1
|
Siletsky SA. Investigation of the Mechanism of Membrane Potential Generation by Heme-Copper Respiratory Oxidases in a Real Time Mode. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1513-1527. [PMID: 38105021 DOI: 10.1134/s0006297923100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Heme-copper respiratory oxidases are highly efficient molecular machines. These membrane enzymes catalyze the final step of cellular respiration in eukaryotes and many prokaryotes: the transfer of electrons from cytochromes or quinols to molecular oxygen and oxygen reduction to water. The free energy released in this redox reaction is converted by heme-copper respiratory oxidases into the transmembrane gradient of the electrochemical potential of hydrogen ions H+). Heme-copper respiratory oxidases have a unique mechanism for generating H+, namely, a redox-coupled proton pump. A combination of direct electrometric method for measuring the kinetics of membrane potential generation with the methods of prestationary kinetics and site-directed mutagenesis in the studies of heme-copper oxidases allows to obtain a unique information on the translocation of protons inside the proteins in real time. The review summarizes the data of studies employing time-resolved electrometry to decipher the mechanisms of functioning of these important bioenergetic enzymes.
Collapse
Affiliation(s)
- Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Vygodina TV, Kaminskaya OP, Konstantinov AA, Ptushenko VV. Effect of Ca 2+ on the redox potential of heme a in cytochrome c oxidase. Biochimie 2018; 149:71-78. [PMID: 29635042 DOI: 10.1016/j.biochi.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022]
Abstract
Subunit I of cytochrome c oxidase (CcO) from mitochondria and many bacteria contains a cation binding site (CBS) located at the outer positively charged aqueous phase not far from heme a. Binding of Ca2+ with the CBS in bovine CcO inhibits activity of the enzyme 2-3 -fold [Vygodina, T., Kirichenko, A. & Konstantinov A.A. (2013) Direct Regulation of Cytochrome c Oxidase by Calcium Ions, PLoS One.8 e74436]. Here we show that binding of Ca2+ at CBS of bovine CcO shifts Em of heme a to the positive by 15-20 mV. Na+ ions that bind to the same site and compete with Ca2+ do not affect Em of heme a and also prevent and reverse the effect of Ca2+. No effect of Ca2+ or EGTA is observed on Em of heme a with the wild type bacterial oxidases from R.sphaeroides or P.denitrificans that contain tightly-bound calcium at the site. In the D477A mutant CcO from P. denitrificans that binds Ca2+ reversibly like the mitochondrial CcO, calcium shifts redox titration curve of heme a to the positive by ∼35-50 mV that is in good agreement with the results of electrostatic calculations; however, as shown earlier, it does not inhibit CcO activity of the mutant enzyme. Therefore the data do not support the proposal that the inhibitory effect of Ca2+ on CcO activity may be explained by the Ca2+-induced shift of Em of heme a. Rather, Ca2+ retards electron transfer by inhibition of charge dislocation in the exit part of the proton channel H in mammalian CcO, that is absent in the bacterial oxidases.
Collapse
Affiliation(s)
- Tatiana V Vygodina
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Olga P Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | - Vasily V Ptushenko
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Magalhães PR, Oliveira ASF, Campos SRR, Soares CM, Baptista AM. Effect of a pH Gradient on the Protonation States of Cytochrome c Oxidase: A Continuum Electrostatics Study. J Chem Inf Model 2017; 57:256-266. [PMID: 28095694 DOI: 10.1021/acs.jcim.6b00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CcO) couples the reduction of dioxygen to water with transmembrane proton pumping, which leads to the generation of an electrochemical gradient. In this study we analyze how one of the components of the electrochemical gradient, the difference in pH across the membrane, or ΔpH, influences the protonation states of residues in CcO. We modified our continuum electrostatics/Monte Carlo (CE/MC) method in order to include the ΔpH and applied it to the study of CcO, in what is, to our best knowledge, the first CE/MC study of CcO in the presence of a pH gradient. The inclusion of a transmembrane pH gradient allows for the identification of residues whose titration behavior depends on the pH on both sides of the membrane. Among the several residues with unusual titration profiles, three are well-known key residues in the proton transfer process of CcO: E286I, Y288I, and K362I. All three residues have been previously identified as being critical for the catalytic or proton pumping functions of CcO. Our results suggest that when the pH gradient increases, these residues may be part of a regulatory mechanism to stem the proton flow.
Collapse
Affiliation(s)
- Pedro R Magalhães
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| | - A Sofia F Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| | - Sara R R Campos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| | - António M Baptista
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , 2781-901 Oeiras, Portugal
| |
Collapse
|
4
|
Abstract
Inside proteins, protons move on proton wires (PWs). Starting from the highest resolution X-ray structure available, we conduct a 306 ns molecular dynamics simulation of the (A-state) wild-type (wt) green fluorescent protein (GFP) to study how its PWs change with time. We find that the PW from the chromophore via Ser205 to Glu222, observed in all X-ray structures, undergoes rapid water molecule insertion between Ser205 and Glu222. Sometimes, an alternate Ser205-bypassing PW exists. Side chain rotations of Thr203 and Ser205 play an important role in shaping the PW network in the chromophore region. Thr203, with its bulkier side chain, exhibits slower transitions between its three rotameric states. Ser205 experiences more frequent rotations, slowing down when the Thr203 methyl group is close by. The combined states of both residues affect the PW probabilities. A random walk search for PWs from the chromophore reveals several exit points to the bulk, one being a direct water wire (WW) from the chromophore to the bulk. A longer WW connects the "bottom" of the GFP barrel with a "water pool" (WP1) situated below Glu222. These two WWs were not observed in X-ray structures of wt-GFP, but their analogues have been reported in related fluorescent proteins. Surprisingly, the high-resolution X-ray structure utilized herein shows that Glu222 is protonated at low temperatures. At higher temperatures, we suggest ion pairing between anionic Glu222 and a proton hosted in WP1. Upon photoexcitation, these two recombine, while a second proton dissociates from the chromophore and either exits the protein using the short WW or migrates along the GFP-barrel axis on the long WW. This mechanism reconciles the conflicting experimental and theoretical data on proton motion within GFP.
Collapse
Affiliation(s)
- Ai Shinobu
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Noam Agmon
- The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
5
|
Amazing structure of respirasome: unveiling the secrets of cell respiration. Protein Cell 2016; 7:854-865. [PMID: 27743346 PMCID: PMC5205662 DOI: 10.1007/s13238-016-0329-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 11/02/2022] Open
Abstract
Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.
Collapse
|
6
|
Molecular simulation and modeling of complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:915-21. [PMID: 26780586 DOI: 10.1016/j.bbabio.2016.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/23/2022]
Abstract
Molecular modeling and molecular dynamics simulations play an important role in the functional characterization of complex I. With its large size and complicated function, linking quinone reduction to proton pumping across a membrane, complex I poses unique modeling challenges. Nonetheless, simulations have already helped in the identification of possible proton transfer pathways. Simulations have also shed light on the coupling between electron and proton transfer, thus pointing the way in the search for the mechanistic principles underlying the proton pump. In addition to reviewing what has already been achieved in complex I modeling, we aim here to identify pressing issues and to provide guidance for future research to harness the power of modeling in the functional characterization of complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
|
7
|
Lyons JA, Hilbers F, Caffrey M. Structure and Function of Bacterial Cytochrome c Oxidases. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
The cytochrome ba3 oxidase from Thermus thermophilus does not generate a tryptophan radical during turnover: Implications for the mechanism of proton pumping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1093-100. [DOI: 10.1016/j.bbabio.2015.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/26/2015] [Accepted: 05/15/2015] [Indexed: 11/30/2022]
|
9
|
Lysine 362 in cytochrome c oxidase regulates opening of the K-channel via changes in pKA and conformation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1837:1998-2003. [PMID: 25149865 DOI: 10.1016/j.bbabio.2014.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 11/21/2022]
Abstract
The metabolism of aerobic life uses the conversion of molecular oxygen to water as an energy source. This reaction is catalyzed by cytochrome e oxidase (CeO) consuming four electrons and four protons, which move along specific routes. While all four electrons are transferred via the same cofactors to the binuclear reaction center (BNC), the protons take two different routes in the A-type CeO, i.e., two of the four chemical protons consumed in the reaction arrive via the D-channel in the oxidative first half starting after oxygen binding. The other two chemical protons enter via the K-channel in the reductive second half of the reaction cycle. To date, the mechanism behind these separate proton transport pathways has not been understood. In this study, we propose a model that can explain the reaction-step specific opening and closing of the K-channel by conformational and pKA changes of its central lysine 362. Molecular dynamics simulations reveal an upward movement of Lys362 towards the BNC, which had already been supposed by several experimental studies. Redox state-dependent pKA calculations provide evidence that Lys362 may protonate transiently, thereby opening the K-channel only in the reductive second half of the reaction cycle. From our results, we develop a model that assigns a key role to Lys362 in the proton gating between the two proton input channels of the A-type CeO.
Collapse
|
10
|
Rich PR, Maréchal A. Functions of the hydrophilic channels in protonmotive cytochrome c oxidase. J R Soc Interface 2013; 10:20130183. [PMID: 23864498 PMCID: PMC3730678 DOI: 10.1098/rsif.2013.0183] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/03/2013] [Indexed: 01/31/2023] Open
Abstract
The structures and functions of hydrophilic channels in electron-transferring membrane proteins are discussed. A distinction is made between proton channels that can conduct protons and dielectric channels that are non-conducting but can dielectrically polarize in response to the introduction of charge changes in buried functional centres. Functions of the K, D and H channels found in A1-type cytochrome c oxidases are reviewed in relation to these ideas. Possible control of function by dielectric channels and their evolutionary relation to proton channels is explored.
Collapse
Affiliation(s)
- Peter R Rich
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
11
|
Sun F, Zhou Q, Pang X, Xu Y, Rao Z. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Curr Opin Struct Biol 2013; 23:526-38. [DOI: 10.1016/j.sbi.2013.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 01/23/2023]
|
12
|
Huang Q, Herrmann A. Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues. Protein Cell 2012; 3:230-8. [PMID: 22467263 DOI: 10.1007/s13238-012-2035-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/09/2012] [Indexed: 11/30/2022] Open
Abstract
Protein folding, stability, and function are usually influenced by pH. And free energy plays a fundamental role in analysis of such pH-dependent properties. Electrostatics-based theoretical framework using dielectric solvent continuum model and solving Poisson-Boltzmann equation numerically has been shown to be very successful in understanding the pH-dependent properties. However, in this approach the exact computation of pH-dependent free energy becomes impractical for proteins possessing more than several tens of ionizable sites (e.g. > 30), because exact evaluation of the partition function requires a summation over a vast number of possible protonation microstates. Here we present a method which computes the free energy using the average energy and the protonation probabilities of ionizable sites obtained by the well-established Monte Carlo sampling procedure. The key feature is to calculate the entropy by using the protonation probabilities. We used this method to examine a well-studied protein (lysozyme) and produced results which agree very well with the exact calculations. Applications to the optimum pH of maximal stability of proteins and protein-DNA interactions have also resulted in good agreement with experimental data. These examples recommend our method for application to the elucidation of the pH-dependent properties of proteins.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | | |
Collapse
|
13
|
Ullmann RT, Ullmann GM. GMCT : a Monte Carlo simulation package for macromolecular receptors. J Comput Chem 2012; 33:887-900. [PMID: 22278916 DOI: 10.1002/jcc.22919] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022]
Abstract
Generalized Monte Carlo titration (GMCT) is a versatile suite of computer programs for the efficient simulation of complex macromolecular receptor systems as for example proteins. The computational model of the system is based on a microstate description of the receptor and an average description of its surroundings in terms of chemical potentials. The receptor can be modeled in great detail including conformational flexibility and many binding sites with multiple different forms that can bind different ligand types. Membrane embedded systems can be modeled including electrochemical potential gradients. Overall properties of the receptor as well as properties of individual sites can be studied with a variety of different Monte Carlo (MC) simulation methods. Metropolis MC, Wang-Landau MC and efficient free energy calculation methods are included. GMCT is distributed as free open source software at www.bisb.uni-bayreuth.de under the terms of the GNU Affero General Public License.
Collapse
Affiliation(s)
- R Thomas Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, Bayreuth 95447, Germany.
| | | |
Collapse
|
14
|
Popović DM, Stuchebrukhov AA. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:506-17. [PMID: 22086149 DOI: 10.1016/j.bbabio.2011.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/30/2022]
Abstract
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pK(a)s and E(m)s of the key ionizable and redox-active groups at the different stages of the O→E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O→E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO.
Collapse
Affiliation(s)
- Dragan M Popović
- Department of Chemistry, University of California, Davis, CA, USA.
| | | |
Collapse
|
15
|
Sharma V, Wikström M, Kaila VRI. Dynamic water networks in cytochrome cbb3 oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:726-34. [PMID: 21963365 DOI: 10.1016/j.bbabio.2011.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 12/01/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal electron acceptors in aerobic respiration. They catalyze the reduction of molecular oxygen to water with concurrent pumping of protons across the mitochondrial and bacterial membranes. Protons required for oxygen reduction chemistry and pumping are transferred through proton uptake channels. Recently, the crystal structure of the first C-type member of the HCO superfamily was resolved [Buschmann et al. Science 329 (2010) 327-330], but crystallographic water molecules could not be identified. Here we have used molecular dynamics (MD) simulations, continuum electrostatic approaches, and quantum chemical cluster calculations to identify proton transfer pathways in cytochrome cbb(3). In MD simulations we observe formation of stable water chains that connect the highly conserved Glu323 residue on the proximal side of heme b(3) both with the N- and the P-sides of the membrane. We propose that such pathways could be utilized for redox-coupled proton pumping in the C-type oxidases. Electrostatics and quantum chemical calculations suggest an increased proton affinity of Glu323 upon reduction of high-spin heme b(3). Protonation of Glu323 provides a mechanism to tune the redox potential of heme b(3) with possible implications for proton pumping.
Collapse
Affiliation(s)
- Vivek Sharma
- Helsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, PB 65 (Viikinkaari 1), University of Helsinki, 00014, Finland.
| | | | | |
Collapse
|
16
|
Kim YC, Hummer G. Proton-pumping mechanism of cytochrome c oxidase: a kinetic master-equation approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:526-36. [PMID: 21946020 DOI: 10.1016/j.bbabio.2011.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .
Collapse
Affiliation(s)
- Young C Kim
- Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375, USA.
| | | |
Collapse
|
17
|
Inhibition of proton pumping in membrane reconstituted bovine heart cytochrome c oxidase by zinc binding at the inner matrix side. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1075-82. [DOI: 10.1016/j.bbabio.2011.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 11/23/2022]
|
18
|
Koutsoupakis C, Kolaj-Robin O, Soulimane T, Varotsis C. Probing protonation/deprotonation of tyrosine residues in cytochrome ba3 oxidase from Thermus thermophilus by time-resolved step-scan Fourier transform infrared spectroscopy. J Biol Chem 2011; 286:30600-30605. [PMID: 21757723 DOI: 10.1074/jbc.m111.252213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elucidating the properties of the heme Fe-Cu(B) binuclear center and the dynamics of the protein response in cytochrome c oxidase is crucial to understanding not only the dioxygen activation and bond cleavage by the enzyme but also the events related to the release of the produced water molecules. The time-resolved step-scan FTIR difference spectra show the ν(7a)(CO) of the protonated form of Tyr residues at 1247 cm(-1) and that of the deprotonated form at 1301 cm(-1). By monitoring the intensity changes of the 1247 and 1301 cm(-1) modes as a function of pH, we measured a pK(a) of 7.8 for the observed tyrosine. The FTIR spectral changes associated with the tyrosine do not belong to Tyr-237 but are attributed to the highly conserved in heme-copper oxidases Tyr-136 and/or Tyr-133 residue (Koutsoupakis, K., Stavrakis, S., Pinakoulaki, E., Soulimane, T., and Varotsis, C. (2002) J. Biol. Chem. 277, 32860-32866). The oxygenation of CO by the mixed-valence form of the enzyme revealed the formation of the ∼607 nm P (Fe(IV)=O) species in the pH 6-9 range and the return to the oxidized form without the formation of the 580 nm F form. The data indicate that Tyr-237 is not involved in the proton transfer pathway in the oxygenation of CO by the mixed-valence form of the enzyme. The implication of these results with respect to the role of Tyr-136 and Tyr-133 in proton transfer/gating along with heme a(3) ring D propionate-H(2)O-ring A propionate-Asp-372 site to the exit/output proton channel (H(2)O pool) is discussed.
Collapse
Affiliation(s)
- Constantinos Koutsoupakis
- Department of Environmental Science and Technology, Cyprus University of Technology, 3603 Lemesos, Cyprus
| | - Olga Kolaj-Robin
- Chemical and Environmental Science Department and Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Tewfik Soulimane
- Chemical and Environmental Science Department and Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Constantinos Varotsis
- Department of Environmental Science and Technology, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| |
Collapse
|
19
|
Capitanio G, Martino PL, Capitanio N, Papa S. Redox Bohr effects and the role of heme a in the proton pump of bovine heart cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1287-94. [PMID: 21320464 DOI: 10.1016/j.bbabio.2011.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/25/2011] [Accepted: 02/05/2011] [Indexed: 10/18/2022]
Abstract
Structural and functional observations are reviewed which provide evidence for a central role of redox Bohr effect linked to the low-spin heme a in the proton pump of bovine heart cytochrome c oxidase. Data on the membrane sidedness of Bohr protons linked to anaerobic oxido-reduction of the individual metal centers in the liposome reconstituted oxidase are analysed. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a (and Cu(A)) and Cu(B) exhibit membrane vectoriality, i.e. protons are taken up from the inner space upon reduction of these centers and released in the outer space upon their oxidation. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a(3) do not, on the contrary, exhibit vectorial nature: protons are exchanged only with the outer space. A model of the proton pump of the oxidase, in which redox Bohr protons linked to the low-spin heme a play a central role, is described. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
|
20
|
Kaila VR, Sharma V, Wikström M. The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:80-4. [DOI: 10.1016/j.bbabio.2010.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
|
21
|
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain that catalyzes respiratory reduction of dioxygen (O(2)) to water in all eukaryotes and many aerobic bacteria. CcO, and its homologs among the heme-copper oxidases, has an active site composed of an oxygen-binding heme and a copper center in the vicinity, plus another heme group that donates electrons to this site. In most oxidoreduction enzymes, electron transfer (eT) takes place by quantum-mechanical electron tunneling. Here we show by independent molecular dynamics and quantum-chemical methods that the heme-heme eT in CcO differs from the majority of cases in having an exceptionally low reorganization energy. We show that the rate of interheme eT in CcO may nevertheless be predicted by the Moser-Dutton equation if reinterpreted as the average of the eT rates between all individual atoms of the donor and acceptor weighed by the respective packing densities between them. We argue that this modification may be necessary at short donor/acceptor distances comparable to the donor/acceptor radii.
Collapse
|
22
|
Kaila VRI, Verkhovsky MI, Wikström M. Proton-coupled electron transfer in cytochrome oxidase. Chem Rev 2010; 110:7062-81. [PMID: 21053971 DOI: 10.1021/cr1002003] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ville R I Kaila
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Program, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
23
|
Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC STRUCTURAL BIOLOGY 2010; 10:28. [PMID: 20822511 PMCID: PMC2944330 DOI: 10.1186/1472-6807-10-28] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 09/07/2010] [Indexed: 01/24/2023]
Abstract
BACKGROUND Laccases are enzymes that couple the oxidation of substrates with the reduction of dioxygen to water. They are the simplest members of the multi-copper oxidases and contain at least two types of copper centres; a mononuclear T1 and a trinuclear that includes two T3 and one T2 copper ions. Substrate oxidation takes place at the mononuclear centre whereas reduction of oxygen to water occurs at the trinuclear centre. RESULTS In this study, the CotA laccase from Bacillus subtilis was used as a model to understand the mechanisms taking place at the molecular level, with a focus in the trinuclear centre. The structures of the holo-protein and of the oxidised form of the apo-protein, which has previously been reconstituted in vitro with Cu(I), have been determined. The former has a dioxygen moiety between the T3 coppers, while the latter has a monoatomic oxygen, here interpreted as a hydroxyl ion. The UV/visible spectra of these two forms have been analysed in the crystals and compared with the data obtained in solution. Theoretical calculations on these and other structures of CotA were used to identify groups that may be responsible for channelling the protons that are needed for reduction of dioxygen to water. CONCLUSIONS These results present evidence that Glu 498 is the only proton-active group in the vicinity of the trinuclear centre. This strongly suggests that this residue may be responsible for channelling the protons needed for the reduction. These results are compared with other data available for these enzymes, highlighting similarities and differences within laccases and multicopper oxidases.
Collapse
Affiliation(s)
- Isabel Bento
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | | | |
Collapse
|
24
|
Functional interactions between membrane-bound transporters and membranes. Proc Natl Acad Sci U S A 2010; 107:15763-7. [PMID: 20798065 DOI: 10.1073/pnas.1006109107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One key role of many cellular membranes is to hold a transmembrane electrochemical ion gradient that stores free energy, which is used, for example, to generate ATP or to drive transmembrane transport processes. In mitochondria and many bacteria, the gradient is maintained by proton-transport proteins that are part of the respiratory (electron-transport) chain. Even though our understanding of the structure and function of these proteins has increased significantly, very little is known about the specific role of functional protein-membrane and membrane-mediated protein-protein interactions. Here, we have investigated the effect of membrane incorporation on proton-transfer reactions within the membrane-bound proton pump cytochrome c oxidase. The results show that the membrane acts to accelerate proton transfer into the enzyme's catalytic site and indicate that the intramolecular proton pathway is wired via specific amino acid residues to the two-dimensional space defined by the membrane surface. We conclude that the membrane not only acts as a passive barrier insulating the interior of the cell from the exterior solution, but also as a component of the energy-conversion machinery.
Collapse
|
25
|
Siegbahn PEM, Blomberg MRA. Quantum Chemical Studies of Proton-Coupled Electron Transfer in Metalloenzymes. Chem Rev 2010; 110:7040-61. [DOI: 10.1021/cr100070p] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
26
|
Brzezinski P, Johansson AL. Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:710-23. [DOI: 10.1016/j.bbabio.2010.02.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
27
|
Ghosh N, Prat-Resina X, Gunner MR, Cui Q. Microscopic pKa analysis of Glu286 in cytochrome c oxidase (Rhodobacter sphaeroides): toward a calibrated molecular model. Biochemistry 2010; 48:2468-85. [PMID: 19243111 DOI: 10.1021/bi8021284] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As stringent tests for the molecular model and computational protocol, microscopic pK(a) calculations are performed for the key residue, Glu286, in cytochrome c oxidase (CcO) using a combined quantum mechanical/molecular mechanical (QM/MM) potential and a thermodynamic integration protocol. The impact of the number of water molecules in the hydrophobic cavity and protonation state of several key residues (e.g., His334, Cu(B)-bound water, and PRD(a3)) on the computed microscopic pK(a) values of Glu286 has been systematically examined. To help evaluate the systematic errors in the QM/MM-based protocol, microscopic pK(a) calculations have also been carried out for sites in a soluble protein (Asp70 in T4 lysozyme) and a better-characterized membrane protein (Asp85 in bacteriorhodopsin). Overall, the results show a significant degree of internal consistency and reproducibility that support the effectiveness of the computational framework. Although the number of water molecules in the hydrophobic cavity does not greatly influence the computed pK(a) of Glu286, the protonation states of several residues, some of which are rather far away, have more significant impacts. Adopting the standard protonation state for all titratable residues leaves a large net charge on the system and a significantly elevated pK(a) for Glu286, highlighting that any attempt to address the energetics of proton transfers in CcO at a microscopic level should carefully select the protonation state of residues, even those not in the immediate neighborhood of the active site. The calculations indirectly argue against the deprotonation of His334 for the proton pumping process, although further studies that explicitly compute its pK(a) are required for a more conclusive statement. Finally, the deprotonated Glu286 is found to be in a stable water-mediated connection with PRD(a3) for at least several nanoseconds when this presumed pumping site is protonated. This does not support the proposed role of Glu286 as a robust gating valve that prevents proton leakage, although a conclusive statement awaits a more elaborate characterization of the Glu286-PRD(a3) connectivity with free energy simulations and a protonated PRD(a3). The large sets of microscopic simulations performed here have provided useful guidance to the establishment of a meaningful molecular model and effective computational protocol for explicitly analyzing the proton transfer kinetics in CcO, which is required for answering key questions regarding the pumping function of this fascinating and complex system.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
28
|
Blomberg MR, Siegbahn PE. Quantum chemistry as a tool in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:129-42. [DOI: 10.1016/j.bbabio.2009.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 11/16/2022]
|
29
|
Song Y, Mao J, Gunner MR. MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling. J Comput Chem 2009; 30:2231-47. [PMID: 19274707 PMCID: PMC2735604 DOI: 10.1002/jcc.21222] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiconformation continuum electrostatics (MCCE) explores different conformational degrees of freedom in Monte Carlo calculations of protein residue and ligand pK(a)s. Explicit changes in side chain conformations throughout a titration create a position dependent, heterogeneous dielectric response giving a more accurate picture of coupled ionization and position changes. The MCCE2 methods for choosing a group of input heavy atom and proton positions are described. The pK(a)s calculated with different isosteric conformers, heavy atom rotamers and proton positions, with different degrees of optimization are tested against a curated group of 305 experimental pK(a)s in 33 proteins. QUICK calculations, with rotation around Asn and Gln termini, sampling His tautomers and torsion minimum hydroxyls yield an RMSD of 1.34 with 84% of the errors being <1.5 pH units. FULL calculations adding heavy atom rotamers and side chain optimization yield an RMSD of 0.90 with 90% of the errors <1.5 pH unit. Good results are also found for pK(a)s in the membrane protein bacteriorhodopsin. The inclusion of extra side chain positions distorts the dielectric boundary and also biases the calculated pK(a)s by creating more neutral than ionized conformers. Methods for correcting these errors are introduced. Calculations are compared with multiple X-ray and NMR derived structures in 36 soluble proteins. Calculations with X-ray structures give significantly better pK(a)s. Results with the default protein dielectric constant of 4 are as good as those using a value of 8. The MCCE2 program can be downloaded from http://www.sci.ccny.cuny.edu/~mcce.
Collapse
Affiliation(s)
- Yifan Song
- Department of Physics, J-419 City College of New York, 138th Street, Convent Avenue, New York, New York 10031, USA
| | | | | |
Collapse
|
30
|
Kaila VR, Verkhovsky MI, Hummer G, Wikström M. Mechanism and energetics by which glutamic acid 242 prevents leaks in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1205-14. [DOI: 10.1016/j.bbabio.2009.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/08/2009] [Accepted: 04/14/2009] [Indexed: 12/01/2022]
|
31
|
Porrini M, Daskalakis V, Farantos SC, Varotsis C. Heme Cavity Dynamics of Photodissociated CO from ba3-Cytochrome c Oxidase: The Role of Ring-D Propionate. J Phys Chem B 2009; 113:12129-35. [DOI: 10.1021/jp904466n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Massimiliano Porrini
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Vasilika Vouton, Heraklion 71110, Crete, Greece, and Department of Chemistry, University of Crete, P.O. Box 2208, Vasilika Vouton, Heraklion 71305, Crete, Greece
| | - Vangelis Daskalakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Vasilika Vouton, Heraklion 71110, Crete, Greece, and Department of Chemistry, University of Crete, P.O. Box 2208, Vasilika Vouton, Heraklion 71305, Crete, Greece
| | - Stavros C. Farantos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Vasilika Vouton, Heraklion 71110, Crete, Greece, and Department of Chemistry, University of Crete, P.O. Box 2208, Vasilika Vouton, Heraklion 71305, Crete, Greece
| | - Constantinos Varotsis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Vasilika Vouton, Heraklion 71110, Crete, Greece, and Department of Chemistry, University of Crete, P.O. Box 2208, Vasilika Vouton, Heraklion 71305, Crete, Greece
| |
Collapse
|
32
|
Abstract
Cytochrome c oxidase (CcO), the terminal enzyme of the respiratory chain, reduces oxygen to water and uses the released energy to pump protons across a membrane. Here, we use kinetic master equations to explore the energetic and kinetic control of proton pumping in CcO. We construct models consistent with thermodynamic principles, the structure of CcO, experimentally known proton affinities, and equilibrium constants of intermediate reactions. The resulting models are found to capture key properties of CcO, including the midpoint redox potentials of the metal centers and the electron transfer rates. We find that coarse-grained models with two proton sites and one electron site can pump one proton per electron against membrane potentials exceeding 100 mV. The high pumping efficiency of these models requires strong electrostatic couplings between the proton loading (pump) site and the electron site (heme a), and kinetic gating of the internal proton transfer. Gating is achieved by enhancing the rate of proton transfer from the conserved Glu-242 to the pump site on reduction of heme a, consistent with the predictions of the water-gated model of proton pumping. The model also accounts for the phenotype of D-channel mutations associated with loss of pumping but retained turnover. The fundamental mechanism identified here for the efficient conversion of chemical energy into an electrochemical potential should prove relevant also for other molecular machines and novel fuel-cell designs.
Collapse
|
33
|
Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H. High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:635-45. [PMID: 19374884 DOI: 10.1016/j.bbabio.2009.04.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/03/2009] [Accepted: 04/08/2009] [Indexed: 11/19/2022]
Abstract
The structure of the two-subunit cytochrome c oxidase from Paracoccus denitrificans has been refined using X-ray cryodata to 2.25 A resolution in order to gain further insights into its mechanism of action. The refined structural model shows a number of new features including many additional solvent and detergent molecules. The electron density bridging the heme a(3) iron and Cu(B) of the active site is fitted best by a peroxo-group or a chloride ion. Two waters or OH(-) groups do not fit, one water (or OH(-)) does not provide sufficient electron density. The analysis of crystals of cytochrome c oxidase isolated in the presence of bromide instead of chloride appears to exclude chloride as the bridging ligand. In the D-pathway a hydrogen bonded chain of six water molecules connects Asn131 and Glu278, but the access for protons to this water chain is blocked by Asn113, Asn131 and Asn199. The K-pathway contains two firmly bound water molecules, an additional water chain seems to form its entrance. Above the hemes a cluster of 13 water molecules is observed which potentially form multiple exit pathways for pumped protons. The hydrogen bond pattern excludes that the Cu(B) ligand His326 is present in the imidazolate form.
Collapse
Affiliation(s)
- Juergen Koepke
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str.3, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Kobayashi K, Tagawa S, Mogi T. Intramolecular electron transfer processes in Cu(B)-deficient cytochrome bo studied by pulse radiolysis. J Biochem 2009; 145:685-91. [PMID: 19218360 DOI: 10.1093/jb/mvp026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli cytochrome bo is a heme-copper terminal ubiquinol oxidase, and functions as a redox-driven proton pump. We applied pulse radiolysis technique for studying the one-electron reduction processes in the Cu(B)-deficient mutant, His333Ala. We found that the Cu(B) deficiency suppressed the heme b-to-heme o electron transfer two order of the magnitude (4.0 x 10(2) s(-1)), as found for the wild-type enzyme in the presence of 1 mM KCN (3.0 x 10(2) s(-1)). Potentiometric analysis of the His333Ala mutant revealed the 40 mV decrease in the E(m) value for low-spin heme b and the 160 mV increase in the E(m) value of high-spin heme o. Our results indicate that Cu(B) not only serves as one-electron donor to the bound dioxygen upon the O-O bond cleavage, but also facilitates dioxygen reduction at the heme-copper binuclear centre by modulating the E(m) value of heme o through magnetic interactions. And the absence of a putative OH(-) bound to Cu(B) seems not to affect the uptake of the first chemical proton via K-channel in the His333Ala mutant.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka, Japan
| | | | | |
Collapse
|
35
|
Johansson MP, Kaila VRI, Laakkonen L. Charge parameterization of the metal centers in cytochrome c oxidase. J Comput Chem 2008; 29:753-67. [PMID: 17876762 DOI: 10.1002/jcc.20835] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reliable atomic point charges are of key importance for a correct description of the electrostatic interactions when performing classical, force field based simulations. Here, we present a systematic procedure for point charge derivation, based on quantum mechanical methodology suited for the systems at hand. A notable difference to previous procedures is to include an outer region around the actual system of interest. At the cost of increasing the system sizes, here up to 265 atoms, including the surroundings achieves near-neutrality for the systems as well as structural stability, important factors for reliable charge distributions. In addition, the common problem of converting between C--H bonds and C--C bonds at the border vanishes. We apply the procedure to the four redox-active metal centers of cytochrome c oxidase: Cu(A), haem a, haem a(3), and Cu(B). Several relevant charge and ligand states are considered. Charges for two different force fields, CHARMM and AMBER, are presented.
Collapse
Affiliation(s)
- Mikael P Johansson
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.
| | | | | |
Collapse
|
36
|
Pereira MM, Sousa FL, Veríssimo AF, Teixeira M. Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:929-34. [PMID: 18515066 DOI: 10.1016/j.bbabio.2008.05.441] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/15/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
Haem-copper oxygen reductases are transmembrane protein complexes that reduce dioxygen to water and pump protons across the mitochondrial or periplasmatic membrane, contributing to the transmembrane difference of electrochemical potential. Seven years ago we proposed a classification of these enzymes into three different families (A, B and C), based on the amino acid residues of their proton channels and amino acid sequence comparison, later supported by the so far identified characteristics of the catalytic centre of members from each family. The three families have in common the same general structural fold of the catalytic subunit, which contains the same or analogous prosthetic groups, and proton channels. These observations raise the hypothesis that the mechanisms for dioxygen reduction, proton pumping and the coupling of the two processes may be the same for all these enzymes. Under this hypothesis, they should be performed and controlled by the same or equivalent elements/events, and the identification of retained elements in all families will reveal their importance and may prompt the definition of the enzyme operating mode. Thus, we believe that the search for a minimum common denominator has a crucial importance, and in this article we highlight what is already established for the haem-copper oxygen reductases and emphasize the main questions still unanswered in a comprehensive basis.
Collapse
Affiliation(s)
- Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República - EAN, 2780-157 Oeiras, Portugal.
| | | | | | | |
Collapse
|
37
|
Carboxyl group functions in the heme-copper oxidases: information from mid-IR vibrational spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:912-8. [PMID: 18486595 DOI: 10.1016/j.bbabio.2008.04.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/15/2008] [Accepted: 04/22/2008] [Indexed: 11/24/2022]
Abstract
Carboxyl groups of possible functional importance in bovine and bacterial cytochrome c oxidases (CcO) are reviewed and assessed. A critical analysis is presented of available mid-infrared vibrational data that pertain to these functional carboxyl groups. These data and their interpretations are discussed in relation to current models of the mechanism of proton and electron coupling in the protonmotive CcO superfamily.
Collapse
|
38
|
Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase. Proc Natl Acad Sci U S A 2008; 105:6255-9. [PMID: 18430799 DOI: 10.1073/pnas.0800770105] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is based on a molecular machinery that utilizes oxygen as a terminal electron sink. The membrane-bound cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water in mitochondria and many bacteria. The energy released in this reaction is conserved by pumping protons across the mitochondrial or bacterial membrane, creating an electrochemical proton gradient that drives production of ATP. A crucial question is how the protons pumped by CcO are prevented from flowing backwards during the process. Here, we show by molecular dynamics simulations that the conserved glutamic acid 242 near the active site of CcO undergoes a protonation state-dependent conformational change, which provides a valve in the pumping mechanism. The valve ensures that at any point in time, the proton pathway across the membrane is effectively discontinuous, thereby preventing thermodynamically favorable proton back-leakage while maintaining an overall high efficiency of proton translocation. Suppression of proton leakage is particularly important in mitochondria under physiological conditions, where production of ATP takes place in the presence of a high electrochemical proton gradient.
Collapse
|
39
|
Lepp H, Svahn E, Faxén K, Brzezinski P. Charge Transfer in the K Proton Pathway Linked to Electron Transfer to the Catalytic Site in Cytochrome c Oxidase. Biochemistry 2008; 47:4929-35. [DOI: 10.1021/bi7024707] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Håkan Lepp
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kristina Faxén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
40
|
Roy A, Taraphder S. Effect of electrostatic interactions on the formation of proton transfer pathways in human carbonic anhydrase II. J CHEM SCI 2008. [DOI: 10.1007/s12039-007-0068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Fadda E, Yu CH, Pomès R. Electrostatic control of proton pumping in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:277-84. [PMID: 18177731 DOI: 10.1016/j.bbabio.2007.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/19/2007] [Accepted: 11/21/2007] [Indexed: 11/29/2022]
Abstract
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.
Collapse
Affiliation(s)
- Elisa Fadda
- Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
42
|
Redox properties of Thermus thermophilus ba3: different electron-proton coupling in oxygen reductases? Biophys J 2007; 94:2434-41. [PMID: 18065462 DOI: 10.1529/biophysj.107.122614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive study of the thermodynamic redox behavior of the hemes of the ba3 enzyme from Thermus thermophilus, a B-type heme-copper oxygen reductase, is presented. This enzyme, in contrast to those having a single type of heme, allows the B- and A-type hemes to be monitored separately by visible spectroscopy and the reduction potential of each heme to be determined unequivocally. The relative order of the midpoint reduction potentials of each center changed in the pH range from 6 to 8.4, and both hemes present a significant redox-Bohr effect. For instance, at pH 7, the midpoint reduction potentials of the hemes B and A3 are 213 mV and 285 mV, respectively, whereas at pH 8.4, the order is reversed: 246 mV for heme B and 199 mV for heme A3. The existence of redox anticooperativity was established by introducing a redox interaction parameter in a model of pairwise interacting redox centers.
Collapse
|
43
|
Xu J, Voth GA. Redox-coupled proton pumping in cytochrome c oxidase: further insights from computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:196-201. [PMID: 18155154 DOI: 10.1016/j.bbabio.2007.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/12/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.
Collapse
Affiliation(s)
- Jiancong Xu
- Department of Chemistry, University of Utah, 315 S. 1400 E., Rm 2020, Salt Lake City, UT 84112-0850, USA
| | | |
Collapse
|
44
|
Spectroscopic study on the communication between a heme a3 propionate, Asp399 and the binuclear center of cytochrome c oxidase from Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:220-6. [PMID: 18078804 DOI: 10.1016/j.bbabio.2007.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/27/2022]
Abstract
The proton pumping mechanism of cytochrome c oxidase on a molecular level is highly disputed. Recently theoretical calculations and real time electron transfer measurements indicated the involvement of residues in the vicinity of the ring A propionate of heme a3, including Asp399 and the CuB ligands His 325, 326. In this study we probed the interaction of Asp399 with the binuclear center and characterize the protonation state of its side chain. Redox induced FTIR difference spectra of mutations at the site in direct comparison to wild type, indicate that below pH 5 Asp 399 displays signals typical for the deprotonation of the acidic residue with reduction of the enzyme. Interestingly at a pH higher than 5, no contributions from Asp 399 are evident. In order to probe the interaction of the site with the binuclear center we followed the rebinding of CO by infrared spectroscopy for mutations on residue Asp399 to Glu, Asn and Leu. Previously different CO conformers have been identified for bacterial cytochrome c oxidases, and its pH dependent behaviour discussed to be relevant for catalysis. Interestingly we observe the lack of this pH dependency and a strong influence on the observable conformers for all mutants studied here, clearly suggesting a communication of the site with the heme-copper center and the nearby histidine residues.
Collapse
|
45
|
Veríssimo AF, Sousa FL, Baptista AM, Teixeira M, Pereira MM. Thermodynamic Redox Behavior of the Heme Centers of cbb3 Heme-Copper Oxygen Reductase from Bradyrhizobium japonicum. Biochemistry 2007; 46:13245-53. [DOI: 10.1021/bi700733g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreia F. Veríssimo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Av. da República (EAN), 2781-901 Oeiras, Portugal
| | - Filipa L. Sousa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Av. da República (EAN), 2781-901 Oeiras, Portugal
| | - António M. Baptista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Av. da República (EAN), 2781-901 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Av. da República (EAN), 2781-901 Oeiras, Portugal
| | - Manuela M. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Av. da República (EAN), 2781-901 Oeiras, Portugal
| |
Collapse
|
46
|
Xu J, Sharpe MA, Qin L, Ferguson-Miller S, Voth GA. Storage of an excess proton in the hydrogen-bonded network of the d-pathway of cytochrome C oxidase: identification of a protonated water cluster. J Am Chem Soc 2007; 129:2910-3. [PMID: 17309257 PMCID: PMC2556150 DOI: 10.1021/ja067360s] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of proton transport in the D-pathway of cytochrome c oxidase (CcO) is further elucidated through examining a protonated water/hydroxyl cluster inside the channel. The second generation multi-state empirical valence bond (MS-EVB2) model was employed in a molecular dynamics study based on a high-resolution X-ray structure to simulate the interaction of the excess proton with the channel environment. Our results indicate that a hydrogen-bonded network consisting of about 5 water molecules surrounded by three side chains and two backbone groups (S197, S200, S201, F108) is involved in storage and translocation of an excess proton to the extracellular side of CcO.
Collapse
Affiliation(s)
- Jiancong Xu
- Department of Chemistry and Center for Biophysical Modeling and Simulation, 315 South 1400 East Room 2020, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Martyn A. Sharpe
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | - Ling Qin
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | - Gregory A. Voth
- Department of Chemistry and Center for Biophysical Modeling and Simulation, 315 South 1400 East Room 2020, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
47
|
Abstract
A series of metalloprotein complexes embedded in a mitochondrial or bacterial membrane utilize electron transfer reactions to pump protons across the membrane and create an electrochemical potential (DeltamuH+). Current understanding of the principles of electron-driven proton transfer is discussed, mainly with respect to the wealth of knowledge available from studies of cytochrome c oxidase. Structural, experimental, and theoretical evidence supports the model of long-distance proton transfer via hydrogen-bonded water chains in proteins as well as the basic concept that proton uptake and release in a redox-driven pump are driven by charge changes at the membrane-embedded centers. Key elements in the pumping mechanism may include bound water, carboxylates, and the heme propionates, arginines, and associated water above the hemes. There is evidence for an important role of subunit III and proton backflow, but the number and nature of gating mechanisms remain elusive, as does the mechanism of physiological control of efficiency.
Collapse
Affiliation(s)
- Jonathan P. Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216;
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; ,
| | - Denise A. Mills
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; ,
| |
Collapse
|
48
|
Song Y, Michonova-Alexova E, Gunner MR. Calculated proton uptake on anaerobic reduction of cytochrome C oxidase: is the reaction electroneutral? Biochemistry 2006; 45:7959-75. [PMID: 16800622 PMCID: PMC2727075 DOI: 10.1021/bi052183d] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase is a transmembrane proton pump that builds an electrochemical gradient using chemical energy from the reduction of O(2). Ionization states of all residues were calculated with Multi-Conformation Continuum Electrostatics (MCCE) in seven anaerobic oxidase redox states ranging from fully oxidized to fully reduced. One long-standing problem is how proton uptake is coupled to the reduction of the active site binuclear center (BNC). The BNC has two cofactors: heme a(3) and Cu(B). If the protein needs to maintain electroneutrality, then 2 protons will be bound when the BNC is reduced by 2 electrons in the reductive half of the reaction cycle. The effective pK(a)s of ionizable residues around the BNC are evaluated in Rhodobacter sphaeroides cytochrome c oxidase. At pH 7, only a hydroxide coordinated to Cu(B) shifts its pK(a) from below 7 to above 7 and so picks up a proton when heme a(3) and Cu(B) are reduced. Glu I-286, Tyr I-288, His I-334, and a second hydroxide on heme a(3) all have pK(a)s above 7 in all redox states, although they have only 1.6-3.5 DeltapK units energy cost for deprotonation. Thus, at equilibrium, they are protonated and cannot serve as proton acceptors. The propionic acids near the BNC are deprotonated with pK(a)s well below 7. They are well stabilized in their anionic state and do not bind a proton upon BNC reduction. This suggests that electroneutrality in the BNC is not maintained during the anaerobic reduction. Proton uptake on reduction of Cu(A), heme a, heme a(3), and Cu(B) shows approximately 2.5 protons bound per 4 electrons, in agreement with prior experiments. One proton is bound by a hydroxyl group in the BNC and the rest to groups far from the BNC. The electrochemical midpoint potential (E(m)) of heme a is calculated in the fully oxidized protein and with 1 or 2 electrons in the BNC. The E(m) of heme a shifts down when the BNC is reduced, which agrees with prior experiments. If the BNC reduction is electroneutral, then the heme a E(m) is independent of the BNC redox state.
Collapse
Affiliation(s)
| | | | - M. R. Gunner
- To whom correspondence should be addressed. Telephone: 212-650-5557. Fax: 212-650-6940. E-mail:
| |
Collapse
|
49
|
Song Y, Mao J, Gunner MR. Electrostatic environment of hemes in proteins: pK(a)s of hydroxyl ligands. Biochemistry 2006; 45:7949-58. [PMID: 16800621 PMCID: PMC2727071 DOI: 10.1021/bi052182l] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pK(a)s of ferric aquo-heme and aquo-heme electrochemical midpoints (E(m)s) at pH 7 in sperm whale myoglobin, Aplysia myoblogin, hemoglobin I, heme oxygenase 1, horseradish peroxidase and cytochrome c oxidase were calculated with Multi-Conformation Continuum Electrostatics (MCCE). The pK(a)s span 3.3 pH units from 7.6 in heme oxygenase 1 to 10.9 in peroxidase, and the E(m)s range from -250 mV in peroxidase to 125 mV in Aplysia myoglobin. Proteins with higher in situ ferric aquo-heme pK(a)s tend to have lower E(m)s. Both changes arise from the protein stabilizing a positively charged heme. However, compared with values in solution, the protein shifts the aquo-heme E(m)s more than the pK(a)s. Thus, the protein has a larger effective dielectric constant for the protonation reaction, showing that electron and proton transfers are coupled to different conformational changes that are captured in the MCCE analysis. The calculations reveal a breakdown in the classical continuum electrostatic analysis of pairwise interactions. Comparisons with DFT calculations show that Coulomb's law overestimates the large unfavorable interactions between the ferric water-heme and positively charged groups facing the heme plane by as much as 60%. If interactions with Cu(B) in cytochrome c oxidase and Arg 38 in horseradish peroxidase are not corrected, the pK(a) calculations are in error by as much as 6 pH units. With DFT corrected interactions calculated pK(a)s and E(m)s differ from measured values by less than 1 pH unit or 35 mV, respectively. The in situ aquo-heme pK(a) is important for the function of cytochrome c oxidase since it helps to control the stoichiometry of proton uptake coupled to electron transfer [Song, Michonova-Alexova, and Gunner (2006) Biochemistry 45, 7959-7975].
Collapse
Affiliation(s)
| | | | - M. R. Gunner
- To whom correspondence should be addressed. Telephone: 212-650-5557. Fax: 212-650-6940. E-mail:
| |
Collapse
|
50
|
Stuchebrukhov AA, Popovic DM. Comment on “Acidity of a Cu-bound Histidine in the Binuclear Center of Cytochrome c Oxidase”. J Phys Chem B 2006; 110:17286-7; discussion 17288-9. [PMID: 16928028 DOI: 10.1021/jp057310u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A A Stuchebrukhov
- Department of Chemistry, University of California, Davis, California 95616, USA.
| | | |
Collapse
|