1
|
Zhu Q, Cohen SR, Brontvein O, Fransson J, Naaman R. Magnetic Monopole-Like Behavior in Superparamagnetic Nanoparticle Coated With Chiral Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406631. [PMID: 39205548 PMCID: PMC11600687 DOI: 10.1002/smll.202406631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention due to their promising applications in biomedicine, chemical catalysis, and magnetic memory devices. In this work, the force is measured between a single SPION coated with chiral molecules and a ferromagnetic substrate by atomic force microscopy (AFM), with the substrate magnetized either toward or away from the approaching AFM tip. The force between the coated SPION and the magnetic substrate depends on the handedness of the molecules adsorbed on the SPION and on the direction of the magnetization of the substrate. By inserting nm-scale spacing layers between the coated SPION and the magnetic substrate it is shown that the SPION has a short-range magnetic monopole-like magnetic field. A theoretical framework for the nature of this field is provided.
Collapse
Affiliation(s)
- Qirong Zhu
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot76100Israel
| | - Sidney R. Cohen
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovot76100Israel
| | - Olga Brontvein
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovot76100Israel
| | - Jonas Fransson
- Department of Physics and AstronomyUppsala UniversityBox 516Uppsala75120Sweden
| | - Ron Naaman
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
2
|
Bao P, Phillips K, Raval R. Membrane Proteins in Action Monitored by pH-Responsive Liquid Crystal Biosensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31843-31850. [PMID: 38841859 PMCID: PMC11194810 DOI: 10.1021/acsami.4c06614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Liquid crystal (LC) biosensors have received significant attention for their potential applications for point-of-care devices due to their sensitivity, low cost, and easy read-out. They have been employed to detect a wide range of important biological molecules. However, detecting the function of membrane proteins has been extremely challenging due to the difficulty of integrating membrane proteins, lipid membranes, and LCs into one system. In this study, we addressed this challenge by monitoring the proton-pumping function of bacteriorhodopsin (bR) using a pH-sensitive LC thin film biosensor. To achieve this, we deposited purple membranes (PMs) containing a 2D crystal form of bRs onto an LC-aqueous interface. Under light, the PM patches changed the local pH at the LC-aqueous interface, causing a color change in the LC thin film that is observable through a polarizing microscope with crossed polarizers. These findings open up new opportunities to study the biofunctions of membrane proteins and their induced local environmental changes in a solution using LC biosensors.
Collapse
Affiliation(s)
- Peng Bao
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Kyle Phillips
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Rasmita Raval
- Open Innovation
Hub for Antimicrobial
Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
3
|
Schmidt D, Maier J, Bernauer H, Nesterov-Mueller A. Label-Free Imaging of Solid-Phase Peptide Synthesis Products and Their Modifications Tethered in Microspots Using Time-of-Flight Secondary Ion Mass Spectrometry. Int J Mol Sci 2023; 24:15945. [PMID: 37958928 PMCID: PMC10648460 DOI: 10.3390/ijms242115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Time-of-flight secondary ion mass spectrometry is used to analyze solid-phase synthesis products in 60 µm spots of high-density peptide arrays. As a result, a table of specific fragments for the individual detection of amino acids and their side chain protecting groups within peptides is compiled. The specific signal of an amino acid increases linearly as its number increases in the immobilized peptide. Mass-to-charge ratio values are identified that can distinguish between isomers such as leucine and isoleucine. The accessibility of the N-terminus of polyalanine will be studied depending on the number of its residues. The examples provided in the study demonstrate the significant potential of time-of-flight secondary ion mass spectrometry for high-throughput screening of functional groups and their accessibility to chemical reactions occurring simultaneously in hundreds of thousands of microreactors on a single microscope slide.
Collapse
Affiliation(s)
- Dimitry Schmidt
- Institute of Microstructure Technology, Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Josef Maier
- ATG:biosynthetics GmbH, Weberstraße 40, 79249 Merzhausen, Germany; (J.M.); (H.B.)
| | - Hubert Bernauer
- ATG:biosynthetics GmbH, Weberstraße 40, 79249 Merzhausen, Germany; (J.M.); (H.B.)
| | - Alexander Nesterov-Mueller
- Institute of Microstructure Technology, Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| |
Collapse
|
4
|
Paul S, Jeništová A, Vosough F, Berntsson E, Mörman C, Jarvet J, Gräslund A, Wärmländer SKTS, Barth A. 13C- and 15N-labeling of amyloid-β and inhibitory peptides to study their interaction via nanoscale infrared spectroscopy. Commun Chem 2023; 6:163. [PMID: 37537303 PMCID: PMC10400569 DOI: 10.1038/s42004-023-00955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Interactions between molecules are fundamental in biology. They occur also between amyloidogenic peptides or proteins that are associated with different amyloid diseases, which makes it important to study the mutual influence of two polypeptides on each other's properties in mixed samples. However, addressing this research question with imaging techniques faces the challenge to distinguish different polypeptides without adding artificial probes for detection. Here, we show that nanoscale infrared spectroscopy in combination with 13C, 15N-labeling solves this problem. We studied aggregated amyloid-β peptide (Aβ) and its interaction with an inhibitory peptide (NCAM1-PrP) using scattering-type scanning near-field optical microscopy. Although having similar secondary structure, labeled and unlabeled peptides could be distinguished by comparing optical phase images taken at wavenumbers characteristic for either the labeled or the unlabeled peptide. NCAM1-PrP seems to be able to associate with or to dissolve existing Aβ fibrils because pure Aβ fibrils were not detected after mixing.
Collapse
Affiliation(s)
- Suman Paul
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- attocube systems AG, Haar, Germany
| | - Adéla Jeništová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Mörman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Pro-inflammatory protein S100A9 alters membrane organization by dispersing ordered domains. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184113. [PMID: 36567033 DOI: 10.1016/j.bbamem.2022.184113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Pro-inflammatory, calcium-binding protein S100A9 is localized in the cytoplasm of many cells and regulates several intracellular and extracellular processes. S100A9 is involved in neuroinflammation associated with the pathogenesis of Alzheimer's disease (AD). The number of studies on the impact of S100A9 in co-aggregation processes with amyloid-like proteins is increasing. However, there is still a lack of data on how this protein interacts with lipid membranes. We employed atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence measurements (Laurdan and Thioflavin-T) to study the interaction between protein and the membrane surface. We used lipid vesicles in bulk and planar tethered lipid bilayers as biomimetic membrane models. We demonstrated that the protein accumulates on negatively charged lipid bilayers but with no further loss of the bilayer's integrity. The most important result is that the initial adsorption and accumulation of apo-form of S100A9 on the lipid membrane surface is lipid phase-sensitive. The breaking down of raft-like and disappearance of gel-like domains indicate that protein incorporates into the hydrophobic part of the lipid bilayer. We observed the most noticeable loss of integrity in lipid bilayers constructed from a lipid mixture (brain total lipid extract). Understanding the function and interactions of these proteins in cellular environments might expand the development of new diagnostic and therapeutic approaches for AD or other related diseases.
Collapse
|
6
|
Marrs J, Lu Q, Pan V, Ke Y, Hihath J. Structure-Dependent Electrical Conductance of DNA Origami Nanowires. Chembiochem 2023; 24:e202200454. [PMID: 36342926 DOI: 10.1002/cbic.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Exploring the structural and electrical properties of DNA origami nanowires is an important endeavor for the advancement of DNA nanotechnology and DNA nanoelectronics. Highly conductive DNA origami nanowires are a desirable target for creating low-cost self-assembled nanoelectronic devices and circuits. In this work, the structure-dependent electrical conductance of DNA origami nanowires is investigated. A silicon nitride (Si3 N4 ) on silicon semiconductor chip with gold electrodes was used for collecting electrical conductance measurements of DNA origami nanowires, which are found to be an order of magnitude less electrically resistive on Si3 N4 substrates treated with a monolayer of hexamethyldisilazane (HMDS) (∼1013 ohms) than on native Si3 N4 substrates without HMDS (∼1014 ohms). Atomic force microscopy (AFM) measurements of the height of DNA origami nanowires on mica and Si3 N4 substrates reveal that DNA origami nanowires are ∼1.6 nm taller on HMDS-treated substrates than on the untreated ones indicating that the DNA origami nanowires undergo increased structural deformation when deposited onto untreated substrates, causing a decrease in electrical conductivity. This study highlights the importance of understanding and controlling the interface conditions that affect the structure of DNA and thereby affect the electrical conductance of DNA origami nanowires.
Collapse
Affiliation(s)
- Jonathan Marrs
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, California, 95616, USA
| | - Qinyi Lu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Victor Pan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Yonggang Ke
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Joshua Hihath
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, California, 95616, USA.,Biodesign Center for Bioelectronics, School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Blaimschein N, Hariharan P, Manioglu S, Guan L, Müller DJ. Substrate-binding guides individual melibiose permeases MelB to structurally soften and to destabilize cytoplasmic middle-loop C3. Structure 2023; 31:58-67.e4. [PMID: 36525976 PMCID: PMC9825662 DOI: 10.1016/j.str.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
The melibiose permease MelB is a well-studied Na+-coupled transporter of the major facilitator superfamily. However, the symport mechanism of galactosides and cations is still not fully understood, especially at structural levels. Here, we use single-molecule force spectroscopy to investigate substrate-induced structural changes of MelB from Salmonella typhimurium. In the absence of substrate, MelB equally populates two different states, from which one shows higher mechanical structural stability with additional stabilization of the cytoplasmic middle-loop C3. In the presence of either melibiose or a coupling Na+-cation, however, MelB increasingly populates the mechanically less stable state, which shows a destabilized middle-loop C3. In the presence of both substrate and co-substrate, this mechanically less stable state of MelB is predominant. Our findings describe how both substrates guide MelB transporters to populate two different mechanically stabilized states, and contribute mechanistic insights to the alternating-access action for the galactoside/cation symport catalyzed by MelB.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
8
|
Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images. PLoS Comput Biol 2022; 18:e1010384. [PMID: 36580448 PMCID: PMC9833559 DOI: 10.1371/journal.pcbi.1010384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/11/2023] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is a powerful technique for capturing the time-resolved behavior of biomolecules. However, structural information in HS-AFM images is limited to the surface geometry of a sample molecule. Inferring latent three-dimensional structures from the surface geometry is thus important for getting more insights into conformational dynamics of a target biomolecule. Existing methods for estimating the structures are based on the rigid-body fitting of candidate structures to each frame of HS-AFM images. Here, we extend the existing frame-by-frame rigid-body fitting analysis to multiple frames to exploit orientational correlations of a sample molecule between adjacent frames in HS-AFM data due to the interaction with the stage. In the method, we treat HS-AFM data as time-series data, and they are analyzed with the hidden Markov modeling. Using simulated HS-AFM images of the taste receptor type 1 as a test case, the proposed method shows a more robust estimation of molecular orientations than the frame-by-frame analysis. The method is applicable in integrative modeling of conformational dynamics using HS-AFM data.
Collapse
|
9
|
The conformations and basal conformational dynamics of translocation factor SecDF vary with translocon SecYEG interaction. J Biol Chem 2022; 298:102412. [PMID: 36007614 PMCID: PMC9508474 DOI: 10.1016/j.jbc.2022.102412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The general secretory, or Sec, system is a primary protein export pathway from the cytosol of Escherichia coli and all eubacteria. Integral membrane protein complex SecDF is a translocation factor that enhances polypeptide secretion, which is driven by the Sec translocase, consisting of translocon SecYEG and ATPase SecA. SecDF is thought to utilize a proton gradient to effectively pull precursor proteins from the cytoplasm into the periplasm. Working models have been developed to describe the structure and function of SecDF, but important mechanistic questions remain unanswered. Atomic force microscopy (AFM) is a powerful technique for studying the dynamics of single-molecule systems including membrane proteins in near-native conditions. The sharp tip of the AFM provides direct access to membrane-external protein conformations. Here, we acquired AFM images and kymographs (∼100 ms resolution) to visualize SecDF protrusions in near-native supported lipid bilayers and compared the experimental data to simulated AFM images based on static structures. When studied in isolation, SecDF exhibited a stable and compact conformation close to the lipid bilayer surface, indicative of a resting state. Interestingly, upon SecYEG introduction, we observed changes in both SecDF conformation and conformational dynamics. The population of periplasmic protrusions corresponding to an intermediate form of SecDF, which is thought to be active in precursor protein handling, increased >9-fold. In conjunction, our dynamics measurements revealed an enhancement in the transition rate between distinct SecDF conformations when the translocon was present. Together, this work provides a novel vista of basal-level SecDF conformational dynamics in near-native conditions.
Collapse
|
10
|
Schaefer KG, Pittman AE, Barrera FN, King GM. Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling. Methods 2022; 197:20-29. [PMID: 33164792 DOI: 10.1016/j.ymeth.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
Collapse
Affiliation(s)
- K G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - A E Pittman
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - F N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Schaefer KG, Grau B, Moore N, Mingarro I, King GM, Barrera FN. Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax. Faraday Discuss 2021; 232:114-130. [PMID: 34549736 PMCID: PMC8712456 DOI: 10.1039/d0fd00070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores. The resulting BaxE5 peptide efficiently permeabilizes membranes at acidic pH, showing low permeabilization at neutral pH. Atomic force microscopy (AFM) imaging showed that at acidic pH BaxE5 established several membrane remodeling modalities that progressively disturbed the integrity of the lipid bilayer. The AFM data offers vistas on the membrane disruption process, which starts with pore formation and progresses through localized exposure of membrane monolayers leading to stable and small (height ∼ 16 Å) lipid-peptide complexes. The different types of membrane morphology observed in the presence of BaxE5 suggest that the peptide can establish different types of membrane interactions. BaxE5 adopts a rare unstructured conformation when bound to membranes, which might facilitate the dynamic transition between those different states, and then promote membrane digestion.
Collapse
Affiliation(s)
- Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| | - Brayan Grau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46100 Burjassot, Spain
| | - Nicolas Moore
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46100 Burjassot, Spain
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
12
|
Abstract
Bacteriorhodopsin is a seven-helix light-driven proton-pump that was structurally and functionally extensively studied. Despite a wealth of data, the single molecule kinetics of the reaction cycle remain unknown. Here, we use high-speed atomic force microscopy methods to characterize the single molecule kinetics of wild-type bR exposed to continuous light and short pulses. Monitoring bR conformational changes with millisecond temporal resolution, we determine that the cytoplasmic gate opens 2.9 ms after photon absorption, and stays open for proton capture for 13.2 ms. Surprisingly, a previously active protomer cannot be reactivated for another 37.6 ms, even under excess continuous light, giving a single molecule reaction cycle of ~20 s−1. The reaction cycle slows at low light where the closed state is prolonged, and at basic or acidic pH where the open state is extended. Here, the authors use high-speed atomic force microscopy (HS-AFM) methods to characterize the single molecule kinetics of wild-type bacteriorhodopsin (bR) with millisecond temporal resolution, providing new insights into the bR conformational cycle.
Collapse
|
13
|
Yan J, Sun B, Xie C, Liu Y, Song Z, Xu H, Wang Z. The influence of different liquid environments on the atomic force microscopy detection of living bEnd.3 cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2384-2390. [PMID: 33970977 DOI: 10.1039/d1ay00567g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atomic force microscopy (AFM) is one of the most important tools in the field of biomedical science, and it can be used to perform the high-resolution three-dimensional imaging of samples in liquid environments to obtain their physical properties (such as surface potentials and mechanical properties). The influence of the liquid environment on the image quality of the sample and the detection results cannot be ignored. In this work, quantitative imaging (QI) mode AFM imaging and mechanical detection were performed on mouse brain microvascular endothelial (bEnd.3) cells in different liquid environments. The gray-level variance product (SMD2) function was used to evaluate the imaging quality of the cells in liquids with different physical properties, and the variations in cell mechanical properties were quantitatively analyzed. An AFM detection liquid containing less ions and organics compared with the traditional culture medium, which is beneficial for improving the imaging quality, is introduced, and it shows similar mechanical detection results within 3 h. This can greatly reduce the detection costs and could have positive significance in the field of AFM living-cell detection.
Collapse
Affiliation(s)
- Jin Yan
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF, Alsteens D. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev 2020; 121:11701-11725. [PMID: 33166471 DOI: 10.1021/acs.chemrev.0c00617] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last three decades, a series of key technological improvements turned atomic force microscopy (AFM) into a nanoscopic laboratory to directly observe and chemically characterize molecular and cell biological systems under physiological conditions. Here, we review key technological improvements that have established AFM as an analytical tool to observe and quantify native biological systems from the micro- to the nanoscale. Native biological systems include living tissues, cells, and cellular components such as single or complexed proteins, nucleic acids, lipids, or sugars. We showcase the procedures to customize nanoscopic chemical laboratories by functionalizing AFM tips and outline the advantages and limitations in applying different AFM modes to chemically image, sense, and manipulate biosystems at (sub)nanometer spatial and millisecond temporal resolution. We further discuss theoretical approaches to extract the kinetic and thermodynamic parameters of specific biomolecular interactions detected by AFM for single bonds and extend the discussion to multiple bonds. Finally, we highlight the potential of combining AFM with optical microscopy and spectroscopy to address the full complexity of biological systems and to tackle fundamental challenges in life sciences.
Collapse
Affiliation(s)
- Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hermann E Gaub
- Applied Physics, Ludwig-Maximilians-Universität Munich, Amalienstrasse 54, 80799 München, Germany
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics and Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Hao X, Zhang J, Yang Y, Wang H, Chi Q. Single‐Molecule Interactions between Heme Proteins and Carboxylic Groups in Various Chemical Environments. ChemElectroChem 2020. [DOI: 10.1002/celc.202001234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine Nanchang University, Nanchang Jiangxi 330006 China
| | - Jingdong Zhang
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Yifei Yang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine Nanchang University, Nanchang Jiangxi 330006 China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry Research Center of Biomembranomics Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Qijin Chi
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
16
|
Chiodini S, Ruiz-Rincón S, Garcia PD, Martin S, Kettelhoit K, Armenia I, Werz DB, Cea P. Bottom Effect in Atomic Force Microscopy Nanomechanics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000269. [PMID: 32761794 DOI: 10.1002/smll.202000269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/04/2020] [Indexed: 05/27/2023]
Abstract
In this work, the influence of the rigid substrate on the determination of the sample Young's modulus, the so-called bottom-effect artifact, is demonstrated by an atomic force microscopy force-spectroscopy experiment. The nanomechanical properties of a one-component supported lipid membrane (SLM) exhibiting areas of two different thicknesses are studied: While a standard contact mechanics model (Sneddon) provides two different elastic moduli for these two morphologies, it is shown that Garcia's bottom-effect artifact correction yields a unique value, as expected for an intrinsic material property. Remarkably, it is demonstrated that the ratio between the contact radius (and not only the indentation) and the sample thickness is the key parameter addressing the relevance of the bottom-effect artifact. The experimental results are validated by finite element method simulations providing a solid support to Garcia's theory. The amphiphilic nature of the investigated material is representative of several kinds of lipids, suggesting that the results have far reaching implications for determining the correct Young's modulus of SLMs. The generality of Garcia's bottom-effect artifact correction allows its application to every kind of supported soft film.
Collapse
Affiliation(s)
- Stefano Chiodini
- Instituto de Nanociencia de Aragón (INA), Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Silvia Ruiz-Rincón
- Instituto de Nanociencia de Aragón (INA), Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Pablo D Garcia
- Instituto de Ciencia de Materiales, ICMM-CSIC, Campus de Cantoblanco, C/Sor Juana Inés de la Cruz, 3, Madrid, 28049, Spain
| | - Santiago Martin
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Katharina Kettelhoit
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, Braunschweig, 38106, Germany
| | - Ilaria Armenia
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Daniel B Werz
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, Braunschweig, 38106, Germany
| | - Pilar Cea
- Instituto de Nanociencia de Aragón (INA), Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor s/n, Zaragoza, 50018, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
17
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope. Methods Mol Biol 2020. [PMID: 31218616 DOI: 10.1007/978-1-4939-9512-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The atomic force microscope (AFM) has opened avenues and provided opportunities to investigate biological soft matter and processes ranging from nanometer (nm) to millimeter (mm). The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever-aptly termed as a "lab on a tip"-can be used as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples have convincingly established AFM as a tool to study the mechanical properties and monitor processes of single proteins and cells with high sensitivity, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of transmembrane proteins in a lipid bilayer (reconstituted or native). Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theory and practical skills.
Collapse
|
19
|
Tolstova AP, Dubrovin EV. Influence of pixelization on height measurement in atomic force microscopy. Ultramicroscopy 2019; 207:112846. [DOI: 10.1016/j.ultramic.2019.112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 05/31/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
|
20
|
Choukate K, Gupta A, Basu B, Virk K, Ganguli M, Chaudhuri B. Higher order assembling of the mycobacterial polar growth factor DivIVA/Wag31. J Struct Biol 2019; 209:107429. [PMID: 31778770 DOI: 10.1016/j.jsb.2019.107429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/04/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
Abstract
DivIVA or Wag31, which is an essential pole organizing protein in mycobacteria, can self-assemble at the negatively curved side of the membrane at the growing pole to form a higher order structural scaffold for maintaining cellular morphology and localizing various target proteins for cell-wall biogenesis. The structural organization of polar scaffold formed by polymerization of coiled-coil rich Wag31, which is implicated in the anti-tubercular activities of amino-pyrimidine sulfonamides, remains to be determined. A single-site phosphorylation in Wag31 regulates peptidoglycan biosynthesis in mycobacteria. We report biophysical characterizations of filaments formed by mycobacterial Wag31 using circular dichroism, atomic force microscopy and small angle solution X-ray scattering. Atomic force microscopic images of the wild-type, a phospho-mimetic (T73E) and a phospho-ablative (T73A) form of Wag31 show mostly linear filament formation with occasional curving, kinking and apparent branching. Solution X-ray scattering data indicates that the phospho-mimetic forms of the Wag31 polymers are on average more compact than their phospho-ablative counterparts, which is likely due to the extent of bending/branching. Observed structural features in this first view of Wag31 filaments suggest a basis for higher order Wag31 scaffold formation at the pole.
Collapse
Affiliation(s)
- Komal Choukate
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Aanchal Gupta
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Brohmomoy Basu
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Karman Virk
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Munia Ganguli
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Barnali Chaudhuri
- CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
21
|
Perissinotto F, Rondelli V, Parisse P, Tormena N, Zunino A, Almásy L, Merkel DG, Bottyán L, Sajti S, Casalis L. GM1 Ganglioside role in the interaction of Alpha-synuclein with lipid membranes: Morphology and structure. Biophys Chem 2019; 255:106272. [PMID: 31698188 DOI: 10.1016/j.bpc.2019.106272] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/15/2019] [Indexed: 02/05/2023]
Abstract
Alpha-Synuclein (AS) is the protein playing the major role in Parkinson's disease (PD), a neurological disorder characterized by the degeneration of dopaminergic neurons and the accumulation of AS into amyloid plaques. The aggregation of AS into intermediate aggregates, called oligomers, and their pathological relation with biological membranes are considered key steps in the development and progression of the disease. Here we propose a multi-technique approach to study the effects of AS in its monomeric and oligomeric forms on artificial lipid membranes containing GM1 ganglioside. GM1 is a component of functional membrane micro-domains, called lipid rafts, and has been demonstrated to bind AS in neurons. With the aim to understand the relation between gangliosides and AS, here we exploit the complementarity of microscopy (Atomic Force Microscopy) and neutron scattering (Small Angle Neutron Scattering and Neutron Reflectometry) techniques to analyze the structural changes of two different membranes (Phosphatidylcholine and Phosphatidylcholine/GM1) upon binding with AS. We observe the monomer- and oligomer-interactions are both limited to the external membrane leaflet and that the presence of ganglioside leads to a stronger interaction of the membranes and AS in its monomeric and oligomeric forms with a stronger aggressiveness in the latter. These results support the hypothesis of the critical role of lipid rafts not only in the biofunctioning of the protein, but even in the development and the progression of the Parkinson's disease.
Collapse
Affiliation(s)
| | - V Rondelli
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy.
| | - P Parisse
- Elettra Sincrotrone Trieste S.C.p.A., Trieste, Italy.
| | - N Tormena
- Università degli Studi di Trieste, Trieste, Italy
| | - A Zunino
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - L Almásy
- Wigner Research Centre for Physics, Budapest, Hungary
| | - D G Merkel
- Wigner Research Centre for Physics, Budapest, Hungary
| | - L Bottyán
- Wigner Research Centre for Physics, Budapest, Hungary
| | - Sz Sajti
- Wigner Research Centre for Physics, Budapest, Hungary
| | - L Casalis
- Elettra Sincrotrone Trieste S.C.p.A., Trieste, Italy
| |
Collapse
|
22
|
Sanganna Gari RR, Chattrakun K, Marsh BP, Mao C, Chada N, Randall LL, King GM. Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers. SCIENCE ADVANCES 2019; 5:eaav9404. [PMID: 31206019 PMCID: PMC6561738 DOI: 10.1126/sciadv.aav9404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.
Collapse
Affiliation(s)
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
23
|
Shi C, He Y, Ding M, Wang Y, Zhong J. Nanoimaging of food proteins by atomic force microscopy. Part I: Components, imaging modes, observation ways, and research types. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Brander S, Jank T, Hugel T. AFM Imaging Suggests Receptor-Free Penetration of Lipid Bilayers by Toxins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:365-371. [PMID: 30565941 DOI: 10.1021/acs.langmuir.8b03146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A crucial step of exotoxin action is the attack on the membrane. Many exotoxins show an architecture following the AB model, where a binding subunit translocates an "action" subunit across a cell membrane. Atomic force microscopy is an ideal technique to study these systems because of its ability to provide structural as well as dynamic information at the same time. We report first images of toxins Photorhabdus luminescens TcdA1 and Clostridium difficile TcdB on a supported lipid bilayer. A significant amount of toxin binds to the bilayer at neutral pH in the absence of receptors. Lack of diffusion indicates that toxin particles penetrate the membrane. This observation is supported by fluorescence recovery after photobleaching measurements. We mimic endocytosis by acidification while imaging the particles over time; however, we see no large conformational change. We therefore conclude that the toxin particles we imaged in neutral conditions had already formed a pore and speculate that there is no "pre-pore" state in our imaging conditions (i.e., in the absence of receptor).
Collapse
|
25
|
Lal S, Scarinci N, Perez PL, Cantero MDR, Cantiello HF. Lipid bilayer-atomic force microscopy combined platform records simultaneous electrical and topological changes of the TRP channel polycystin-2 (TRPP2). PLoS One 2018; 13:e0202029. [PMID: 30133487 PMCID: PMC6104948 DOI: 10.1371/journal.pone.0202029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/26/2018] [Indexed: 11/30/2022] Open
Abstract
Ion channels are transmembrane proteins that mediate ion transport across biological membranes. Ion channel function is traditionally characterized by electrical parameters acquired with techniques such as patch-clamping and reconstitution in lipid bilayer membranes (BLM) that provide relevant information such as ionic conductance, selectivity, and gating properties. High resolution structural information of ion channels however, requires independent technologies, of which atomic force microscopy (AFM) is the only one that provides topological features of single functional channel proteins in their native environments. To date practically no data exist on direct correlations between electrical features and topological parameters from functional single channel complexes. Here, we report the design and construction of a BLM reconstitution microchamber that supports the simultaneous recording of electrical currents and AFM imaging from single channel complexes. As proof-of-principle, we tested the technique on polycystin-2 (PC2, TRPP2), a TRP channel family member from which we had previously elucidated its tetrameric topology by AFM imaging, and single channel currents by the BLM technique. The experimental setup provided direct structural-functional correlates from PC2 single channel complexes that disclosed novel topological changes between the closed and open sub-conductance states of the functional channel, namely, an inverse correlation between conductance and height of the channel. Unexpectedly, we also disclosed intrinsic PC2 mechanosensitivity in response to external forces. The platform provides a suitable means of accessing topological information to correlate with ion channel electrical parameters essential to understand the physiology of these transmembrane proteins.
Collapse
Affiliation(s)
- Sumit Lal
- Nephrology Division and Electrophysiology Core, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - Paula L. Perez
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Nephrology Division and Electrophysiology Core, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Laskowski PR, Pfreundschuh M, Stauffer M, Ucurum Z, Fotiadis D, Müller DJ. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox. ACS NANO 2017; 11:8292-8301. [PMID: 28745869 DOI: 10.1021/acsnano.7b03456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To understand how membrane proteins function requires characterizing their structure, assembly, and inter- and intramolecular interactions in physiologically relevant conditions. Conventionally, such multiparametric insight is revealed by applying different biophysical methods. Here we introduce the combination of confocal microscopy, force-distance curve-based (FD-based) atomic force microscopy (AFM), and single-molecule force spectroscopy (SMFS) for the identification of native membranes and the subsequent multiparametric analysis of their membrane proteins. As a well-studied model system, we use native purple membrane from Halobacterium salinarum, whose membrane protein bacteriorhodopsin was His-tagged to bind nitrilotriacetate (NTA) ligands. First, by confocal microscopy we localize the extracellular and cytoplasmic surfaces of purple membrane. Then, we apply AFM to image single bacteriorhodopsins approaching sub-nanometer resolution. Afterwards, the binding of NTA ligands to bacteriorhodopsins is localized and quantified by FD-based AFM. Finally, we apply AFM-based SMFS to characterize the (un)folding of the membrane protein and to structurally map inter- and intramolecular interactions. The multimethodological approach is generally applicable to characterize biological membranes and membrane proteins at physiologically relevant conditions.
Collapse
Affiliation(s)
- Pawel R Laskowski
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Mirko Stauffer
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| |
Collapse
|
27
|
|
28
|
Almonte L, Colchero J. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast. NANOSCALE 2017; 9:2903-2915. [PMID: 28181615 DOI: 10.1039/c6nr07967a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present work analyses how the tip-sample interaction signals critically determine the operation of an Atomic Force Microscope (AFM) set-up immersed in liquid. On heterogeneous samples, the conservative tip-sample interaction may vary significantly from point to point - in particular from attractive to repulsive - rendering correct feedback very challenging. Lipid membranes prepared on a mica substrate are analyzed as reference samples which are locally heterogeneous (material contrast). The AFM set-up is operated dynamically at low oscillation amplitude and all available experimental data signals - the normal force, as well as the amplitude and frequency - are recorded simultaneously. From the analysis of how the dissipation (oscillation amplitude) and the conservative interaction (normal force and resonance frequency) vary with the tip-sample distance we conclude that dissipation is the only appropriate feedback source for stable and correct topographic imaging. The normal force and phase then carry information about the sample composition ("chemical contrast"). Dynamic AFM allows imaging in a non-contact regime where essentially no forces are applied, rendering dynamic AFM a truly non-invasive technique.
Collapse
Affiliation(s)
- Lisa Almonte
- Centro de Investigación en Óptica y Nanofísica (CIOyN), Departamento Física, Facultad de Química (Campus Espinardo), Universidad de Murcia, E-30100 Murcia, Spain.
| | - Jaime Colchero
- Centro de Investigación en Óptica y Nanofísica (CIOyN), Departamento Física, Facultad de Química (Campus Espinardo), Universidad de Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
29
|
Youell J, Sikora AE, Vejsadová Š, Weiserova M, Smith JR, Firman K. Cofactor induced dissociation of the multifunctional multisubunit EcoR124I investigated using electromobility shift assays, AFM and SPR. RSC Adv 2017. [DOI: 10.1039/c7ra07505g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have applied three techniques to the study of subunit assembly of the Type IC Restriction–Modification enzyme EcoR124I.
Collapse
Affiliation(s)
- James Youell
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Aneta E. Sikora
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Štěpánka Vejsadová
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Marie Weiserova
- Institute of Microbiology
- ASCR, v.v.i
- 142 20 Prague 4
- Czech Republic
| | - James R. Smith
- School of Pharmacy and Biomedical Sciences
- University of Portsmouth
- Portsmouth PO1 2DT
- UK
| | - Keith Firman
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| |
Collapse
|
30
|
van Pee K, Mulvihill E, Müller DJ, Yildiz Ö. Unraveling the Pore-Forming Steps of Pneumolysin from Streptococcus pneumoniae. NANO LETTERS 2016; 16:7915-7924. [PMID: 27796097 DOI: 10.1021/acs.nanolett.6b04219] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pneumolysin (PLY) is the main virulence factor of Streptococcus pneumoniae that causes pneumonia, meningitis, and invasive pneumococcal infection. PLY is produced as monomers, which bind to cholesterol-containing membranes, where they oligomerize into large pores. To investigate the pore-forming mechanism, we determined the crystal structure of PLY at 2.4 Å and used it to design mutants on the surface of monomers. Electron microscopy of liposomes incubated with PLY mutants revealed that several mutations interfered with ring formation. Mutants that formed incomplete rings or linear arrays had strongly reduced hemolytic activity. By high-resolution time-lapse atomic force microscopy of wild-type PLY, we observed two different ring-shaped complexes. Most of the complexes protruded ∼8 nm above the membrane surface, while a smaller number protruded ∼11 nm or more. The lower complexes were identified as pores or prepores by the presence or absence of a lipid bilayer in their center. The taller complexes were side-by-side assemblies of monomers of soluble PLY that represent an early form of the prepore. Our observations suggest a four-step mechanism of membrane attachment and pore formation by PLY, which is discussed in the context of recent structural models. The functional separation of these steps is necessary for the understanding how cholesterol-dependent cytolysins form pores and lyse cells.
Collapse
Affiliation(s)
- Katharina van Pee
- Department of Structural Biology, Max PIanck Institute of Biophysics , Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Estefania Mulvihill
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, 4058 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, 4058 Basel, Switzerland
| | - Özkan Yildiz
- Department of Structural Biology, Max PIanck Institute of Biophysics , Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Li D, Wang Y, Du H, Xu S, Li Z, Yang Y, Wang C. Nanoscale Electric Characteristics and Oriented Assembly of Halobacterium salinarum Membrane Revealed by Electric Force Microscopy. NANOMATERIALS 2016; 6:nano6110197. [PMID: 28335325 PMCID: PMC5245739 DOI: 10.3390/nano6110197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 11/25/2022]
Abstract
Purple membranes (PM) of the bacteria Halobacterium salinarum are a unique natural membrane where bacteriorhodopsin (BR) can convert photon energy and pump protons. Elucidating the electronic properties of biomembranes is critical for revealing biological mechanisms and developing new devices. We report here the electric properties of PMs studied by using multi-functional electric force microscopy (EFM) at the nanoscale. The topography, surface potential, and dielectric capacity of PMs were imaged and quantitatively measured in parallel. Two orientations of PMs were identified by EFM because of its high resolution in differentiating electrical characteristics. The extracellular (EC) sides were more negative than the cytoplasmic (CP) side by 8 mV. The direction of potential difference may facilitate movement of protons across the membrane and thus play important roles in proton pumping. Unlike the side-dependent surface potentials observed in PM, the EFM capacitive response was independent of the side and was measured to be at a dC/dz value of ~5.25 nF/m. Furthermore, by modification of PM with de novo peptides based on peptide-protein interaction, directional oriented PM assembly on silicon substrate was obtained for technical devices. This work develops a new method for studying membrane nanoelectronics and exploring the bioelectric application at the nanoscale.
Collapse
Affiliation(s)
- Denghua Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Yibing Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Huiwen Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Shiwei Xu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
| | - Zhemin Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
32
|
Rodriguez-Ramos J, Perrino AP, Garcia R. Dependence of the volume of an antibody on the force applied in a force microscopy experiment in liquid. Ultramicroscopy 2016; 171:153-157. [PMID: 27686276 DOI: 10.1016/j.ultramic.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
Abstract
The volume of a protein can be estimated from its molecular weight. This approach has also been applied in force microscopy experiments. Two factors contribute to the determination of the volume from a force microscope image, the applied force and the tip radius. Those factors act in opposite directions. Here, we demonstrate that in the optimum conditions to image a protein, the apparent volume deduced from an AFM image overestimates the real protein volume. The lateral broadening due to the tip finite size, makes the simulated volume to exceed the real protein volume value, while the force applied by the tip tends to decrease the measured volume. The measured volume could coincide with the real volume for either a point-size tip at zero force or when the compression exerted by the tip compensates its dilation effects. The interplay between the above factors make unsuitable to apply the molecular weight method to determine the volume of a protein from AFM data.
Collapse
Affiliation(s)
- Jorge Rodriguez-Ramos
- Centro de Estudios Avanzados de Cuba, Carretera de San Antonio de los Baños, km 1 1/2, Valle Grande, La Habana, Cuba.
| | - Alma P Perrino
- Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
33
|
Klausen LH, Fuhs T, Dong M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat Commun 2016; 7:12447. [PMID: 27561322 PMCID: PMC5007656 DOI: 10.1038/ncomms12447] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/04/2016] [Indexed: 01/21/2023] Open
Abstract
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. Surface charges on lipid bilayers deeply influence the way proteins interact with cellular membranes, yet their precise quantification has proven challenging. Here, the authors report on a quantitative method to map and evaluate surface charge densities under physiological conditions.
Collapse
Affiliation(s)
- Lasse Hyldgaard Klausen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø DK-2100, Denmark
| | - Thomas Fuhs
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Funari R, Della Ventura B, Altucci C, Offenhäusser A, Mayer D, Velotta R. Single Molecule Characterization of UV-Activated Antibodies on Gold by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8084-91. [PMID: 27444884 DOI: 10.1021/acs.langmuir.6b02218] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The interaction between proteins and solid surfaces can influence their conformation and therefore also their activity and affinity. These interactions are highly specific for the respective combination of proteins and solids. Consequently, it is desirable to investigate the conformation of proteins on technical surfaces, ideally at single molecule level, and to correlate the results with their activity. This is in particular true for biosensors where the conformation-dependent target affinity of an immobilized receptor determines the sensitivity of the sensor. Here, we investigate for the first time the immobilization and orientation of antibodies (Abs) photoactivated by a photonic immobilization technique (PIT), which has previously demonstrated to enhance binding capabilities of antibody receptors. The photoactivated immunoglobulins are immobilized on ultrasmooth template stripped gold films and investigated by atomic force microscopy (AFM) at the level of individual molecules. The observed protein orientations are compared with results of nonactivated antibodies adsorbed on similar gold films and mica reference samples. We find that the behavior of Abs is similar for mica and gold when the protein are not treated (physisorption), whereas smaller contact area and larger heights are measured when Abs are treated (PIT). This is explained by assuming that the activated antibodies tend to be more upright compared with nonirradiated ones, thereby providing a better exposure of the binding sites. This finding matches the observed enhancement of Abs binding efficiency when PIT is used to functionalize gold surface of QCM-based biosensors.
Collapse
Affiliation(s)
- R Funari
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - B Della Ventura
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - C Altucci
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - A Offenhäusser
- Peter Grünberg Institute (PGI-8) and Institute of Complex Systems (ICS-8), Forschungszentrum Jülich GmbH , 52428 Jülich, Germany
| | - D Mayer
- Peter Grünberg Institute (PGI-8) and Institute of Complex Systems (ICS-8), Forschungszentrum Jülich GmbH , 52428 Jülich, Germany
| | - R Velotta
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
35
|
Kreplak L. Introduction to Atomic Force Microscopy (AFM) in Biology. ACTA ACUST UNITED AC 2016; 85:17.7.1-17.7.21. [PMID: 27479503 DOI: 10.1002/cpps.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
36
|
Lai CY, Santos S, Chiesa M. Reconstruction of height of sub-nanometer steps with bimodal atomic force microscopy. NANOTECHNOLOGY 2016; 27:075701. [PMID: 26762959 DOI: 10.1088/0957-4484/27/7/075701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Obtaining topographic images of surfaces presenting terraces with heights in the nanometer and sub-nanometer range has become routine since the advent of atomic force microscopy (AFM). There remain however several open questions regarding the validity of direct topographic measurements. Here we turn to recent advances in AFM to correct the height of nanometric terraces by exploiting the four observables of bimodal AFM operated in the non-invasive attractive regime. We first derive expressions based on the van der Waals theory and then image model terraces in air in standard bimodal AFM while simultaneously correcting and decoupling the sources of loss/gain of height.
Collapse
Affiliation(s)
- Chia-Yun Lai
- Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi, UAE
| | | | | |
Collapse
|
37
|
Bortolini C, Jones NC, Hoffmann SV, Besenbacher F, Dong M. The influence of the localised charge of C- and N-termini on peptide self-assembly. SOFT MATTER 2016; 12:373-377. [PMID: 26472087 DOI: 10.1039/c5sm01669j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The charge of a peptide influences final assembled structures. It is important to consider not only global charge, but also local, such as that found on the terminal residues. This work investigates the change of peptide self-assembly through the selection of different amino acid sequences and by varying the local charge of the residues on the C- and N-termini.
Collapse
Affiliation(s)
- C Bortolini
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds 14, Building 1590, Aarhus C, Denmark.
| | - N C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - S V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - F Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds 14, Building 1590, Aarhus C, Denmark.
| | - M Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds 14, Building 1590, Aarhus C, Denmark.
| |
Collapse
|
38
|
Zhong J, Yan J. Seeing is believing: atomic force microscopy imaging for nanomaterial research. RSC Adv 2016. [DOI: 10.1039/c5ra22186b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Atomic force microscopy can image nanomaterial properties such as the topography, elasticity, adhesion, friction, electrical properties, and magnetism.
Collapse
Affiliation(s)
- Jian Zhong
- College of Food Science & Technology
- Shanghai Ocean University
- Shanghai 201306
- People's Republic of China
| | - Juan Yan
- College of Food Science & Technology
- Shanghai Ocean University
- Shanghai 201306
- People's Republic of China
| |
Collapse
|
39
|
Petrosyan R, Bippes CA, Walheim S, Harder D, Fotiadis D, Schimmel T, Alsteens D, Müller DJ. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores. NANO LETTERS 2015; 15:3624-3633. [PMID: 25879249 DOI: 10.1021/acs.nanolett.5b01223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Christian A Bippes
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Stefan Walheim
- †Institute of Applied Physics and Center for Functional Nanostructures (CFN) and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Daniel Harder
- §Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- §Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Thomas Schimmel
- †Institute of Applied Physics and Center for Functional Nanostructures (CFN) and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - David Alsteens
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Daniel J Müller
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| |
Collapse
|
40
|
Maté S, Busto JV, García-Arribas AB, Sot J, Vazquez R, Herlax V, Wolf C, Bakás L, Goñi FM. N-nervonoylsphingomyelin (C24:1) prevents lateral heterogeneity in cholesterol-containing membranes. Biophys J 2015; 106:2606-16. [PMID: 24940778 DOI: 10.1016/j.bpj.2014.04.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.
Collapse
Affiliation(s)
- Sabina Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Cientifico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Tecnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Jon V Busto
- Unidad de Biofísica-Centro Mixto, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Aritz B García-Arribas
- Unidad de Biofísica-Centro Mixto, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Jesús Sot
- Unidad de Biofísica-Centro Mixto, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Romina Vazquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Cientifico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Tecnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Cientifico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Tecnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claude Wolf
- Groupe de spectrométrie de masse-APLIPID, Université Pierre et Marie Curie, Faculté de Médicine Pierre et Marie Curie, Paris, France
| | - Laura Bakás
- Departamento de Ciencias Biológicas. Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Argentina
| | - Félix M Goñi
- Unidad de Biofísica-Centro Mixto, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain
| |
Collapse
|
41
|
Lai CY, Santos S, Chiesa M. General interpretation and theory of apparent height in dynamic atomic force microscopy. RSC Adv 2015. [DOI: 10.1039/c5ra16695k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We provide a general theory and interpretation behind the ubiquitous loss of apparent height of nanostructures in dynamic atomic force microscopy that occurs in the attractive regime irrespective of stiffness.
Collapse
Affiliation(s)
- Chia-Yun Lai
- Laboratory for Energy and NanoScience (LENS)
- Institute Center for Future Energy (iFES)
- Masdar Institute of Science and Technology
- Abu Dhabi
- United Arab Emirates
| | - Sergio Santos
- Laboratory for Energy and NanoScience (LENS)
- Institute Center for Future Energy (iFES)
- Masdar Institute of Science and Technology
- Abu Dhabi
- United Arab Emirates
| | - Matteo Chiesa
- Laboratory for Energy and NanoScience (LENS)
- Institute Center for Future Energy (iFES)
- Masdar Institute of Science and Technology
- Abu Dhabi
- United Arab Emirates
| |
Collapse
|
42
|
Ricci M, Spijker P, Voïtchovsky K. Water-induced correlation between single ions imaged at the solid-liquid interface. Nat Commun 2014; 5:4400. [PMID: 25027990 DOI: 10.1038/ncomms5400] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
When immersed into water, most solids develop a surface charge, which is neutralized by an accumulation of dissolved counterions at the interface. Although the density distribution of counterions perpendicular to the interface obeys well-established theories, little is known about counterions' lateral organization at the surface of the solid. Here we show, by using atomic force microscopy and computer simulations, that single hydrated metal ions can spontaneously form ordered structures at the surface of homogeneous solids in aqueous solutions. The structures are laterally stabilized only by water molecules with no need for specific interactions between the surface and the ions. The mechanism, studied here for several systems, is controlled by the hydration landscape of both the surface and the adsorbed ions. The existence of discrete ion domains could play an important role in interfacial phenomena such as charge transfer, crystal growth, nanoscale self-assembly and colloidal stability.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Materials Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, (EPFL), 1015 Lausanne, Switzerland
| | - Peter Spijker
- Department of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, FI-00076 Helsinki, Finland
| | - Kislon Voïtchovsky
- 1] Department of Materials Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, (EPFL), 1015 Lausanne, Switzerland [2] Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
43
|
Reply to "CENP-A octamers do not confer a reduction in nucleosome height by AFM". Nat Struct Mol Biol 2014; 21:5-8. [PMID: 24389543 DOI: 10.1038/nsmb.2744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Ido S, Kimiya H, Kobayashi K, Kominami H, Matsushige K, Yamada H. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. NATURE MATERIALS 2014; 13:264-270. [PMID: 24441879 DOI: 10.1038/nmat3847] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.
Collapse
Affiliation(s)
- Shinichiro Ido
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hirokazu Kimiya
- Device Solutions Center, Panasonic Corporation, Yagumo-naka-machi 3-1-1, Moriguchi, Osaka 570-8501, Japan
| | - Kei Kobayashi
- 1] Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan [2] The Hakubi Center for Advanced Research, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8520, Japan
| | - Hiroaki Kominami
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kazumi Matsushige
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
45
|
Nordin SL, Jovic S, Kurut A, Andersson C, Gela A, Bjartell A, Mörgelin M, Olin AI, Lund M, Egesten A. High Expression of Midkine in the Airways of Patients with Cystic Fibrosis. Am J Respir Cell Mol Biol 2013; 49:935-42. [DOI: 10.1165/rcmb.2013-0106oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
46
|
Habib L, Jraij A, Khreich N, Fessi H, Charcosset C, Greige-Gerges H. Morphological and physicochemical characterization of liposomes loading cucurbitacin E, an anti-proliferative natural tetracyclic triterpene. Chem Phys Lipids 2013; 177:64-70. [PMID: 24291009 DOI: 10.1016/j.chemphyslip.2013.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022]
Abstract
Cucurbitacin E (Cuc E), an oxygenated triterpene molecule, has demonstrated anti-proliferative effect on various cancer cells. Here, we examined the effect of Cuc E on the membrane morphology and properties using differential scanning calorimetry, transmission electron microscopy and atomic force microscopy techniques. Dipalmitoylphosphatidylcholine vesicles were prepared by the thin film hydration method in the absence and presence of Cuc E at molar ratios 100:12 and 100:20. The loading efficiency of Cuc E was found to be higher than 98% upon HPLC analysis. The thermodynamic parameters suggest that Cuc E does not penetrate into the bilayers and interacts with the polar/apolar interface of the lipid membranes. Blank and Cuc E loaded liposomes prepared from a mixture of DPPC/DPPE/DPPG/Cho were imaged by TEM and AFM. Images obtained by TEM revealed unilamellar liposomes for blank and Cuc E loaded liposomes. AFM images showed that the size and the height of Cuc E loaded liposomes were respectively smaller and higher than blank ones. Results suggest that Cuc E produces modifications in the lipid membrane structures.
Collapse
Affiliation(s)
- Lamice Habib
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France
| | - Alia Jraij
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon
| | - Nathalie Khreich
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon
| | - Hatem Fessi
- Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Lebanon.
| |
Collapse
|
47
|
Raigoza AF, Dugger JW, Webb LJ. Review: recent advances and current challenges in scanning probe microscopy of biomolecular surfaces and interfaces. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9249-9261. [PMID: 23848270 DOI: 10.1021/am4018048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The introduction of scanning probe microscopy (SPM) techniques revolutionized the field of condensed matter science by allowing researchers to probe the structure and composition of materials on an atomic scale. Although these methods have been used to make molecular- and atomic-scale measurements on biological systems with some success, the biophysical sciences remain on the cusp of a breakthrough with SPM technologies similar in magnitude to that experienced by fields related to solid-state surfaces and interfaces. Numerous challenges arise when attempting to connect biological molecules that are often delicate, dynamic, and complex with the experimental requirements of SPM techniques. However, there are a growing number of studies in which SPM has been successfully used to achieve subnanometer resolution measurements in biological systems where carefully designed and prepared samples have been paired with appropriate SPM techniques. We review significant recent innovations in applying SPM techniques to biological molecules, and highlight challenges that face researchers attempting to gain atomic- and molecular-level information of complex biomolecular structures.
Collapse
Affiliation(s)
- Annette F Raigoza
- Department of Chemistry and Biochemistry, Center for Nano- and Molecular Science and Technology, and Institute for Cell and Molecular Biology, The University of Texas at Austin , 1 University Station, A5300, Austin, Texas 78712, United States
| | | | | |
Collapse
|
48
|
Pfreundschuh M, Hensen U, Müller DJ. Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution. NANO LETTERS 2013; 13:5585-5593. [PMID: 24079830 DOI: 10.1021/nl403232z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Elucidating the mechanisms by which proteins translocate small molecules and ions through transmembrane pores and channels is of great interest in biology, medicine, and nanotechnology. However, the characterization of pore forming proteins in their native state lacks suitable methods that are capable of high-resolution imaging (~1 nm) while simultaneously mapping physical and chemical properties. Here we report how force-distance (FD) curve-based atomic force microscopy (AFM) imaging can be applied to image the native pore forming outer membrane protein F (OmpF) at subnanometer resolution and to quantify the electrostatic field and potential generated by the transmembrane pore. We further observe the electrostatic field and potential of the OmpF pore switching "on" and "off" in dependence of the electrolyte concentration. Because electrostatic field and potential select for charged molecules and ions and guide them to the transmembrane pore the insights are of fundamental importance to understand the pore function. These experimental results establish FD-based AFM as a unique tool to image biological systems to subnanometer resolution and to quantify their electrostatic properties.
Collapse
Affiliation(s)
- Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
49
|
Yang CW, Ding RF, Lai SH, Liao HS, Lai WC, Huang KY, Chang CS, Hwang IS. Torsional resonance mode atomic force microscopy in liquid with Lorentz force actuation. NANOTECHNOLOGY 2013; 24:305702. [PMID: 23807471 DOI: 10.1088/0957-4484/24/30/305702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, we present a design based on Lorentz force induction to excite pure torsional resonances of different types of cantilevers in air as well as in water. To demonstrate the atomic force microscopy imaging capability, the phase-modulation torsional resonance mode is employed to resolve fine features of purple membranes in a buffer solution. Most importantly, force-versus-distance curves using a relatively stiff cantilever can clearly detect the characteristic oscillatory profiles of hydration layers at a water-mica interface, indicating the high force sensitivity of the torsional mode. The high resonance frequencies and high quality-factors for the torsional mode may be of great potential for high-speed and high-sensitivity imaging in aqueous environment.
Collapse
Affiliation(s)
- Chih-Wen Yang
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sanganna Gari RR, Frey NC, Mao C, Randall LL, King GM. Dynamic structure of the translocon SecYEG in membrane: direct single molecule observations. J Biol Chem 2013; 288:16848-16854. [PMID: 23609442 PMCID: PMC3675617 DOI: 10.1074/jbc.m113.471870] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/19/2013] [Indexed: 11/06/2022] Open
Abstract
Purified SecYEG was reconstituted into liposomes and studied in near-native conditions using atomic force microscopy. These SecYEG proteoliposomes were active in translocation assays. Changes in the structure of SecYEG as a function of time were directly visualized. The dynamics observed were significant in magnitude (∼1-10 Å) and were attributed to the two large loops of SecY linking transmembrane helices 6-7 and 8-9. In addition, we identified a distribution between monomers and dimers of SecYEG as well as a smaller population of higher order oligomers. This work provides a new vista of the flexible and dynamic structure of SecYEG, an intricate and vital membrane protein.
Collapse
Affiliation(s)
| | - Nathan C Frey
- Departments of Physics and Astronomy, Columbia, Missouri 65211
| | - Chunfeng Mao
- Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Linda L Randall
- Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gavin M King
- Departments of Physics and Astronomy, Columbia, Missouri 65211; Biochemistry, University of Missouri, Columbia, Missouri 65211.
| |
Collapse
|