In systems where pH is a variable, protonation/deprotonation of the molecule can influence the pertinent photophysics. Fluorination of the xanthene moiety can alter the molecule’s pKa such as to render a probe whose photophysics remains invariant over a wide pH range. Di-fluorination is often sufficient to accomplish this goal, as has been demonstrated with compounds such as Oregon Green in which the xanthene moiety is symmetrically difluorinated. In this work, we synthesized a non-symmetrical difluorinated analog of Oregon Green which we call Athens Green. We ascertained that the photophysics and photochemistry of Athens Green, including the oxygen-dependent photophysics that results in the sensitized production of singlet oxygen, O2(a1Δg), can differ appreciably from the photophysics of Oregon Green. Our data indicate that Athens Green will be a more benign fluorescent probe in systems that involve the production and removal of O2(a1Δg). These results expand the available options in the toolbox of fluorescein-based fluorophores.
Collapse
|
25
|
Gidi Y, Payne L, Glembockyte V, Michie MS, Schnermann MJ, Cosa G. Unifying Mechanism for Thiol-Induced Photoswitching and Photostability of Cyanine Dyes. J Am Chem Soc 2020; 142:12681-12689. [PMID: 32594743 DOI: 10.1021/jacs.0c03786] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cyanines (Cy3, Cy5, Cy3B) are the most utilized dyes for single-molecule fluorescence and localization-based super-resolution imaging. These modalities exploit cyanines' versatile photochemical behavior with thiols. A mechanism reconciling seemingly divergent results and enabling control over cyanine photoreactivity is however missing. Utilizing single-molecule fluorescence on Cy5 and Cy5B, transient-absorption spectroscopy, and DFT modeling on a range of cyanine dyes, herein we show that photoinduced electron transfer (PeT) from a thiolate to Cy in their triplet excited state and then triplet-to-singlet intersystem crossing in the nascent geminate radical pair are crucial steps. Next, a bifurcation occurs, yielding either back electron transfer and regeneration of ground state Cy, required for photostabilization, or Cy-thiol adduct formation, necessary for super-resolution microscopy. Cy regeneration via photoinduced thiol elimination is favored by adduct absorption spectra broadening. Elimination is also shown to occur through an acid-catalyzed reaction. Overall, our work provides a roadmap for designing fluorophores, photoswitching agents, and triplet excited state quenchers for single-molecule and super-resolution imaging.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Liam Payne
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Viktorija Glembockyte
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Megan S Michie
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Laboratory of Chemical Biology, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
26
|
Demissie AA, Dickson RM. Triplet Shelving in Fluorescein and Its Derivatives Provides Delayed, Background-Free Fluorescence Detection. J Phys Chem A 2020; 124:1437-1443. [PMID: 31976677 DOI: 10.1021/acs.jpca.9b11040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence from the xanthene dyes rose bengal, erythrosine B, eosin Y, and fluorescein is modulated by reversibly optically populating and depopulating their long-lived triplet states through coillumination with a second, long-wavelength laser. Here, we show that repumping the S1 state from the triplet generates strong, nanosecond-lived optically activated delayed fluorescence (OADF), microseconds to milliseconds after primary pulsed excitation. This time-delayed emission upon long-wavelength illumination generates fluorescence after triplet shelving and is a major contribution to fluorescence enhancement/modulation. The time-delayed and background-free OADF component is further increased using a >1 μs burst continuous wave excitation scheme to increase the steady-state triplet populations, yielding strong OADF even from strongly emissive fluorescein. Because emission is delayed long after the high-energy primary excitation, yellow-orange fluorescence is readily observed on zero background. As OADF generation depends on the triplet quantum yields and the reverse intersystem crossing rates, we directly probe the usually difficult-to-measure photophysics, create new zero-background detection schemes, and increase OADF through tailored excitation schemes, all improving sensitivity. The excellent match between experiments and simulations demonstrates the promise of these studies for OADF characterization, while enabling us to determine that OADF (in contrast to ground-state recovery and re-excitation) is the major component of fluorescence enhancement for xanthenes studied with triplet quantum yields exceeding 0.1.
Collapse
Affiliation(s)
- Aida A Demissie
- School of Chemistry & Biochemistry and Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0400 , United States
| | - Robert M Dickson
- School of Chemistry & Biochemistry and Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0400 , United States
| |
Collapse
|
27
|
Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc 2020; 8:022001. [PMID: 32028269 DOI: 10.1088/2050-6120/ab7365] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photochemical stability is one of the most important parameters that determine the usefulness of organic dyes in different applications. This Review addresses key factors that determine the dye photostability. It is shown that photodegradation can follow different oxygen-dependent and oxygen-independent mechanisms and may involve both 1S1-3T1 and higher-energy 1Sn-3Tn excited states. Their involvement and contribution depends on dye structure, medium conditions, irradiation power. Fluorescein, rhodamine, BODIPY and cyanine dyes, as well as conjugated polymers are discussed as selected examples illustrating photobleaching mechanisms. The strategies for modulating and improving the photostability are overviewed. They include the improvement of fluorophore design, particularly by attaching protective and anti-fading groups, creating proper medium conditions in liquid, solid and nanoscale environments. The special conditions for biological labeling, sensing and imaging are outlined.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, Leontovicha st. 9, Kyiv 01030, Ukraine. Yuriy Fedkovych National University, Chernivtsi, 58012, Ukraine
| |
Collapse
|
28
|
Vinçon B, Geisler C, Egner A. Pixel hopping enables fast STED nanoscopy at low light dose. OPTICS EXPRESS 2020; 28:4516-4528. [PMID: 32121686 DOI: 10.1364/oe.385174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 05/22/2023]
Abstract
The achievable image quality in fluorescence microscopy and nanoscopy is usually limited by photobleaching. Reducing the light dose imposed on the sample is thus a challenge for all these imaging techniques. Various approaches like CLEM, RESCue, MINFIELD, DyMIN and smart RESOLFT have been presented in the last years and have proven to significantly reduce the required light dose in diffraction-limited as well as super-resolution imaging, thus resulting in less photobleaching and phototoxicity. None of these methods has so far been able to transfer the light dose reduction into a faster recording at pixel dwell times of a few ten microseconds. By implementing a scan system with low latency and large field of view we could directly convert the light dose reduction of RESCue into a shorter acquisition time for STED nanoscopy. In this way, FastRESCue speeds up the acquisition locally up to 10-fold and allows overall for a 5 times faster acquisition at only 20% of the light dose in biological samples.
Collapse
|
29
|
Bainbridge CWA, Engel KE, Jin J. 3D printing and growth induced bending based on PET-RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00600a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated a method for PET-RAFT growth induced bending of a 3D printed strip using visible light, where the growth on one side of the strip causes stress and the strip bends accordingly to reach a more comfortable position.
Collapse
Affiliation(s)
- Chris William Anderson Bainbridge
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| | - Kyle Edward Engel
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| | - Jianyong Jin
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| |
Collapse
|
30
|
Rossi F, Khoo EH, Su X, Thanh NTK. Study of the Effect of Anisotropic Gold Nanoparticles on Plasmonic Coupling with a Photosensitizer for Antimicrobial Film. ACS APPLIED BIO MATERIALS 2019; 3:315-326. [DOI: 10.1021/acsabm.9b00838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francesco Rossi
- Biophysics Group, Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albermarle Street, London W1S 4BS, U.K
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #8-03, Singapore 138634
| | - Eng Huat Khoo
- Institute of High Performance Computing, Electronics and Photonics Department, 1 Fusionopolis Way, Connexis North, #16-16, Singapore 138632
| | - Xiaodi Su
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #8-03, Singapore 138634
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore 117543
- School of Engineering and Science, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs QLD 4556, Australia
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albermarle Street, London W1S 4BS, U.K
| |
Collapse
|
31
|
Yang H, Li H, Liu T. Photobleaching statistics in single-molecule on-/off-time distributions. J Chem Phys 2019; 151:174101. [PMID: 31703494 DOI: 10.1063/1.5126500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The on- and and off-time distributions from fluorescence single-molecule experiments are widely used to extract kinetics parameters with the goal to provide a quantitative description for the molecule's behavior on the ensemble level. Such experiments are inevitably influenced by photobleaching, where the fluorescent probe transitions to a nonemissive state. Yet, it appears that few reports went beyond acknowledging this unavoidable complication; in fact, it has so far been ignored when evaluating off-time distributions. Here, we present a theoretical framework that allows the derivation of analytical equations in which photobleaching kinetics are rigorously incorporated. Unexpectedly, our results indicate that the off-time distribution should be nonexponential even when all the rate processes are single exponential. With the analytical theory understood and demonstrated as easy to implement, such ubiquitous photochemical processes can now be readily included in routine experimental analyses.
Collapse
Affiliation(s)
- Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Hao Li
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Tao Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
32
|
Karlsson JKG, Laude A, Hall MJ, Harriman A. Photo-isomerization of the Cyanine Dye Alexa-Fluor 647 (AF-647) in the Context of dSTORM Super-Resolution Microscopy. Chemistry 2019; 25:14983-14998. [PMID: 31515919 DOI: 10.1002/chem.201904117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Indexed: 02/06/2023]
Abstract
Cyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging. In the absence of a potent sacrificial reductant, light-induced electron transfer and intermediates formed via the metastable, triplet excited state are considered unlikely to play a significant role in the blinking events. Instead, it is found that, under conditions appropriate to dSTORM microscopy, AF-647 undergoes reversible photo-induced isomerization to at least two long-lived dark species. These photo-isomers are characterized spectroscopically and their interconversion probed by computational means. The first-formed isomer is light sensitive and transforms to a longer-lived species in modest yield that could be involved in dSTORM related blinking. Permanent photobleaching of AF-647 occurs with very low quantum yield and is partially suppressed by the anaerobic redox buffer.
Collapse
Affiliation(s)
- Joshua K G Karlsson
- Molecular Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alex Laude
- Bio-Imaging Unit, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Hall
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
33
|
Tasso TT, Schlothauer JC, Junqueira HC, Matias TA, Araki K, Liandra-Salvador É, Antonio FCT, Homem-de-Mello P, Baptista MS. Photobleaching Efficiency Parallels the Enhancement of Membrane Damage for Porphyrazine Photosensitizers. J Am Chem Soc 2019; 141:15547-15556. [DOI: 10.1021/jacs.9b05991] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thiago T. Tasso
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jan C. Schlothauer
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo 05508-000, Brazil
| | - Helena C. Junqueira
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo 05508-000, Brazil
| | - Tiago A. Matias
- Department of Fundamental Chemistry, Chemistry Institute, University of São Paulo, São Paulo 05508-000, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Chemistry Institute, University of São Paulo, São Paulo 05508-000, Brazil
| | - Érica Liandra-Salvador
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil
| | - Felipe C. T. Antonio
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil
| | - Paula Homem-de-Mello
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, Brazil
| | - Mauricio S. Baptista
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
34
|
An alternative framework for fluorescence correlation spectroscopy. Nat Commun 2019; 10:3662. [PMID: 31413259 PMCID: PMC6694112 DOI: 10.1038/s41467-019-11574-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS), is a widely used tool routinely exploited for in vivo and in vitro applications. While FCS provides estimates of dynamical quantities, such as diffusion coefficients, it demands high signal to noise ratios and long time traces, typically in the minute range. In principle, the same information can be extracted from microseconds to seconds long time traces; however, an appropriate analysis method is missing. To overcome these limitations, we adapt novel tools inspired by Bayesian non-parametrics, which starts from the direct analysis of the observed photon counts. With this approach, we are able to analyze time traces, which are too short to be analyzed by existing methods, including FCS. Our new analysis extends the capability of single molecule fluorescence confocal microscopy approaches to probe processes several orders of magnitude faster and permits a reduction of photo-toxic effects on living samples induced by long periods of light exposure. Fluorescence correlation spectroscopy is widely used for in vivo and in vitro applications, yet extracting information from experiments still requires long acquisition times. Here, the authors exploit Bayesian non-parametrics to directly analyze the output of confocal fluorescence experiments thereby probing physical processes on much faster timescales.
Collapse
|
35
|
Nassar SJM, Wills C, Harriman A. Inhibition of the Photobleaching of Methylene Blue by Association with Urea. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sulafa Jamal M. Nassar
- Molecular Photonics Laboratory, SNES- ChemistryNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Corinne Wills
- NMR Laboratory School of Natural and Environmental ScienceNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, SNES- ChemistryNewcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
36
|
Ruba A, Luo W, Kelich J, Tingey M, Yang W. 3D Tracking-Free Approach for Obtaining 3D Super-Resolution Information in Rotationally Symmetric Biostructures. J Phys Chem B 2019; 123:5107-5120. [PMID: 31117612 DOI: 10.1021/acs.jpcb.9b02979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, it is highly desirable but still challenging to obtain high-resolution (<50 nm) three-dimensional (3D) super-resolution information on structures in fixed specimens as well as for dynamic processes in live cells. Here we introduce a simple approach, without using 3D super-resolution microscopy or real-time 3D particle tracking, to estimate 3D sub-diffraction-limited structural or dynamic information in rotationally symmetric biostructures. This is a postlocalization analysis that transforms 2D super-resolution images or 2D single-molecule localization distributions into their corresponding 3D spatial probability distributions on the basis of prior known structural knowledge. This analysis is ideal in cases where the ultrastructure of a cellular structure is known but the substructural localization of a particular (usually mobile) protein is not. The method has been successfully applied to achieve 3D structural and functional sub-diffraction-limited information for 25-300 nm subcellular organelles that meet the rotational symmetry requirement, such as nuclear pore complex, primary cilium, and microtubule. In this Article, we will provide comprehensive analyses of this method by using experimental data and computational simulations. Finally, open source code of the 2D to 3D transformation algorithm (MATLAB) and simulations (Python) have also been developed.
Collapse
Affiliation(s)
- Andrew Ruba
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| | - Wangxi Luo
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| | - Joseph Kelich
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| | - Mark Tingey
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| | - Weidong Yang
- Department of Biology , Temple University , 1900 North 12th Street , Philadelphia , Pennsylvania , United States
| |
Collapse
|
37
|
Gong W, Das P, Samanta S, Xiong J, Pan W, Gu Z, Zhang J, Qu J, Yang Z. Redefining the photo-stability of common fluorophores with triplet state quenchers: mechanistic insights and recent updates. Chem Commun (Camb) 2019; 55:8695-8704. [PMID: 31073568 DOI: 10.1039/c9cc02616a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light microscopy can offer certain advantages over electron microscopy in terms of acquiring detailed insights into the biological/intra-cellular milieu. In recent years, with the development of new fluorescence imaging technologies, it has become extremely important to assess the role of designing appropriate fluorophores in acquiring desired biological information without encountering any untoward hitches. Over the years, external fluorophores have been prevalently used in fluorescence microscopy and single-molecule fluorescence microscopy-based studies. Photostable fluorogenic probes with high extinction coefficients and quantum yields, exhibiting minimum autofluorescence and photobleaching properties, are preferred in single-molecule microscopy as they can tolerate long-term laser exposure. Therefore, the development of triplet state quenchers and/or any other suitable new strategy to ensure the photo-stability of the fluorophores during long-term live cell imaging exercises is highly anticipated. In this feature article, various strategies for stabilizing fluorophores, including the mechanisms of TSQ-induced stabilization, have been thoroughly reviewed considering contemporary literature reports and applications.
Collapse
Affiliation(s)
- Wanjun Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mohammad AS, Adkins CE, Shah N, Aljammal R, Griffith JIG, Tallman RM, Jarrell KL, Lockman PR. Permeability changes and effect of chemotherapy in brain adjacent to tumor in an experimental model of metastatic brain tumor from breast cancer. BMC Cancer 2018; 18:1225. [PMID: 30526520 PMCID: PMC6286543 DOI: 10.1186/s12885-018-5115-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Brain tumor vasculature can be significantly compromised and leakier than that of normal brain blood vessels. Little is known if there are vascular permeability alterations in the brain adjacent to tumor (BAT). Changes in BAT permeability may also lead to increased drug permeation in the BAT, which may exert toxicity on cells of the central nervous system. Herein, we studied permeation changes in BAT using quantitative fluorescent microscopy and autoradiography, while the effect of chemotherapy within the BAT region was determined by staining for activated astrocytes. Methods Human metastatic breast cancer cells (MDA-MB-231Br) were injected into left ventricle of female NuNu mice. Metastases were allowed to grow for 28 days, after which animals were injected fluorescent tracers Texas Red (625 Da) or Texas Red dextran (3 kDa) or a chemotherapeutic agent 14C-paclitaxel. The accumulation of tracers and 14C-paclitaxel in BAT were determined by using quantitative fluorescent microscopy and autoradiography respectively. The effect of chemotherapy in BAT was determined by staining for activated astrocytes. Results The mean permeability of texas Red (625 Da) within BAT region increased 1.0 to 2.5-fold when compared to normal brain, whereas, Texas Red dextran (3 kDa) demonstrated mean permeability increase ranging from 1.0 to 1.8-fold compared to normal brain. The Kin values in the BAT for both Texas Red (625 Da) and Texas Red dextran (3 kDa) were found to be 4.32 ± 0.2 × 105 mL/s/g and 1.6 ± 1.4 × 105 mL/s/g respectively and found to be significantly higher than the normal brain. We also found that there is significant increase in accumulation of 14C-Paclitaxel in BAT compared to the normal brain. We also observed animals treated with chemotherapy (paclitaxel (10 mg/kg), erubilin (1.5 mg/kg) and docetaxel (10 mg/kg)) showed activated astrocytes in BAT. Conclusions Our data showed increased permeation of fluorescent tracers and 14C-paclitaxel in the BAT. This increased permeation lead to elevated levels of activated astrocytes in BAT region in the animals treated with chemotherapy.
Collapse
Affiliation(s)
- Afroz S Mohammad
- Department of Pharmaceutical Sciences, West Virginia University Health Sciences Center, School of Pharmacy, 1 Medical Center Drive, Morgantown, West Virginia, 26506-9050, USA
| | - Chris E Adkins
- Department of Pharmaceutical Sciences, West Virginia University Health Sciences Center, School of Pharmacy, 1 Medical Center Drive, Morgantown, West Virginia, 26506-9050, USA
| | - Neal Shah
- Department of Pharmaceutical Sciences, West Virginia University Health Sciences Center, School of Pharmacy, 1 Medical Center Drive, Morgantown, West Virginia, 26506-9050, USA
| | - Rawaa Aljammal
- Department of Pharmaceutical Sciences, West Virginia University Health Sciences Center, School of Pharmacy, 1 Medical Center Drive, Morgantown, West Virginia, 26506-9050, USA
| | - Jessica I G Griffith
- Department of Pharmaceutical Sciences, West Virginia University Health Sciences Center, School of Pharmacy, 1 Medical Center Drive, Morgantown, West Virginia, 26506-9050, USA
| | - Rachel M Tallman
- Department of Pharmaceutical Sciences, West Virginia University Health Sciences Center, School of Pharmacy, 1 Medical Center Drive, Morgantown, West Virginia, 26506-9050, USA
| | - Katherine L Jarrell
- Department of Pharmaceutical Sciences, West Virginia University Health Sciences Center, School of Pharmacy, 1 Medical Center Drive, Morgantown, West Virginia, 26506-9050, USA
| | - Paul R Lockman
- Department of Pharmaceutical Sciences, West Virginia University Health Sciences Center, School of Pharmacy, 1 Medical Center Drive, Morgantown, West Virginia, 26506-9050, USA.
| |
Collapse
|
39
|
Li C, Liu S, Wang W, Liu W, Kuang C, Liu X. Recent research on stimulated emission depletion microscopy for reducing photobleaching. J Microsc 2018; 271:4-16. [PMID: 29600565 DOI: 10.1111/jmi.12698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
Stimulated emission depletion (STED) microscopy is a useful tool in investigation for super-resolution realm. By silencing the peripheral fluorophores of the excited spot, leaving only the very centre zone vigorous for fluorescence, the effective point spread function (PSF) could be immensely squeezed and subcellular structures, such as organelles, become discernable. Nevertheless, because of the low cross-section of stimulated emission and the short fluorescence lifetime, the depletion power density has to be extremely higher than the excitation power density and molecules are exposed in high risk of photobleaching. The existence of photobleaching greatly limits the research of STED in achieving higher resolution and more delicate imaging quality, as well as long-term and dynamic observation. Since the first experimental implementation of STED microscopy, researchers have lift out variety of methods and techniques to alleviate the problem. This paper would present some researches via conventional methods which have been explored and utilised relatively thoroughly, such as fast scanning, time-gating, two-photon excitation (TPE), triplet relaxation (T-Rex) and background suppression. Alternatively, several up-to-date techniques, especially adaptive illumination, would also be unveiled for discussion in this paper. The contrast and discussion of these modalities would play an important role in ameliorating the research of STED microscopy.
Collapse
Affiliation(s)
- C Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - S Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - W Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - W Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - C Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - X Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| |
Collapse
|
40
|
Sustr D, Hlaváček A, Duschl C, Volodkin D. Multi-Fractional Analysis of Molecular Diffusion in Polymer Multilayers by FRAP: A New Simulation-Based Approach. J Phys Chem B 2018; 122:1323-1333. [PMID: 29257689 DOI: 10.1021/acs.jpcb.7b11051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Comprehensive analysis of the multifractional molecular diffusion provides a deeper understanding of the diffusion phenomenon in the fields of material science, molecular and cell biology, advanced biomaterials, etc. Fluorescence recovery after photobleaching (FRAP) is commonly employed to probe the molecular diffusion. Despite FRAP being a very popular method, it is not easy to assess multifractional molecular diffusion due to limited possibilities of approaches for analysis. Here we present a novel simulation-optimization-based approach (S-approach) that significantly broadens possibilities of the analysis. In the S-approach, possible fluorescence recovery scenarios are primarily simulated and afterward compared with a real measurement while optimizing parameters of a model until a sufficient match is achieved. This makes it possible to reveal multifractional molecular diffusion. Fluorescent latex particles of different size and fluorescein isothiocyanate in an aqueous medium were utilized as test systems. Finally, the S-approach has been used to evaluate diffusion of cytochrome c loaded into multilayers made of hyaluronan and polylysine. Software for evaluation of multifractional molecular diffusion by S-approach has been developed aiming to offer maximal versatility and user-friendly way for analysis.
Collapse
Affiliation(s)
- David Sustr
- Faculty of Science, University of Potsdam, Institute of Biochemistry and Biology , Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.,Department of Molecular and Cellular Bioanalytics, Fraunhofer Institute for Cell Therapy and Immunology (Fraunhofer IZI) , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences , v. v. i., Veveří 97, Brno 602 00, Czech Republic
| | - Claus Duschl
- Department of Molecular and Cellular Bioanalytics, Fraunhofer Institute for Cell Therapy and Immunology (Fraunhofer IZI) , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Dmitry Volodkin
- Department of Molecular and Cellular Bioanalytics, Fraunhofer Institute for Cell Therapy and Immunology (Fraunhofer IZI) , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.,School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
41
|
Oracz J, Westphal V, Radzewicz C, Sahl SJ, Hell SW. Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore. Sci Rep 2017; 7:11354. [PMID: 28900102 PMCID: PMC5595794 DOI: 10.1038/s41598-017-09902-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 11/25/2022] Open
Abstract
In STED (stimulated emission depletion) nanoscopy, the resolution and signal are limited by the fluorophore de-excitation efficiency and photobleaching. Here, we investigated their dependence on the pulse duration and power of the applied STED light for the popular 750 nm wavelength. In experiments with red- and orange-emitting dyes, the pulse duration was varied from the sub-picosecond range up to continuous-wave conditions, with average powers up to 200 mW at 80 MHz repetition rate, i.e. peak powers up to 1 kW and pulse energies up to 2.5 nJ. We demonstrate the dependence of bleaching on pulse duration, which dictates the optimal parameters of how to deliver the photons required for transient fluorophore silencing. Measurements with the dye ATTO647N reveal that the bleaching of excited molecules scales with peak power with a single effective order ~1.4. This motivates peak power reduction while maintaining the number of STED-light photons, in line with the superior resolution commonly achieved for nanosecond STED pulses. Other dyes (ATTO590, STAR580, STAR635P) exhibit two distinctive bleaching regimes for constant pulse energy, one with strong dependence on peak power, one nearly independent. We interpret the results within a photobleaching model that guides quantitative predictions of resolution and bleaching.
Collapse
Affiliation(s)
- Joanna Oracz
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077, Göttingen, Germany. .,University of Warsaw, Faculty of Physics, Pastera 5, 02-093, Warsaw, Poland.
| | - Volker Westphal
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077, Göttingen, Germany
| | - Czesław Radzewicz
- University of Warsaw, Faculty of Physics, Pastera 5, 02-093, Warsaw, Poland
| | - Steffen J Sahl
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077, Göttingen, Germany. .,Max Planck Institute for Medical Research, Department of Optical Nanoscopy, Jahnstr. 29, 69120, Heidelberg, Germany.
| |
Collapse
|
42
|
Icha J, Weber M, Waters JC, Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays 2017; 39. [DOI: 10.1002/bies.201700003] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden; Germany
| | - Michael Weber
- Department of Cell Biology; Harvard Medical School; Boston MA USA
| | | | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden; Germany
| |
Collapse
|
43
|
Syed AM, Sindhwani S, Wilhelm S, Kingston BR, Lee DSW, Gommerman JL, Chan WCW. Three-Dimensional Imaging of Transparent Tissues via Metal Nanoparticle Labeling. J Am Chem Soc 2017. [PMID: 28641018 DOI: 10.1021/jacs.7b04022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical probes are key components of the bioimaging toolbox, as they label biomolecules in cells and tissues. The new challenge in bioimaging is to design chemical probes for three-dimensional (3D) tissue imaging. In this work, we discovered that light scattering of metal nanoparticles can provide 3D imaging contrast in intact and transparent tissues. The nanoparticles can act as a template for the chemical growth of a metal layer to further enhance the scattering signal. The use of chemically grown nanoparticles in whole tissues can amplify the scattering to produce a 1.4 million-fold greater photon yield than obtained using common fluorophores. These probes are non-photobleaching and can be used alongside fluorophores without interference. We demonstrated three distinct biomedical applications: (a) molecular imaging of blood vessels, (b) tracking of nanodrug carriers in tumors, and (c) mapping of lesions and immune cells in a multiple sclerosis mouse model. Our strategy establishes a distinct yet complementary set of imaging probes for understanding disease mechanisms in three dimensions.
Collapse
Affiliation(s)
- Abdullah Muhammad Syed
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Shrey Sindhwani
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Stefan Wilhelm
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin R Kingston
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Dennis S W Lee
- Department of Immunology, University of Toronto , Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Jennifer L Gommerman
- Department of Immunology, University of Toronto , Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Rosebrugh Building, Room 407, 164 College Street, Toronto, Ontario M5S 3G9, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Room 230, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Department of Chemical Engineering, University of Toronto , 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Department of Material Science and Engineering, University of Toronto , Room 450, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
44
|
Ezquerra Riega SD, Rodríguez HB, San Román E. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps. Methods Appl Fluoresc 2017; 5:014010. [PMID: 28276341 DOI: 10.1088/2050-6120/aa61ae] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of dye concentration on the fluorescence,ΦF, and singlet molecular oxygen,ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF = 0.05 ± 0.01 and ΦΔ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r Q = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF,trap/ΦF,monomer ≈ 0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.
Collapse
Affiliation(s)
- Sergio D Ezquerra Riega
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pab. II, Buenos Aires, Argentina
| | | | | |
Collapse
|
45
|
Minoshima M, Kikuchi K. Photostable and photoswitching fluorescent dyes for super-resolution imaging. J Biol Inorg Chem 2017; 22:639-652. [PMID: 28083655 DOI: 10.1007/s00775-016-1435-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/28/2016] [Indexed: 12/18/2022]
Abstract
Super-resolution fluorescence microscopy is a recently developed imaging tool for biological researches. Several methods have been developed for detection of fluorescence signals from molecules in a subdiffraction-limited area, breaking the diffraction limit of the conventional optical microscopies and allowing visualization of detailed macromolecular structures in cells. As objectives are exposed to intense laser in the optical systems, fluorophores for super-resolution microscopy must be tolerated even under severe light irradiation conditions. The fluorophores must also be photoactivatable and photoswitchable for single-molecule localization-based super-resolution microscopy, because the number of active fluorophores must be controlled by light irradiation. This has led to growing interest in these properties in the development of fluorophores. In this mini-review, we focus on the development of photostable and photoswitching fluorescent dyes for super-resolution microscopy. We introduce recent efforts, including improvement of fluorophore photostability and control of photoswitching behaviors of fluorophores based on photochemical and photophysical processes. Understanding and manipulation of chemical reactions in excited fluorophores can develop highly photostable and efficiently photoswitchable fluorophores that are suitable for super-resolution imaging applications.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan. .,Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
46
|
Mittapalli RK, Adkins CE, Bohn KA, Mohammad AS, Lockman JA, Lockman PR. Quantitative Fluorescence Microscopy Measures Vascular Pore Size in Primary and Metastatic Brain Tumors. Cancer Res 2016; 77:238-246. [PMID: 27815391 DOI: 10.1158/0008-5472.can-16-1711] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 01/16/2023]
Abstract
Tumors residing in the central nervous system (CNS) compromise the blood-brain barrier (BBB) via increased vascular permeability, with the magnitude of changes dependent on the tumor type and location. Current studies determine penetrability of a cancer therapeutic by administering progressively larger molecules until cutoff is observed where little to no tumor accumulation occurs. However, decades-old experimental work and mathematical modeling document methods to calculate both the size of the vascular opening (pore) with solute permeability values. In this study, we updated this classic mathematical modeling approach with quantitative fluorescence microscopy in two preclinical tumor models, allowing simultaneous administration of multiple sized tracers to determine vascular permeability at a resolution of nearly one micron. We observed that three molecules ranging from 100 Da to 70 kDa permeated into a preclinical glioblastoma model at rates proportional to their diffusion in water. This suggests the solutes freely diffused from blood to glioma across vascular pores without steric restriction, which calculates to a pore size of >140 nm in diameter. In contrast, the calculated pore size of a brain metastasis of breast cancer was approximately 10-fold smaller than glioma vasculature. This difference explains why antibodies are effective against glioblastoma but generally fail in brain metastases of breast cancer. On the basis of our observations, we hypothesize that trastuzumab most likely fails in the treatment of brain metastases of breast cancer because of poor CNS penetration, while the similar sized antibody bevacizumab is effective in the same tumor type not because it penetrates the CNS degree better, but because it scavenges VEGF in the vascular compartment, which reduces edema and permeation. Cancer Res; 77(2); 238-46. ©2016 AACR.
Collapse
Affiliation(s)
- Rajendar K Mittapalli
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Chris E Adkins
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Kaci A Bohn
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas.,Department of Pharmaceutical Sciences, College of Pharmacy, Harding University, Searcy, Arkansas
| | - Afroz S Mohammad
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Julie A Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Paul R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas. .,Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
47
|
From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem 2016; 408:6885-911. [PMID: 27613013 PMCID: PMC5566169 DOI: 10.1007/s00216-016-9781-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023]
Abstract
Super-resolution microscopy is the term commonly given to fluorescence microscopy techniques with resolutions that are not limited by the diffraction of light. Since their conception a little over a decade ago, these techniques have quickly become the method of choice for many biologists studying structures and processes of single cells at the nanoscale. In this review, we present the three main approaches used to tackle the diffraction barrier of ∼200 nm: stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). We first present a theoretical overview of the techniques and underlying physics, followed by a practical guide to all of the facets involved in designing a super-resolution experiment, including an approachable explanation of the photochemistry involved, labeling methods available, and sample preparation procedures. Finally, we highlight some of the most exciting recent applications of and developments in these techniques, and discuss the outlook for this field. Super-resolution microscopy techniques. Working principles of the common approaches stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). ![]()
Collapse
|
48
|
Daetwyler S, Huisken J. Fast Fluorescence Microscopy with Light Sheets. THE BIOLOGICAL BULLETIN 2016; 231:14-25. [PMID: 27638692 DOI: 10.1086/689588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In light sheet microscopy, optical sectioning by selective fluorescence excitation with a sheet of light is combined with fast full-frame acquisition. This illumination scheme provides minimal photobleaching and phototoxicity. Complemented with remote focusing and multi-view acquisition, light sheet microscopy is the method of choice for acquisition of very fast biological processes, large samples, and high-throughput applications in areas such as neuroscience, plant biology, and developmental biology. This review explains why light sheet microscopes are much faster and gentler than other established fluorescence microscopy techniques. New volumetric imaging schemes and highlights of selected biological applications are also discussed.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
49
|
Wientjes E, Renger J, Cogdell R, van Hulst NF. Pushing the Photon Limit: Nanoantennas Increase Maximal Photon Stream and Total Photon Number. J Phys Chem Lett 2016; 7:1604-9. [PMID: 27082249 PMCID: PMC4864408 DOI: 10.1021/acs.jpclett.6b00491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 05/22/2023]
Abstract
Nanoantennas are well-known for their effective role in fluorescence enhancement, both in excitation and emission. Enhancements of 3-4 orders of magnitude have been reported. Yet in practice, the photon emission is limited by saturation due to the time that a molecule spends in singlet and especially triplet excited states. The maximal photon stream restricts the attainable enhancement. Furthermore, the total number of photons emitted is limited by photobleaching. The limited brightness and observation time are a drawback for applications, especially in biology. Here we challenge this photon limit, showing that nanoantennas can actually increase both saturation intensity and photostability. So far, this limit-shifting role of nanoantennas has hardly been explored. Specifically, we demonstrate that single light-harvesting complexes, under saturating excitation conditions, show over a 50-fold antenna-enhanced photon emission stream, with 10-fold more total photons, up to 10(8) detected photons, before photobleaching. This work shows yet another facet of the great potential of nanoantennas in the world of single-molecule biology.
Collapse
Affiliation(s)
- Emilie Wientjes
- ICFO − Institut de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- Laboratory of Biophysics, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Jan Renger
- ICFO − Institut de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- Max Planck Institute for the Science of
Light, D-91058 Erlangen, Germany
| | - Richard Cogdell
- Glasgow Biomedical Research
Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Niek F. van Hulst
- ICFO − Institut de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA
− Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- E-mail:
| |
Collapse
|
50
|
da Silva EFF, Pimenta FM, Pedersen BW, Blaikie FH, Bosio GN, Breitenbach T, Westberg M, Bregnhøj M, Etzerodt M, Arnaut LG, Ogilby PR. Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization. Integr Biol (Camb) 2016; 8:177-93. [DOI: 10.1039/c5ib00295h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elsa F. F. da Silva
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Frederico M. Pimenta
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Brian W. Pedersen
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Frances H. Blaikie
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Gabriela N. Bosio
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, Casilla de Correo 16, sucursal 4 (1900), La Plata, Argentina
| | - Thomas Breitenbach
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Michael Westberg
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Mikkel Bregnhøj
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Luis G. Arnaut
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Peter R. Ogilby
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| |
Collapse
|