1
|
Collette D, Dunlap D, Finzi L. Macromolecular Crowding and DNA: Bridging the Gap between In Vitro and In Vivo. Int J Mol Sci 2023; 24:17502. [PMID: 38139331 PMCID: PMC10744201 DOI: 10.3390/ijms242417502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The cellular environment is highly crowded, with up to 40% of the volume fraction of the cell occupied by various macromolecules. Most laboratory experiments take place in dilute buffer solutions; by adding various synthetic or organic macromolecules, researchers have begun to bridge the gap between in vitro and in vivo measurements. This is a review of the reported effects of macromolecular crowding on the compaction and extension of DNA, the effect of macromolecular crowding on DNA kinetics, and protein-DNA interactions. Theoretical models related to macromolecular crowding and DNA are briefly reviewed. Gaps in the literature, including the use of biologically relevant crowders, simultaneous use of multi-sized crowders, empirical connections between macromolecular crowding and liquid-liquid phase separation of nucleic materials are discussed.
Collapse
Affiliation(s)
| | | | - Laura Finzi
- Department of Physics, College of Arts & Sciences, Emory University, Atlanta, GA 30322, USA; (D.C.); (D.D.)
| |
Collapse
|
2
|
Mondal S, Mishra PP. Direct observation of effect of crowding induced macromolecular hydration on molecular breathing in the stem of Fork-DNA by single-molecule FRET microspectroscopy. Int J Biol Macromol 2020; 167:559-569. [PMID: 33278436 DOI: 10.1016/j.ijbiomac.2020.11.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/15/2022]
Abstract
The perpetually changing cellular conditions, nucleotide sequence, and environmental effects including osmotic stress have multiple effects on DNA, leading to several conformational alternations and subsequently influencing their activity, too. In this work, single-molecule FRET microspectroscopy has been employed to monitor the breathing dynamics as an effect of molecular crowding in the stem region of Fork-DNA. The structural integrity greatly alters with the presence or absence of nucleotide overhangs and on the nature and concentration of the crowding agent, thus affecting the stability of the stem region and hence the forked DNA. The multiple hydrogen bonds and hydrophobic interactions between the polynucleotide strands appear to be altered with osmotic crowding. This induces increased flexibility in the double helix and allows DNA to breath. The conformational alternation of the DNA happens in nanometer resolution, that is been monitored by the change in the FRET efficiency between the dyes attached to two different strands of the DNA. The nature and molecular weight of crowding agents control the degree of spatial breathing in the stem of Fork-DNA. These constant fluctuations between the entropically favorable partially folded structures to an enthalpically favorable folded structure are not only valuable for elucidating nucleic acid structure but might play an important role in enzyme kinetics.
Collapse
Affiliation(s)
- Soma Mondal
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI Mumbai, 1/AF Bidhannagar, Kolkata 700064, India
| | - Padmaja P Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI Mumbai, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
3
|
Yao F, Peng X, Su Z, Tian L, Guo Y, Kang XF. Crowding-Induced DNA Translocation through a Protein Nanopore. Anal Chem 2020; 92:3827-3833. [PMID: 32048508 DOI: 10.1021/acs.analchem.9b05249] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A crowded cellular environment is highly associated with many significant biological processes. However, the effect of molecular crowding on the translocation behavior of DNA through a pore has not been explored. Here, we use nanopore single-molecule analytical technique to quantify the thermodynamics and kinetics of DNA transport under heterogeneous cosolute PEGs. The results demonstrate that the frequency of the translocation event exhibits a nonmonotonic dependence on the crowding agent size, while both the event frequency and translocation time increase monotonically with increasing crowder concentration. In the presence of PEGs, the rate of DNA capture into the nanopore elevates 118.27-fold, and at the same time the translocation velocity decreases from 20 to 120 μs/base. Interestingly, the impact of PEG 4k on the DNA-nanopore interaction is the most notable, with up to ΔΔG = 16.27 kJ mol-1 change in free energy and 764.50-fold increase in the binding constant at concentration of 40% (w/v). The molecular crowding effect will has broad applications in nanopore biosensing and nanopore DNA sequencing in which the strategy to capture analyte and to control the transport is urgently required.
Collapse
Affiliation(s)
- Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao Peng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhuoqun Su
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
4
|
Hall D, Harding SE. Foreword to 'Quantitative and analytical relations in biochemistry'-a special issue in honour of Donald J. Winzor's 80th birthday. Biophys Rev 2016; 8:269-277. [PMID: 28510020 PMCID: PMC5425807 DOI: 10.1007/s12551-016-0227-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022] Open
Abstract
The purpose of this special issue is to honour Professor Donald J. Winzor's long career as a researcher and scientific mentor, and to celebrate the milestone of his 80th birthday. Throughout his career, Don has been renowned for his development of clever approximations to difficult quantitative relations governing a range of biophysical measurements. The theme of this special issue, 'Quantitative and analytical relations in biochemistry', was chosen to reflect this aspect of Don's scientific approach.
Collapse
Affiliation(s)
- Damien Hall
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
5
|
Rao A, Cölfen H. Mineralization and non-ideality: on nature's foundry. Biophys Rev 2016; 8:309-329. [PMID: 28510024 DOI: 10.1007/s12551-016-0228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022] Open
Abstract
Understanding how ions, ion-clusters and particles behave in non-ideal environments is a fundamental question concerning planetary to atomic scales. For biomineralization phenomena wherein diverse inorganic and organic ingredients are present in biological media, attributing biomaterial composition and structure to the chemistry of singular additives may not provide a holistic view of the underlying mechanisms. Therefore, in this review, we specifically address the consequences of physico-chemical non-ideality on mineral formation. Influences of different forms of non-ideality such as macromolecular crowding, confinement and liquid-like organic phases on mineral nucleation and crystallization in biological environments are presented. Novel prospects for the additive-controlled nucleation and crystallization are accessible from this biophysical view. In this manner, we show that non-ideal conditions significantly affect the form, structure and composition of biogenic and biomimetic minerals.
Collapse
Affiliation(s)
- Ashit Rao
- Freiburg Institute for Advanced Studies, Albert Ludwigs University of Freiburg, 79104, Freiburg im Breisgau, Germany.
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, D-78457, Konstanz, Germany.
| |
Collapse
|
6
|
MATSUMOTO D, NISHIO M, KATO Y, YOSHIDA W, ABE K, FUKAZAWA K, ISHIHARA K, IWATA F, IKEBUKURO K, NAKAMURA C. ATP-mediated Release of a DNA-binding Protein from a Silicon Nanoneedle Array. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Daisuke MATSUMOTO
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Maui NISHIO
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Yoshio KATO
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Wataru YOSHIDA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Koichi ABE
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Kyoko FUKAZAWA
- Department of Materials Engineering, The University of Tokyo
| | | | - Futoshi IWATA
- Department of Mechanical Engineering, Shizuoka University
| | - Kazunori IKEBUKURO
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Chikashi NAKAMURA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
7
|
Ferrandino R, Sidorova N, Rau D. Using single-turnover kinetics with osmotic stress to characterize the EcoRV cleavage reaction. Biochemistry 2014; 53:235-46. [PMID: 24328115 DOI: 10.1021/bi401089y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type II restriction endonucleases require metal ions to specifically cleave DNA at canonical sites. Despite the wealth of structural and biochemical information, the number of Mg(2+) ions used for cleavage by EcoRV, in particular, at physiological divalent ion concentrations has not been established. In this work, we employ a single-turnover technique that uses osmotic stress to probe reaction kinetics between an initial specific EcoRV-DNA complex formed in the absence of Mg(2+) and the final cleavage step. With osmotic stress, complex dissociation before cleavage is minimized and the reaction rates are slowed to a convenient time scale of minutes to hours. We find that cleavage occurs by a two-step mechanism that can be characterized by two rate constants. The dependence of these rate constants on Mg(2+) concentration and osmotic pressure gives the number of Mg(2+) ions and water molecules coupled to each kinetic step of the EcoRV cleavage reaction. Each kinetic step is coupled to the binding 1.5-2.5 Mg(2+) ions, the uptake of ∼30 water molecules, and the cleavage of a DNA single strand. We suggest that each kinetic step reflects an independent, rate-limiting conformational change of each monomer of the dimeric enzyme that allows Mg(2+) ion binding. This modified single-turnover protocol has general applicability for metalloenzymes.
Collapse
Affiliation(s)
- Rocco Ferrandino
- The Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
8
|
Vagenende V, Han AX, Pek HB, Loo BLW. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions. PLoS Comput Biol 2013; 9:e1003072. [PMID: 23696727 PMCID: PMC3656110 DOI: 10.1371/journal.pcbi.1003072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022] Open
Abstract
Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.
Collapse
Affiliation(s)
- Vincent Vagenende
- Bioprocessing Technology Institute, ASTAR (Agency for Science, Technology and Research), Singapore.
| | | | | | | |
Collapse
|
9
|
Sidorova NY, Hung S, Rau DC. Stabilizing labile DNA-protein complexes in polyacrylamide gels. Electrophoresis 2010; 31:648-53. [PMID: 20108261 DOI: 10.1002/elps.200900573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The electrophoretic mobility-shift assay (EMSA) is one of the most popular tools in molecular biology for measuring DNA-protein interactions. EMSA, as standardly practiced today, works well for complexes with association binding constants K(a)>10(9) M(-1) under normal conditions of salt and pH. Many DNA-protein complexes are not stable enough so that they dissociate while moving through the gel matrix giving smeared bands that are difficult to quantitate reliably. In this work we demonstrate that the addition of the osmolyte triethylene glycol to polyacrylamide gels dramatically stabilizes labile restriction endonuclease EcoRI complexes with nonspecific DNA sequences enabling quantitation of binding using EMSA. The significant improvement of the technique resulting from the addition of osmolytes to the gel matrix greatly extends the range of binding constants of protein-DNA complexes that can be investigated using this widely used assay. Extension of this approach to other techniques used for separating bound and free components such as gel chromatography and CE is straightforward.
Collapse
Affiliation(s)
- Nina Y Sidorova
- Laboratory of Physical and Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
10
|
Chen Z, Zheng KW, Hao YH, Tan Z. Reduced or Diminished Stabilization of the Telomere G-Quadruplex and Inhibition of Telomerase by Small Chemical Ligands under Molecular Crowding Condition. J Am Chem Soc 2009; 131:10430-8. [DOI: 10.1021/ja9010749] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhao Chen
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China, and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ke-wei Zheng
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China, and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yu-hua Hao
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China, and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Zheng Tan
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China, and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
11
|
Chebotareva NA, Meremyanin AV, Makeeva VF, Livanova NB, Kurganov BI. Cooperative self-association of phosphorylase kinase from rabbit skeletal muscle. Biophys Chem 2008; 133:45-53. [DOI: 10.1016/j.bpc.2007.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 11/15/2022]
|
12
|
|
13
|
Chebotareva NA. Effect of molecular crowding on the enzymes of glycogenolysis. BIOCHEMISTRY (MOSCOW) 2007; 72:1478-90. [DOI: 10.1134/s0006297907130056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sidorova NY, Muradymov S, Rau DC. Differences in hydration coupled to specific and nonspecific competitive binding and to specific DNA Binding of the restriction endonuclease BamHI. J Biol Chem 2006; 281:35656-66. [PMID: 17008319 DOI: 10.1074/jbc.m608018200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the osmotic stress technique together with a self-cleavage assay we measure directly differences in sequestered water between specific and nonspecific DNA-BamHI complexes as well as the numbers of water molecules released coupled to specific complex formation. The difference between specific and nonspecific binding free energy of the BamHI scales linearly with solute osmolal concentration for seven neutral solutes used to set water activity. The observed osmotic dependence indicates that the nonspecific DNA-BamHI complex sequesters some 120-150 more water molecules than the specific complex. The weak sensitivity of the difference in number of waters to the solute identity suggests that these waters are sterically inaccessible to solutes. This result is in close agreement with differences in the structures determined by x-ray crystallography. We demonstrate additionally that when the same solutes that were used in competition experiments are used to probe changes accompanying the binding of free BamHI to its specific DNA sequence, the measured number of water molecules released in the binding process is strikingly solute-dependent (with up to 10-fold difference between solutes). This result is expected for reactions resulting in a large change in a surface exposed area.
Collapse
Affiliation(s)
- Nina Y Sidorova
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
15
|
Lu Y, Stellwagen E, Stellwagen NC. Effect of organic cosolvents on the free solution mobility of curved and normal DNA molecules. Electrophoresis 2006; 27:1462-70. [PMID: 16609931 DOI: 10.1002/elps.200500941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The free solution mobilities of curved and normal 199-bp DNA fragments have been measured in buffer solutions containing various quantities of the organic cosolvents methanol, ethanol, 2-propanol, 2-methyl-2,4-pentanediol (MPD), ethylene glycol, and ACN, using CE. The curved fragment, taken from the VP1 gene of SV40, contains five unevenly spaced A- and T-tracts in a centrally located "curvature module"; the A- and T-tracts have been mutated to other sequences in the normal 199-bp fragment. The free solution mobility of the curved 199-bp fragment is significantly lower than that of its normal counterpart in aqueous solutions [Stellwagen, E., Lu, Y. J., Stellwagen, N. C., Nucleic Acids Res. 2005, 33, 4425-4432]. The mobilities of both the curved and normal fragments decrease with increasing cosolvent concentration, due to the effect of the cosolvent on the viscosity and dielectric constant of the solution. The mobility differences between the curved and normal 199-bp fragments and the mobility ratios decrease approximately linearly with the increasing mole fraction of cosolvent in the solution. Hence, MPD and other organic cosolvents affect DNA electrophoretic mobility by a common mechanism, most likely the preferential hydration of the DNA surface that occurs in aqueous cosolvents. The gradual loss of the anomalously slow mobility of the curved 199-bp fragment with increasing cosolvent concentration, combined with other data in the literature, suggests that preferential hydration gradually widens the narrow A-tract minor groove, releasing site-bound counterions in the minor groove and shifting the conformation toward that of normal DNA.
Collapse
Affiliation(s)
- Yongjun Lu
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
16
|
Rau DC. Sequestered water and binding energy are coupled in complexes of lambda Cro repressor with non-consensus binding sequences. J Mol Biol 2006; 361:352-61. [PMID: 16828799 DOI: 10.1016/j.jmb.2006.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/07/2006] [Accepted: 06/14/2006] [Indexed: 11/28/2022]
Abstract
We use the osmotic pressure dependence of dissociation rates and relative binding constants to infer differences in sequestered water among complexes of lambda Cro repressor with varied DNA recognition sequences. For over a 1000-fold change in association constant, the number of water molecules sequestered by non-cognate complexes varies linearly with binding free energy. One extra bound water molecule is coupled with the loss of approximately 150 cal/mol complex in binding free energy. Equivalently, every tenfold decrease in binding constant at constant salt and temperature is associated with eight to nine additional water molecules sequestered in the non-cognate complex. The relative insensitivity of the difference in water molecules to the nature of the osmolyte used to probe the reaction suggests that the water is sterically sequestered. If the previously measured changes in heat capacity for lambda Cro binding to different non-cognate sequences are attributed solely to this change in water, then the heat capacity change per incorporated water is almost the same as the difference between ice and water. The associated changes in enthalpies and entropies, however, indicate that the change in complex structure involves more than a simple incorporation of fixed water molecules that act as adaptors between non-complementary surfaces.
Collapse
Affiliation(s)
- Donald C Rau
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Chebotareva NA, Kurganov BI, Livanova NB. Biochemical effects of molecular crowding. BIOCHEMISTRY (MOSCOW) 2005; 69:1239-51. [PMID: 15627378 DOI: 10.1007/s10541-005-0070-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell cytoplasm contains high concentrations of high-molecular-weight components that occupy a substantial part of the volume of the medium (crowding conditions). The effect of crowding on biochemical processes proceeding in the cell (conformational transitions of biomacromolecules, assembling of macromolecular structures, protein folding, protein aggregation, etc.) is discussed in this review. The excluded volume concept, which allows the effects of crowding on biochemical reactions to be quantitatively described, is considered. Experimental data demonstrating the biochemical effects of crowding imitated by both low-molecular-weight and high-molecular-weight crowding agents are summarized.
Collapse
Affiliation(s)
- N A Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | | | | |
Collapse
|
18
|
|
19
|
Sidorova NY, Rau DC. Differences between EcoRI nonspecific and "star" sequence complexes revealed by osmotic stress. Biophys J 2004; 87:2564-76. [PMID: 15454451 PMCID: PMC1304675 DOI: 10.1529/biophysj.104.042390] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 07/26/2004] [Indexed: 11/18/2022] Open
Abstract
The binding of the restriction endonuclease EcoRI to DNA is exceptionally specific. Even a single basepair change ("star" sequence) from the recognition sequence, GAATTC, decreases the binding free energy of EcoRI to values nearly indistinguishable from nonspecific binding. The difference in the number of waters sequestered by the protein-DNA complexes of the "star" sequences TAATTC and CAATTC and by the specific sequence complex determined from the dependence of binding free energy on water activity is also practically indistinguishable at low osmotic pressures from the 110 water molecules sequestered by nonspecific sequence complexes. Novel measurements of the dissociation rates of noncognate sequence complexes and competition equilibrium show that sequestered water can be removed from "star" sequence complexes by high osmotic pressure, but not from a nonspecific complex. By 5 Osm, the TAATTC "star" sequence complex has lost almost 90 of the approximately 110 waters initially present. It is more difficult to remove water from the CAATTC "star" sequence complex. The sequence dependence of water loss correlates with the known sequence dependence of "star" cleavage activity.
Collapse
Affiliation(s)
- Nina Y Sidorova
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
20
|
|
21
|
Goobes R, Kahana N, Cohen O, Minsky A. Metabolic buffering exerted by macromolecular crowding on DNA-DNA interactions: origin and physiological significance. Biochemistry 2003; 42:2431-40. [PMID: 12600210 DOI: 10.1021/bi026775x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crowding, which characterizes the interior of all living cells, has been shown to dramatically affect biochemical processes, leading to stabilization of compact morphologies, enhanced macromolecular associations, and altered reaction rates. Due to the crowding-mediated shift in binding equilibria toward association, crowding agents were proposed to act as a metabolic buffer, significantly extending the range of intracellular conditions under which interactions occur. Crowding may, however, impose a liability because, by greatly and generally enhancing macromolecular association, it can lead to irreversible interactions. To better understand the physical determinants and physiological consequences of crowding-mediated buffering, we studied the effects of crowding, or excluded volume, on DNA structures. Results obtained from isothermal titration calorimetry (ITC) and UV melting experiments indicate that crowding-induced effects are marginal under conditions that a priori favor association of DNA strands but become progressively larger when conditions deteriorate. As such, crowding exerts "genuine" buffering activity. Unexpectedly, crowding-mediated effects are found to include enthalpy terms that favorably contribute to association processes. We propose that these enthalpy terms and preferential stabilization derive from a reconfiguration of DNA hydration that occurs in dense DNA-rich phases obtained in crowded environments.
Collapse
Affiliation(s)
- Rivka Goobes
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
22
|
Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ. Interpreting the effects of small uncharged solutes on protein-folding equilibria. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:271-306. [PMID: 11340061 DOI: 10.1146/annurev.biophys.30.1.271] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins are designed to function in environments crowded by cosolutes, but most studies of protein equilibria are conducted in dilute solution. While there is no doubt that crowding changes protein equilibria, interpretations of the changes remain controversial. This review combines experimental observations on the effect of small uncharged cosolutes (mostly sugars) on protein stability with a discussion of the thermodynamics of cosolute-induced nonideality and critical assessments of the most commonly applied interpretations. Despite the controversy surrounding the most appropriate manner for interpreting these effects of thermodynamic nonideality arising from the presence of small cosolutes, experimental advantage may still be taken of the ability of the cosolute effect to promote not only protein stabilization but also protein self-association and complex formation between dissimilar reactants. This phenomenon clearly has potential ramifications in the cell, where the crowded environment could well induce the same effects.
Collapse
Affiliation(s)
- P R Davis-Searles
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,USA.
| | | | | | | | | |
Collapse
|
23
|
Lin FL, Majumdar A, Klotz LC, Reszka AP, Neidle S, Seidman MM. Stability of DNA triplexes on shuttle vector plasmids in the replication pool in mammalian cells. J Biol Chem 2000; 275:39117-24. [PMID: 10993885 DOI: 10.1074/jbc.m005404200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triple helix-forming oligonucleotides may be useful as gene-targeting reagents in vivo, for applications such as gene knockout. One important property of these complexes is their often remarkable stability, as demonstrated in solution and in cells following transfection. Although encouraging, these measurements do not necessarily report triplex stability in cellular compartments that support DNA functions such as replication and mutagenesis. We have devised a shuttle vector plasmid assay that reports the stability of triplexes on DNA that undergoes replication and mutagenesis. The assay is based on plasmids with novel variant supF tRNA genes containing embedded sequences for triplex formation and psoralen cross-linking. Triple helix-forming oligonucleotides were linked to psoralen and used to form triplexes on the plasmids. At various times after introduction into cells, the psoralen was activated by exposure to long wave ultraviolet light (UVA). After time for replication and mutagenesis, progeny plasmids were recovered and the frequency of plasmids with mutations in the supF gene determined. Site-specific mutagenesis by psoralen cross-links was dependent on precise placement of the psoralen by the triple helix-forming oligonucleotide at the time of UVA treatment. The results indicated that both pyrimidine and purine motif triplexes were much less stable on replicated DNA than on DNA in vitro or in total transfected DNA. Incubation of cells with amidoanthraquinone-based triplex stabilizing compounds enhanced the stability of the pyrimidine triplex.
Collapse
Affiliation(s)
- F L Lin
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- N Y Sidorova
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
|
26
|
Abstract
Examining solute-induced changes in protein conformational equilibria is a long-standing method for probing the role of water in maintaining protein stability. Interpreting the molecular details governing the solute-induced effects, however, remains controversial. We present experimental and theoretical data for osmolyte-induced changes in the stabilities of the A and N states of yeast iso-1-ferricytochrome c. Using polyol osmolytes of increasing size, we observe that osmolytes alone induce A-state formation from acid-denatured cytochrome c and N state formation from the thermally denatured protein. The stabilities of the A and N states increase linearly with osmolyte concentration. Interestingly, osmolytes stabilize the A state to a greater degree than the N state. To interpret the data, we divide the free energy for the reaction into contributions from nonspecific steric repulsions (excluded volume effects) and from binding interactions. We use scaled particle theory (SPT) to estimate the free energy contributions from steric repulsions, and we estimate the contributions from water-protein and osmolyte-protein binding interactions by comparing the SPT calculations to experimental data. We conclude that excluded volume effects are the primary stabilizing force, with changes in water-protein and solute-protein binding interactions making favorable contributions to stability of the A state and unfavorable contributions to the stability of the N state. The validity of our interpretation is strengthened by analysis of data on osmolyte-induced protein stabilization from the literature, and by comparison with other analyses of solute-induced changes in conformational equilibria.
Collapse
Affiliation(s)
- A J Saunders
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
27
|
Lagerholm BC, Starr TE, Volovyk ZN, Thompson NL. Rebinding of IgE Fabs at haptenated planar membranes: measurement by total internal reflection with fluorescence photobleaching recovery. Biochemistry 2000; 39:2042-51. [PMID: 10684654 DOI: 10.1021/bi9917434] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In previous work, a general analytical theory for ligand rebinding at cell surfaces was developed for a reversible bimolecular reaction between ligands in solution and receptors on a membrane surface [Lagerholm, B. C., and Thompson, N. L. (1998) Biophys. J. 74, 1215-1228]. This theory can be used to predict theoretical forms for data obtained by using total internal reflection with fluorescence photobleaching recovery (TIR-FPR) [Thompson, N. L., Burghardt, T. P., and Axelrod, D. (1981) Biophys. J. 33, 435-454]. Thus, one method by which the rebinding theory can be tested is to use TIR-FPR. In the work described herein, the reversible kinetics of mouse monoclonal anti-dinitrophenyl (DNP) IgE Fabs at substrate-supported planar membranes composed of 25 mol % DNP-conjugated phosphatidylethanolamine and 75 mol % dipalmitoylphosphatidylcholine have been examined by using TIR-FPR. Data were obtained as a function of the Fab solution concentration. Higher Fab concentrations reduce rebinding (and increase the fluorescence recovery rate) because different Fab molecules compete for the same surface-binding sites. Data were also obtained for solutions containing different volume fractions of glycerol. In these measurements, higher glycerol concentrations increase rebinding (and decrease the fluorescence recovery rate) because the solution viscosity is increased and the Fab diffusion coefficient in solution is decreased. The TIR-FPR data were quantitatively compared with theoretical predictions which follow from the general theory for rebinding at the membrane surface. The data were consistent with the theoretical predictions and, therefore, provide experimental verification of the previously developed theory.
Collapse
Affiliation(s)
- B C Lagerholm
- Department of Chemistry, Campus Box 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The cytosol of the cell contains high concentrations of small and large macromolecules, but experimental data are often obtained in dilute solutions that do not reflect in vivo conditions. We have studied the crowding effect that large macromolecules have on EcoRV cleavage by adding high-molecular-weight Ficoll 70 to reaction solutions. Results indicate that Ficoll has surprisingly little effect on overall EcoRV reaction velocity because of offsetting increases in V(max) and K(m), and stronger nonspecific binding. The changes in measured parameters can largely be attributed to the excluded volume effects on reactant activities and the slowing of protein diffusion. Covolume reduction upon binding appears to reinforce nonspecific binding strength, and k(cat) appears to be slowed by stronger nonspecific binding, which slows product release. The data also suggest that effective Ficoll particle volume decreases as its concentration increases above a few weight percent, which may be due to Ficoll interpenetration or compression.
Collapse
Affiliation(s)
- J R Wenner
- Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
29
|
Abstract
We recently showed that a nonspecific complex of the restriction nuclease EcoRI with poly (dI-dC) sequesters significantly more water at the protein-DNA interface than the complex with the specific recognition sequence. The nonspecific complex seems to retain almost a full hydration layer at the interface. We now find that at low osmotic pressures a complex of the restriction nuclease EcoRI with a DNA sequence that differs by only one base pair from the recognition site (a 'star' sequence) sequesters about 70 waters more than the specific one, a value virtually indistinguishable from nonspecific DNA. Unlike complexes with oligo (dI-dC) or with a sequence that differs by two base pairs from the recognition sequence, however, much of the water in the 'star' sequence complex is removed at high osmotic pressures. The energy of removing this water can be calculated simply from the osmotic pressure work done on the complex. The ability to measure not only the changes in water sequestered by DNA-protein complexes for different sequences, but also the work necessary to remove this water is a potentially powerful new tool for coupling inferred structural changes and thermodynamics.
Collapse
Affiliation(s)
- N Y Sidorova
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, MD 20892-0924, USA.
| | | |
Collapse
|
30
|
Spink CH, Chaires JB. Effects of hydration, ion release, and excluded volume on the melting of triplex and duplex DNA. Biochemistry 1999; 38:496-508. [PMID: 9890933 DOI: 10.1021/bi9820154] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stability of DNA duplex and triplex structures not only depends on molecular forces such as base pairing or tripling or electrostatic interactions but also is sensitive to its aqueous environment. This paper presents data on the melting of Escherichia coli and poly(dA).poly(dT) duplex DNA and on the poly(dT).poly(dA). poly(dT) triplex in a variety of media to assess the contributions from the osmotic status and salt content of the media. The effects of volume exclusion on the stability of the DNA structures are also studied. From thermal transition measurements in the presence of low-molecular weight osmotic stressors, the number of water molecules released upon melting is found to be four waters per base pair for duplex melting and one water for the conversion of triplex to single-strand and duplex. The effects of Na+ counterion binding are also determined in ethylene glycol solutions so that the variation of counterion binding with water activity is evaluated. The data show that there is a modest decrease in the extent of counterion binding for both duplex and triplex as water activity decreases. Finally, using larger polyethylene glycol cosolutes, the effects on melting of volume exclusion by the solutes are assessed, and the results correlated with simple geometric models for the excluded volume. These results point out that DNA stability is sensitive to important conditions in the environment of the duplex or triplex, and thus, conformation and reactivity can be influenced by these solution conditions.
Collapse
Affiliation(s)
- C H Spink
- Department of Chemistry, State University of New York, Cortland 13045, USA
| | | |
Collapse
|