1
|
Mezzetti A, Malferrari M, Venturoli G, Francia F, Leibl W, Noda I. Rapid-Scan Fourier Transform Infrared Difference Spectroscopy with Two-Dimensional Correlation Analysis to Show the Build-Up of Light-Adapted States in Bacterial Photosynthetic Reaction Centers. APPLIED SPECTROSCOPY 2025:37028241304806. [PMID: 39849937 DOI: 10.1177/00037028241304806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state P+QA- to the neutral state PQA, the use of a 20.5 s continuous light from a lamp made it possible to follow both the build-up of a steady-state P+QA- population and its decay to PQA. Comparison between P+QA-/PQA FT-IR difference spectra obtained under (or 650 ms after) continuous illumination and obtained after one laser flash show small but meaningful differences, reflecting structural changes in the light-adapted state produced by the 20.5 s period of illumination. These differences are strikingly similar to those observed when comparing FT-IR difference spectra reflecting charge separation in photosystem II in light-adapted states and non-light-adapted states (c.f. Sipka et al., "Light-Adapted Charge-Separated State of Photosystem II: Structural and Functional Dynamics of the Closed Reaction Center". Plant Cell. 2021. 33(4): 1286-1302). Two-dimensional correlation spectroscopy analysis revealed that in all the observed series of time-resolved FT-IR difference spectra (under illumination, after illumination, and after a laser flash), marker bands at 1749, 1716, and 1668 cm-1 all evolve synchronously, demonstrating that electron transfer reactions and protein backbone response (at least the one reflected by the 1668 cm-1 band) are strongly correlated. Conversely, for spectra under and after continuous illumination, many asynchronicities are observed for (still unassigned) bands throughout the whole 1740-1200 cm-1 region, reflecting a more complicated molecular scenario in the RC upon build-up of the light-adapted state and during its relaxation to the resting neutral state.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marco Malferrari
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Bologna, Italy
| | - Francesco Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Bologna, Italy
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Sanchez‐Martinez S, Nguyen K, Biswas S, Nicholson V, Romanyuk AV, Ramirez J, Kc S, Akter A, Childs C, Meese EK, Usher ET, Ginell GM, Yu F, Gollub E, Malferrari M, Francia F, Venturoli G, Martin EW, Caporaletti F, Giubertoni G, Woutersen S, Sukenik S, Woolfson DN, Holehouse AS, Boothby TC. Labile assembly of a tardigrade protein induces biostasis. Protein Sci 2024; 33:e4941. [PMID: 38501490 PMCID: PMC10949331 DOI: 10.1002/pro.4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS D's fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.
Collapse
Affiliation(s)
| | - K. Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - V. Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. V. Romanyuk
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
| | - J. Ramirez
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Kc
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. Akter
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - C. Childs
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. K. Meese
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. T. Usher
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - G. M. Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - F. Yu
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - E. Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - M. Malferrari
- Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaBolognaItaly
| | - F. Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
| | - G. Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA)Università di BolognaBolognaItaly
| | - E. W. Martin
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - F. Caporaletti
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - G. Giubertoni
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Woutersen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Sukenik
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - D. N. Woolfson
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
- School of BiochemistryUniversity of Bristol, Biomedical Sciences BuildingBristolUK
| | - A. S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - T. C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
3
|
Cherepanov D, Aybush A, Johnson TW, Shelaev I, Gostev F, Mamedov M, Nadtochenko V, Semenov A. Inverted region in the reaction of the quinone reduction in the A 1-site of photosystem I from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 159:115-131. [PMID: 37093503 DOI: 10.1007/s11120-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Photosystem I from the menB strain of Synechocystis sp. PCC 6803 containing foreign quinones in the A1 sites was used for studying the primary steps of electron transfer by pump-probe femtosecond laser spectroscopy. The free energy gap (- ΔG) of electron transfer between the reduced primary acceptor A0 and the quinones bound in the A1 site varied from 0.12 eV for the low-potential 1,2-diamino-anthraquinone to 0.88 eV for the high-potential 2,3-dichloro-1,4-naphthoquinone, compared to 0.5 eV for the native phylloquinone. It was shown that the kinetics of charge separation between the special pair chlorophyll P700 and the primary acceptor A0 was not affected by quinone substitutions, whereas the rate of A0 → A1 electron transfer was sensitive to the redox-potential of quinones: the decrease of - ΔG by 400 meV compared to the native phylloquinone resulted in a ~ fivefold slowing of the reaction The presence of the asymmetric inverted region in the ΔG dependence of the reaction rate indicates that the electron transfer in photosystem I is controlled by nuclear tunneling and should be treated in terms of quantum electron-phonon interactions. A three-mode implementation of the multiphonon model, which includes modes around 240 cm-1 (large-scale protein vibrations), 930 cm-1 (out-of-plane bending of macrocycles and protein backbone vibrations), and 1600 cm-1 (double bonds vibrations) was applied to rationalize the observed dependence. The modes with a frequency of at least 1600 cm-1 make the predominant contribution to the reorganization energy, while the contribution of the "classical" low-frequency modes is only 4%.
Collapse
Affiliation(s)
- Dmitry Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - T Wade Johnson
- Department of Chemistry, Susquehanna University, 514 University Ave., Selinsgrove, PA, 17870, USA
| | - Ivan Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Fedor Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Mahir Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992
| | - Victor Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russia, 119991
| | - Alexey Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| |
Collapse
|
4
|
Sipka G, Nagy L, Magyar M, Akhtar P, Shen JR, Holzwarth AR, Lambrev PH, Garab G. Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. Open Biol 2022; 12:220297. [PMID: 36514981 PMCID: PMC9748786 DOI: 10.1098/rsob.220297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.
Collapse
Affiliation(s)
- G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - L. Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1, 6720 Szeged, Hungary
| | - M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - J.-R. Shen
- Institute of Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - A. R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim a.d. Ruhr, Germany
| | - P. H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
5
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
6
|
Knox PP, Lukashev EP, Korvatovskiy BN, Strakhovskaya MG, Makhneva ZK, Bol'shakov MA, Paschenko VZ. Disproportionate effect of cationic antiseptics on the quantum yield and fluorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores. PHOTOSYNTHESIS RESEARCH 2022; 153:103-112. [PMID: 35277801 DOI: 10.1007/s11120-022-00909-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine. The most pronounced changes in the intensity and lifetime of fluorescence were observed with the addition of miramistin and octenidine. At the same concentration of antiseptics, the increase in fluorescence intensity was 2-3 times higher than the increase in its lifetime. It is concluded that the addition of antiseptics decreases the efficiency of the energy migration LH1 → RC and increases the fluorescence rate constant kfl. We associate the latter with a change in the polarization of the microenvironment of bacteriochlorophyll molecules upon the addition of charged antiseptic molecules. A possible mechanism of antiseptic action on R. rubrum chromatophores is considered. This work is a continuation of the study of the effect of antiseptics on the energy transfer and fluorescence intensity in chromatophores of purple bacteria published earlier in Photosynthesis Research (Strakhovskaya et al. in Photosyn Res 147:197-209, 2021).
Collapse
Affiliation(s)
- Peter P Knox
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Boris N Korvatovskiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| | - Marina G Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234.
| | - Zoja K Makhneva
- Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", Pushchino, Russian Federation, 142290
| | - Maxim A Bol'shakov
- Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", Pushchino, Russian Federation, 142290
| | - Vladimir Z Paschenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation, 119234
| |
Collapse
|
7
|
Sarhangi SM, Matyushov DV. Anomalously Small Reorganization Energy of the Half Redox Reaction of Azurin. J Phys Chem B 2022; 126:3000-3011. [DOI: 10.1021/acs.jpcb.2c00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Setare M. Sarhangi
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Dmitry V. Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
8
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
9
|
Dubas K, Szewczyk S, Białek R, Burdziński G, Jones MR, Gibasiewicz K. Antagonistic Effects of Point Mutations on Charge Recombination and a New View of Primary Charge Separation in Photosynthetic Proteins. J Phys Chem B 2021; 125:8742-8756. [PMID: 34328746 PMCID: PMC8389993 DOI: 10.1021/acs.jpcb.1c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Light-induced electron-transfer
reactions were investigated in
wild-type and three mutant Rhodobacter sphaeroides reaction centers with the secondary electron acceptor (ubiquinone
QA) either removed or permanently reduced. Under such conditions,
charge separation between the primary electron donor (bacteriochlorophyll
dimer, P) and the electron acceptor (bacteriopheophytin, HA) was followed by P+HA– →
PHA charge recombination. Two reaction centers were used
that had different single amino-acid mutations that brought about
either a 3-fold acceleration in charge recombination compared to that
in the wild-type protein, or a 3-fold deceleration. In a third mutant
in which the two single amino-acid mutations were combined, charge
recombination was similar to that in the wild type. In all cases,
data from transient absorption measurements were analyzed using similar
models. The modeling included the energetic relaxation of the charge-separated
states caused by protein dynamics and evidenced the appearance of
an intermediate charge-separated state, P+BA–, with BA being the bacteriochlorophyll
located between P and HA. In all cases, mixing of the states
P+BA– and P+HA– was observed and explained in terms of
electron delocalization over BA and HA. This
delocalization, together with picosecond protein relaxation, underlies
a new view of primary charge separation in photosynthesis.
Collapse
Affiliation(s)
- K Dubas
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland.,Department of Optometry, Poznan University of Medical Sciences, ul. Rokietnicka 5d, 60-806 Poznań, Poland
| | - S Szewczyk
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - R Białek
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - G Burdziński
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - M R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, U.K
| | - K Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
10
|
Gibasiewicz K, Pajzderska M, Białek R, Jones MR. Temperature dependence of nanosecond charge recombination in mutant Rhodobacter sphaeroides reaction centers: modelling of the protein dynamics. Photochem Photobiol Sci 2021; 20:913-922. [PMID: 34213754 DOI: 10.1007/s43630-021-00069-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
We investigated the influence of a range of factors-temperature, redox midpoint potential of an electron carrier, and protein dynamics-on nanosecond electron transfer within a protein. The model reaction was back electron transfer from a bacteriopheophytin anion, HA-, to an oxidized primary electron donor, P+, in a wild type Rhodobacter sphaeroides reaction center (RC) with a permanently reduced secondary electron acceptor (quinone, QA-). Also used were two modified RCs with single amino acid mutations near the monomeric bacteriochlorophyll, BA, located between P and HA. Both mutant RCs showed significant slowing down of this back electron transfer reaction with decreasing temperature, similar to that observed with the wild type RC, but contrasting with a number of single point mutant RCs studied previously. The observed similarities and differences are explained in the framework of a (P+BA- ↔ P+HA-) equilibrium model with an important role played by protein relaxation. The major cause of the observed temperature dependence, both in the wild type RC and in the mutant proteins, is a limitation in access to the thermally activated pathway of charge recombination via the state P+BA- at low temperatures. The data indicate that in all RCs both charge recombination pathways, the thermally activated one and a direct one without involvement of the P+BA- state, are controlled by the protein dynamics. It is concluded that the modifications of the protein environment affect the overall back electron transfer kinetics primarily by changing the redox potential of BA and not by changing the protein relaxation dynamics.
Collapse
Affiliation(s)
- Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| | - Maria Pajzderska
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Medical Sciences BuildingUniversity Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
11
|
Mamedov MD, Milanovsky GE, Malferrari M, Vitukhnovskaya LA, Francia F, Semenov AY, Venturoli G. Trehalose matrix effects on electron transfer in Mn-depleted protein-pigment complexes of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148413. [PMID: 33716033 DOI: 10.1016/j.bbabio.2021.148413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 11/18/2022]
Abstract
The kinetics of flash-induced re-reduction of the Photosystem II (PS II) primary electron donor P680 was studied in solution and in trehalose glassy matrices at different relative humidity. In solution, and in the re-dissolved glass, kinetics were dominated by two fast components with lifetimes in the range of 2-7 μs, which accounted for >85% of the decay. These components were ascribed to the direct electron transfer from the redox-active tyrosine YZ to P680+. The minor slower components were due to charge recombination between the primary plastoquinone acceptor QA- and P680+. Incorporation of the PS II complex into the trehalose glassy matrix and its successive dehydration caused a progressive increase in the lifetime of all kinetic phases, accompanied by an increase of the amplitudes of the slower phases at the expense of the faster phases. At 63% relative humidity the fast components contribution dropped to ~50%. A further dehydration of the trehalose glass did not change the lifetimes and contribution of the kinetic components. This effect was ascribed to the decrease of conformational mobility of the protein domain between YZ and P680, which resulted in the inhibition of YZ → P680+ electron transfer in about half of the PS II population, wherein the recombination between QA- and P680+ occurred. The data indicate that PS II binds a larger number of water molecules as compared to PS I complexes. We conclude that our data disprove the "water replacement" hypothesis of trehalose matrix biopreservation.
Collapse
Affiliation(s)
- Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia
| | - Georgy E Milanovsky
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia
| | - Marco Malferrari
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy
| | - Liya A Vitukhnovskaya
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Kosygina Street, 4, b.1, Russia
| | - Francesco Francia
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Kosygina Street, 4, b.1, Russia.
| | - Giovanni Venturoli
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, c/o Department of Physics and Astronomy "Augusto Righi", DIFA, University of Bologna, Bologna, Via Irnerio, 46, Italy.
| |
Collapse
|
12
|
Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NK, Knox PP, Paschenko VZ. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2021; 147:197-209. [PMID: 33389445 PMCID: PMC7778420 DOI: 10.1007/s11120-020-00807-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 μM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 μM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.
Collapse
Affiliation(s)
- Marina G Strakhovskaya
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russian Federation.
| | - Eugene P Lukashev
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Boris N Korvatovskiy
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Ekaterina G Kholina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Nuranija Kh Seifullina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Peter P Knox
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Vladimir Z Paschenko
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
13
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
Kondo T, Mutoh R, Tabe H, Kurisu G, Oh-Oka H, Fujiyoshi S, Matsushita M. Cryogenic Single-Molecule Spectroscopy of the Primary Electron Acceptor in the Photosynthetic Reaction Center. J Phys Chem Lett 2020; 11:3980-3986. [PMID: 32352789 DOI: 10.1021/acs.jpclett.0c00891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photosynthetic reaction center (RC) converts light energy into electrochemical energy. The RC of heliobacteria (hRC) is a primitive homodimeric RC containing 58 bacteriochlorophylls and 2 chlorophyll as. The chlorophyll serves as the primary electron acceptor (Chl a-A0) responsible for light harvesting and charge separation. The single-molecule spectroscopy of Chl a-A0 can be used to investigate heterogeneities of the RC photochemical function, though the low fluorescence quantum yield (0.1%) makes it difficult. Here, we show the fluorescence excitation spectroscopy of individual Chl a-A0s in single hRCs at 6 K. The fluorescence quantum yield and absorption cross section of Chl a-A0 increase 2- and 4-fold, respectively, compared to those at room temperature. The two Chl a-A0s in single hRCs are identified as two distinct peaks in the fluorescence excitation spectrum, exhibiting different excitation polarization dependences. The spectral changes caused by photobleaching indicate the energy transfer across subunits in the hRC.
Collapse
Affiliation(s)
- Toru Kondo
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Tabe
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirozo Oh-Oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Satoru Fujiyoshi
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Michio Matsushita
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
15
|
Knox PP, Lukashev EP, Gorokhov VV, Seifullina NK, Paschenko VZ. Relaxation processes accompanying electron stabilization in the quinone acceptor part of Rb. sphaeroides reaction centers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 189:145-151. [PMID: 30347352 DOI: 10.1016/j.jphotobiol.2018.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
The temperature dependence of the dark recombination rate in photooxidized bacteriochlorophyll (P) and photoreduced quinone acceptors (ubiquinones) QA and QB of photosynthetic reaction centers of purple bacteria Rhodobacter sphaeroides (Rb. sphaeroides) was studied. Photoinduced changes in the absorption were detected in the Qx absorption band of photooxidized bacteriochlorophyll at 600 nm and in the bands corresponding to the redox changes of ubiquinones at 335 and 420-450 nm. Kinetic analysis was used to evaluate the activation energy and the characteristic time of the transient process of relaxation accompanying electron stabilization at the final quinone acceptor. A comparative study of the kinetics of oxidation-reduction reactions of photoactive bacteriochlorophyll RC purple bacteria and quinone acceptors in their individual absorption bands is an informative approach to studying the mechanisms of this stabilization. The analysis of the revealed kinetic differences makes it possible to estimate the activation energy and the characteristic times of the transition relaxation processes associated with the stabilization of the electron in the quinone acceptor part of RC. Purple bacterial reaction centers have fundamental similarities with PSII reaction centers. Such a similarity represents evolutional closeness between the two types of RC. So it is possible that the photoinduced charge separation in PSII RC, as well as in purple bacteria RC, is also accompanied by definite conformational changes. The possible role of hydrogen bonds of surrounding protein in the relaxation processes accompanying the electron transfer to quinone acceptors is discussed.
Collapse
Affiliation(s)
- P P Knox
- Department of Biophysics, Biological Faculty of the M.V., Lomonosov Moscow State University, 119991 Moscow, Russia
| | - E P Lukashev
- Department of Biophysics, Biological Faculty of the M.V., Lomonosov Moscow State University, 119991 Moscow, Russia
| | - V V Gorokhov
- Department of Biophysics, Biological Faculty of the M.V., Lomonosov Moscow State University, 119991 Moscow, Russia
| | - N Kh Seifullina
- Department of Biophysics, Biological Faculty of the M.V., Lomonosov Moscow State University, 119991 Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, Biological Faculty of the M.V., Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
16
|
Cherepanov DA, Milanovsky GE, Gopta OA, Balasubramanian R, Bryant DA, Semenov AY, Golbeck JH. Electron–Phonon Coupling in Cyanobacterial Photosystem I. J Phys Chem B 2018; 122:7943-7955. [DOI: 10.1021/acs.jpcb.8b03906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitry A. Cherepanov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskye Gory,
1, Building 40, 119992 Moscow, Russia
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 117977 Moscow, Russia
| | - Georgy E. Milanovsky
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskye Gory,
1, Building 40, 119992 Moscow, Russia
| | - Oksana A. Gopta
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskye Gory,
1, Building 40, 119992 Moscow, Russia
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 328 Frear Laboratory, University Park, Pennsylvania 16802, United States
| | - Ramakrishnan Balasubramanian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 328 Frear Laboratory, University Park, Pennsylvania 16802, United States
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 328 Frear Laboratory, University Park, Pennsylvania 16802, United States
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskye Gory,
1, Building 40, 119992 Moscow, Russia
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 117977 Moscow, Russia
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 328 Frear Laboratory, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, 328 Frear Laboratory, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Sipka G, Kis M, Maróti P. Characterization of mercury(II)-induced inhibition of photochemistry in the reaction center of photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2018; 136:379-392. [PMID: 29285578 DOI: 10.1007/s11120-017-0474-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Mercuric contamination of aqueous cultures results in impairment of viability of photosynthetic bacteria primarily by inhibition of the photochemistry of the reaction center (RC) protein. Isolated reaction centers (RCs) from Rhodobacter sphaeroides were exposed to Hg2+ ions up to saturation concentration (~ 103 [Hg2+]/[RC]) and the gradual time- and concentration-dependent loss of the photochemical activity was monitored. The vast majority of Hg2+ ions (about 500 [Hg2+]/[RC]) had low affinity for the RC [binding constant Kb ~ 5 mM-1] and only a few (~ 1 [Hg2+]/[RC]) exhibited strong binding (Kb ~ 50 μM-1). Neither type of binding site had specific and harmful effects on the photochemistry of the RC. The primary charge separation was preserved even at saturation mercury(II) concentration, but essential further steps of stabilization and utilization were blocked already in the 5 < [Hg2+]/[RC] < 50 range whose locations were revealed. (1) The proton gate at the cytoplasmic site had the highest affinity for Hg2+ binding (Kb ~ 0.2 μM-1) and blocked the proton uptake. (2) Reduced affinity (Kb ~ 0.05 μM-1) was measured for the mercury(II)-binding site close to the secondary quinone that resulted in inhibition of the interquinone electron transfer. (3) A similar affinity was observed close to the bacteriochlorophyll dimer causing slight energetic changes as evidenced by a ~ 30 nm blue shift of the red absorption band, a 47 meV increase in the redox midpoint potential, and a ~ 20 meV drop in free energy gap of the primary charge pair. The primary quinone was not perturbed upon mercury(II) treatment. Although the Hg2+ ions attack the RC in large number, the exertion of the harmful effect on photochemistry is not through mass action but rather a couple of well-defined targets. Bound to these sites, the Hg2+ ions can destroy H-bond structures, inhibit protein dynamics, block conformational gating mechanisms, and modify electrostatic profiles essential for electron and proton transfer.
Collapse
Affiliation(s)
- Gábor Sipka
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
- Department of Plant Biology, Hungarian Academy of Science, Biological Research Centre, Szeged, Hungary
| | - Mariann Kis
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
| | - Péter Maróti
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary.
| |
Collapse
|
18
|
Comparative electrochemical studies of kinetic and thermodynamic parameters of Quinoxaline and Brimonidine redox process. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Knox PP, Gorokhov VV, Korvatovskiy BN, Lukashev EP, Goryachev SN, Paschenko VZ, Rubin AB. The effect of light and temperature on the dynamic state of Rhodobacter sphaeroides reaction centers proteins determined from changes in tryptophan fluorescence lifetime and P +Q A- recombination kinetics. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:140-148. [PMID: 29413697 DOI: 10.1016/j.jphotobiol.2018.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
The temperature dependencies of the rate of dark recombination of separated charges between the photoactive bacteriochlorophyll and the primary quinone acceptor (QA) in photosynthetic reaction centers (RCs) of the purple bacteria Rhodobacter sphaeroides (Rb. sphaeroides) were investigated. Measurements were performed in water-glycerol and trehalose environments after freezing to -180 °C in the dark and under actinic light with subsequent heating. Simultaneously, the RC tryptophanyl fluorescence lifetime in the spectral range between 323 and 348 nm was measured under these conditions. A correlation was found between the temperature dependencies of the functional and dynamic parameters of RCs in different solvent mixtures. For the first time, differences in the average fluorescence lifetime of tryptophanyl residues were measured between RCs frozen in the dark and in the actinic light. The obtained results can be explained by the RC transitions between different conformational states and the dynamic processes in the structure of the hydrogen bonds of RCs. We assumed that RCs exist in two main microconformations - "fast" and "slow", which are characterized by different rates of P+ and QA- recombination reactions. The "fast" conformation is induced in frozen RCs in the dark, while the "slow" conformation of RC occurs when the RC preparation is frozen under actinic light. An explanation of the temperature dependencies of tryptophan fluorescence lifetimes in RC proteins was made under the assumption that temperature changes affect mainly the electron transfer from the indole ring of the tryptophan molecule to the nearest amide or carboxyl groups.
Collapse
Affiliation(s)
- Peter P Knox
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir V Gorokhov
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris N Korvatovskiy
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene P Lukashev
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey N Goryachev
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Z Paschenko
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Andrew B Rubin
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Knox PP, Lukashev EP, Korvatovskii BN, Gorokhov VV, Grishanova NP, Seyfullina NK, Paschenko VZ, Rubin AB. A comparison of the temperature dependence of charge recombination in the ion-radical pair P870+QA - and tryptophan fluorescence in the photosynthetic reaction centers of Rhodobacter sphaeroides. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350916060191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Nalepa A, Malferrari M, Lubitz W, Venturoli G, Möbius K, Savitsky A. Local water sensing: water exchange in bacterial photosynthetic reaction centers embedded in a trehalose glass studied using multiresonance EPR. Phys Chem Chem Phys 2017; 19:28388-28400. [DOI: 10.1039/c7cp03942e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulsed EPR spectroscopies and isotope labeled water are applied to detect and quantify the local water in a bacterial reaction center embedded into a trehalose glass.
Collapse
Affiliation(s)
- Anna Nalepa
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica
- Dipartimento di Farmacia e Biotecnologie
- FaBiT
- Università di Bologna
- I-40126 Bologna
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica
- Dipartimento di Farmacia e Biotecnologie
- FaBiT
- Università di Bologna
- I-40126 Bologna
| | - Klaus Möbius
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
- Department of Physics
- Free University Berlin
| | - Anton Savitsky
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
22
|
Serdenko TV, Barabash YM, Knox PP, Seifullina NK. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria. NANOSCALE RESEARCH LETTERS 2016; 11:286. [PMID: 27271854 PMCID: PMC4896891 DOI: 10.1186/s11671-016-1502-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one-to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism.
Collapse
Affiliation(s)
- T V Serdenko
- Department of Physics of Biological Systems, Institute of Physics NAS Ukraine, Prospect Nauky, 46, 03028, Kyiv, Ukraine.
| | - Y M Barabash
- Department of Physics of Biological Systems, Institute of Physics NAS Ukraine, Prospect Nauky, 46, 03028, Kyiv, Ukraine
| | - P P Knox
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, Leninskie Gory, 1, 119991, Moscow, Russia
| | - N Kh Seifullina
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, Leninskie Gory, 1, 119991, Moscow, Russia
| |
Collapse
|
23
|
Shelaev I, Gorka M, Savitsky A, Kurashov V, Mamedov M, Gostev F, Möbius K, Nadtochenko V, Golbeck J, Semenov A. Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The effect of dehydration on the kinetics of forward electron transfer (ET) has been studied in cyanobacterial photosystem I (PS I) complexes in a trehalose glassy matrix by time-resolved optical and EPR spectroscopies in the 100 fs to 1 ms time domain. The kinetics of the flash-induced absorption changes in the subnanosecond time domain due to primary and secondary charge separation steps were monitored by pump–probe laser spectroscopy with 20-fs low-energy pump pulses centered at 720 nm. The back-reaction kinetics of P700 were measured by high-field time-resolved EPR spectroscopy and the forward kinetics of
A
1A
•
−
/
A
1
B
•
−
→
F
X
${\rm{A}}_{{\rm{1A}}}^{ \bullet - }/{\rm{A}}_{1{\rm{B}}}^{ \bullet - } \to {{\rm{F}}_{\rm{X}}}$
by time-resolved optical spectroscopy at 480 nm. The kinetics of the primary ET reactions to form the primary
P
700
•
+
A
0
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_0^{ \bullet - }$
and the secondary
P
700
•
+
A
1
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_1^{ \bullet - }$
ion radical pairs were not affected by dehydration in the trehalose matrix, while the yield of the
P
700
•
+
A
1
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_1^{ \bullet - }$
was decreased by ~20%. Forward ET from the phylloquinone molecules in the
A
1
A
•
−
${\rm{A}}_{1{\rm{A}}}^{ \bullet - }$
and
A
1
B
•
−
${\rm{A}}_{1{\rm{B}}}^{ \bullet - }$
sites to the iron–sulfur cluster FX slowed from ~220 ns and ~20 ns in solution to ~13 μs and ~80 ns, respectively. However, as shown by EPR spectroscopy, the ~15 μs kinetic phase also contains a small contribution from the recombination between
A
1
B
•
−
${\rm{A}}_{1{\rm{B}}}^{ \bullet - }$
and
P
700
•
+
.
${\rm{P}}_{700}^{ \bullet + }.$
These data reveal that the initial ET reactions from P700 to secondary phylloquinone acceptors in the A- and B-branches of cofactors (A1A and A1B) remain unaffected whereas ET beyond A1A and A1B is slowed or prevented by constrained protein dynamics due to the dry trehalose glass matrix.
Collapse
Affiliation(s)
- Ivan Shelaev
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany , Phone: 0049-208-3063555, Fax: 0049-208-3063955
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Mahir Mamedov
- A.N. Belozersky Institute of Physical–Chemical Biology, Moscow State University, Moscow, Leninskie Gory, Moscow 119992, Russian Federation
| | - Fedor Gostev
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - Klaus Möbius
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Victor Nadtochenko
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - John Golbeck
- Department of Biochemistry and Molecular Biology, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Alexey Semenov
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
- A.N. Belozersky Institute of Physical–Chemical Biology, Moscow State University, Moscow, Leninskie Gory, Moscow 119992, Russian Federation
| |
Collapse
|
24
|
Purple-bacterial photosynthetic reaction centers and quantum‐dot hybrid‐assemblies in lecithin liposomes and thin films. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:73-82. [DOI: 10.1016/j.jphotobiol.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022]
|
25
|
Malferrari M, Savitsky A, Mamedov MD, Milanovsky GE, Lubitz W, Möbius K, Semenov AY, Venturoli G. Trehalose matrix effects on charge-recombination kinetics in Photosystem I of oxygenic photosynthesis at different dehydration levels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1440-1454. [DOI: 10.1016/j.bbabio.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
26
|
Pan J, Saer R, Lin S, Beatty JT, Woodbury NW. Electron Transfer in Bacterial Reaction Centers with the Photoactive Bacteriopheophytin Replaced by a Bacteriochlorophyll through Coordinating Ligand Substitution. Biochemistry 2016; 55:4909-18. [DOI: 10.1021/acs.biochem.6b00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Pan
- The
Biodesign Institute at Arizona State University, Arizona State University, Tempe, Arizona 85287-5201, United States
| | - Rafael Saer
- Department
of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Su Lin
- The
Biodesign Institute at Arizona State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - J. Thomas Beatty
- Department
of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Neal W. Woodbury
- The
Biodesign Institute at Arizona State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
27
|
Knox PP, Korvatovsky BN, Krasilnikov PM, Paschenko VZ, Seifullina NH, Grishanova NP, Rubin AB. Temperature dependence of protein fluorescence in Rb. sphaeroides reaction centers frozen to 80 K in the dark or on the actinic light as the indicator of protein conformational dynamics. DOKL BIOCHEM BIOPHYS 2016; 467:105-9. [PMID: 27193710 DOI: 10.1134/s1607672916020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/22/2022]
Abstract
The differences in the average fluorescence lifetime (τav) of tryptophanyls in photosynthetic reaction center (RC) of the purple bacteria Rb. sphaeroides frozen to 80 K in the dark or on the actinic light was found. This difference disappeared during subsequent heating at the temperatures above 250 K. The computer-based calculation of vibration spectra of the tryptophan molecule was performed. As a result, the normal vibrational modes associated with deformational vibrations of the aromatic ring of the tryptophan molecule were found. These deformational vibrations may be active during the nonradiative transition of the molecule from the excited to the ground state. We assume that the differences in τav may be associated with the change in the activity of these vibration modes due to local variations in the microenvironment of tryptophanyls during the light activation.
Collapse
Affiliation(s)
- P P Knox
- Biological Faculty, Moscow State University, Moscow, 119991, Russia.
| | - B N Korvatovsky
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - P M Krasilnikov
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - V Z Paschenko
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - N H Seifullina
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - N P Grishanova
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - A B Rubin
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
28
|
Dijkstra AG, Tanimura Y. Linear and third- and fifth-order nonlinear spectroscopies of a charge transfer system coupled to an underdamped vibration. J Chem Phys 2016; 142:212423. [PMID: 26049443 DOI: 10.1063/1.4917025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study hole, electron, and exciton transports in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We find that combining electron, hole, and exciton transfers can lead to non-trivial spectra with more structure than with excitonic coupling alone. Traces taken during the waiting time of a two-dimensional (2D) spectrum are dominated by vibrational motion and do not reflect the electron, hole, and exciton dynamics directly. We find that the fifth-order nonlinear response is particularly sensitive to the charge transfer process. While third-order 2D spectroscopy detects the correlation between two coherences, fifth-order 2D spectroscopy (2D population spectroscopy) is here designed to detect correlations between the excited states during two different time periods.
Collapse
Affiliation(s)
- Arend G Dijkstra
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | |
Collapse
|
29
|
Lukashev EP, Knox PP, Oleinikov IP, Seifullina NK, Grishanova NP. Investigation of stability of photosynthetic reaction center and quantum dot hybrid films. BIOCHEMISTRY (MOSCOW) 2016; 81:58-63. [DOI: 10.1134/s0006297916010065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Malferrari M, Turina P, Francia F, Mezzetti A, Leibl W, Venturoli G. Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR and light-induced difference FTIR spectroscopy. Photochem Photobiol Sci 2015; 14:238-51. [PMID: 25188921 DOI: 10.1039/c4pp00245h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The photosynthetic reaction center (RC) is a membrane pigment-protein complex that catalyzes the initial charge separation reactions of photosynthesis. Following photoexcitation, the RC undergoes conformational relaxations which stabilize the charge-separated state. Dehydration of the complex inhibits its conformational dynamics, providing a useful tool to gain insights into the relaxational processes. We analyzed the effects of dehydration on the electronic structure of the primary electron donor P, as probed by visible-NIR and light-induced FTIR difference spectroscopy, in RC films equilibrated at different relative humidities r. Previous FTIR and ENDOR spectroscopic studies revealed that P, an excitonically coupled dimer of bacteriochlorophylls, can be switched between two conformations, P866 and P850, which differ in the extent of delocalization of the unpaired electron between the two bacteriochlorophyll moieties (PL and PM) of the photo-oxidized radical P(+). We found that dehydration (at r = 11%) shifts the optical Qy band of P from 866 to 850-845 nm, a large part of the effect occurring already at r = 76%. Such a dehydration weakens light-induced difference FTIR marker bands, which probe the delocalization of charge distribution within the P(+) dimer (the electronic band of P(+) at 2700 cm(-1), and the associated phase-phonon vibrational modes at around 1300, 1480, and 1550 cm(-1)). From the analysis of the P(+) keto C[double bond, length as m-dash]O bands at 1703 and 1713-15 cm(-1), we inferred that dehydration induces a stronger localization of the unpaired electron on PL(+). The observed charge redistribution is discussed in relation to the dielectric relaxation of the photoexcited RC on a long (10(2) s) time scale.
Collapse
Affiliation(s)
- Marco Malferrari
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Ishara Silva K, Jagannathan B, Golbeck JH, Lakshmi KV. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:548-556. [PMID: 26334844 DOI: 10.1016/j.bbabio.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- K Ishara Silva
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Bharat Jagannathan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180.
| |
Collapse
|
32
|
Malferrari M, Francia F, Venturoli G. Retardation of Protein Dynamics by Trehalose in Dehydrated Systems of Photosynthetic Reaction Centers. Insights from Electron Transfer and Thermal Denaturation Kinetics. J Phys Chem B 2015; 119:13600-18. [DOI: 10.1021/acs.jpcb.5b02986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco Malferrari
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di
Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Francesco Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di
Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di
Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
- Consorzio Nazionale
Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o
Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
33
|
Lukashev EP, Knox PP, Krasilnikov PM, Seifullina NK, Rubin AB. Mechanisms of anomalous temperature dependence of the recombination of the photoseparated charges between bacteriochlorophyll and primary quinone in Rb. sphaeroides: The role of RC hydrogen bonds. DOKL BIOCHEM BIOPHYS 2015; 459:199-203. [PMID: 25559979 DOI: 10.1134/s1607672914060052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/23/2022]
Affiliation(s)
- E P Lukashev
- Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | | | | | | | | |
Collapse
|
34
|
Schansker G, Tóth SZ, Holzwarth AR, Garab G. Chlorophyll a fluorescence: beyond the limits of the Q(A) model. PHOTOSYNTHESIS RESEARCH 2014; 120:43-58. [PMID: 23456268 DOI: 10.1007/s11120-013-9806-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/18/2013] [Indexed: 05/03/2023]
Abstract
Chlorophyll a fluorescence is a non-invasive tool widely used in photosynthesis research. According to the dominant interpretation, based on the model proposed by Duysens and Sweers (1963, Special Issue of Plant and Cell Physiology, pp 353-372), the fluorescence changes reflect primarily changes in the redox state of Q(A), the primary quinone electron acceptor of photosystem II (PSII). While it is clearly successful in monitoring the photochemical activity of PSII, a number of important observations cannot be explained within the framework of this simple model. Alternative interpretations have been proposed but were not supported satisfactorily by experimental data. In this review we concentrate on the processes determining the fluorescence rise on a dark-to-light transition and critically analyze the experimental data and the existing models. Recent experiments have provided additional evidence for the involvement of a second process influencing the fluorescence rise once Q(A) is reduced. These observations are best explained by a light-induced conformational change, the focal point of our review. We also want to emphasize that-based on the presently available experimental findings-conclusions on α/ß-centers, PSII connectivity, and the assignment of FV/FM to the maximum PSII quantum yield may require critical re-evaluations. At the same time, it has to be emphasized that for a deeper understanding of the underlying physical mechanism(s) systematic studies on light-induced changes in the structure and reaction kinetics of the PSII reaction center are required.
Collapse
Affiliation(s)
- Gert Schansker
- Institute of Plant Biology, Biological Research Center Szeged, Hungarian Academy of Sciences, Szeged, 6701, Hungary,
| | | | | | | |
Collapse
|
35
|
Krasilnikov PM. Problems of the theory of electron transfer in biological systems. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Lundholm I, Wahlgren WY, Piccirilli F, Di Pietro P, Duelli A, Berntsson O, Lupi S, Perucchi A, Katona G. Terahertz absorption of illuminated photosynthetic reaction center solution: a signature of photoactivation? RSC Adv 2014. [DOI: 10.1039/c4ra03787a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Ahmad K, Shah AH, Adhikari B, Rana UA, uddin SN, Vijayaratnam C, Muhammad N, Shujah S, Rauf A, Hussain H, Badshah A, Qureshi R, Kraatz HB, Shah A. pH-dependent redox mechanism and evaluation of kinetic and thermodynamic parameters of a novel anthraquinone. RSC Adv 2014. [DOI: 10.1039/c4ra04462b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pH-dependent oxidation of a novel anthraquinone was investigated and several important kinetic and thermodynamic parameters were determined.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad, Pakistan
| | | | - Bimalendu Adhikari
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto, Canada
| | - Usman Ali Rana
- Deanship of Scientific Research
- College of Engineering
- King Saud University
- Riyadh 11421, Saudi Arabia
| | - Syed Noman uddin
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad, Pakistan
| | - Chandrika Vijayaratnam
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto, Canada
| | - Niaz Muhammad
- Department of Chemistry
- Abdul Wali Khan University Mardan
- Pakistan
| | - Shaukat Shujah
- Department of Chemistry
- Kohat University of Science & Technology
- Kohat, Pakistan
| | - Abdur Rauf
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad, Pakistan
| | - Hidayat Hussain
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products
- University of Nizwa
- Nizwa 616, Sultanate of Oman
| | - Amin Badshah
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad, Pakistan
| | - Rumana Qureshi
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad, Pakistan
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto, Canada
| | - Afzal Shah
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad, Pakistan
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
| |
Collapse
|
38
|
Malferrari M, Nalepa A, Venturoli G, Francia F, Lubitz W, Möbius K, Savitsky A. Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR. Phys Chem Chem Phys 2013; 16:9831-48. [PMID: 24358471 DOI: 10.1039/c3cp54043j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some organisms can survive complete dehydration and high temperatures by adopting an anhydrobiotic state in which the intracellular medium contains large amounts of disaccharides, particularly trehalose and sucrose. Trehalose is most effective also in protecting isolated in vitro biostructures. In an attempt to clarify the molecular mechanisms of disaccharide bioprotection, we compared the structure and dynamics of sucrose and trehalose matrices at different hydration levels by means of high-field W-band EPR and FTIR spectroscopy. The hydration state of the samples was characterized by FTIR spectroscopy and the structural organization was probed by EPR using a nitroxide radical dissolved in the respective matrices. Analysis of the EPR spectra showed that the structure and dynamics of the dehydrated matrices as well as their evolution upon re-hydration differ substantially between trehalose and sucrose. The dehydrated trehalose matrix is homogeneous in terms of distribution of the residual water and spin-probe molecules. In contrast, dehydrated sucrose forms a heterogeneous matrix. It is comprised of sucrose polycrystalline clusters and several bulk water domains. The amorphous form was found only in 30% (volume) of the sucrose matrix. Re-hydration leads to a structural homogenization of the sucrose matrix, whilst in the trehalose matrix several domains develop differing in the local water/radical content and radical mobility. The molecular model of the matrices provides an explanation for the different protein-matrix dynamical coupling observed in dried ternary sucrose and trehalose matrices, and accounts for the superior efficacy of trehalose as a bioprotectant. Furthermore, for bacterial photosynthetic reaction centers it is shown that at low water content the protein-matrix coupling is modulated by the sugar/protein molar ratio in sucrose matrices only. This effect is suggested to be related to the preference for sucrose, rather than trehalose, as a bioprotective disaccharide in some anhydrobiotic organisms.
Collapse
Affiliation(s)
- M Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, via Irnerio 42, I-40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Proton Binding Is Part of Protein Relaxation of Flash-Excited Reaction Center from Photosynthetic BacteriaRhodobacter sphaeroides. Isr J Chem 2013. [DOI: 10.1002/ijch.199900050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Christophorov LN, Kharkyanen VN, Berezetskaya NM. Molecular self-organization: A single molecule aspect. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
42
|
Krasilnikov PM, Knox PP, Rubin AB. A mechanism stabilizing a long-lived charge-separated state of photosynthetic reaction centers frozen under intense illumination. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s000635091304009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Pan J, Saer RG, Lin S, Guo Z, Beatty JT, Woodbury NW. The Protein Environment of the Bacteriopheophytin Anion Modulates Charge Separation and Charge Recombination in Bacterial Reaction Centers. J Phys Chem B 2013; 117:7179-89. [DOI: 10.1021/jp400132k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Pan
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
| | - Rafael G. Saer
- Department of Microbiology and
Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
V6T 1Z3
| | - Su Lin
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- Department of Chemistry and
Biochemistry, Arizona State University,
Tempe, Arizona 85287-1604, United States
| | - Zhi Guo
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
| | - J. Thomas Beatty
- Department of Microbiology and
Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
V6T 1Z3
| | - Neal W. Woodbury
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- Department of Chemistry and
Biochemistry, Arizona State University,
Tempe, Arizona 85287-1604, United States
| |
Collapse
|
44
|
Onidas D, Sipka G, Asztalos E, Maróti P. Mutational control of bioenergetics of bacterial reaction center probed by delayed fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1191-9. [PMID: 23685111 DOI: 10.1016/j.bbabio.2013.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/01/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
The free energy gap between the metastable charge separated state P(+)QA(-) and the excited bacteriochlorophyll dimer P* was measured by delayed fluorescence of the dimer in mutant reaction center proteins of the photosynthetic bacterium Rhodobacter sphaeroides. The mutations were engineered both at the donor (L131L, M160L, M197F and M202H) and acceptor (M265I and M234E) sides. While the donor side mutations changed systematically the number of H-bonds to P, the acceptor side mutations modified the energetics of QA by altering the van-der-Waals and electronic interactions (M265IT) and H-bond network to the acidic cluster around QB (M234EH, M234EL, M234EA and M234ER). All mutants decreased the free energy gap of the wild type RC (~890meV), i.e. destabilized the P(+)QA(-) charge pair by 60-110meV at pH8. Multiple modifications in the hydrogen bonding pattern to P resulted in systematic changes of the free energy gap. The destabilization showed no pH-dependence (M234 mutants) or slight increase (WT, donor-side mutants and M265IT above pH8) with average slope of 10-15meV/pH unit over the 6-10.5pH range. In wild type and donor-side mutants, the free energy change of the charge separation consisted of mainly enthalpic term but the acceptor side mutants showed increased entropic (even above that of enthalpic) contributions. This could include softening the structure of the iron ligand (M234EH) and the QA binding pocket (M265IT) and/or increase of the multiplicity of the electron transfer of charge separation in the acceptor side upon mutation.
Collapse
Affiliation(s)
- Delphine Onidas
- Laboratoire de Chimie Physique UMR 8000, Batiment 350, Orsay-Cedex, Université de Paris-Sud, 91405, France
| | | | | | | |
Collapse
|
45
|
Guo Z, Woodbury NW, Pan J, Lin S. Protein dielectric environment modulates the electron-transfer pathway in photosynthetic reaction centers. Biophys J 2013. [PMID: 23199926 DOI: 10.1016/j.bpj.2012.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The replacement of tyrosine by aspartic acid at position M210 in the photosynthetic reaction center of Rhodobacter sphaeroides results in the generation of a fast charge recombination pathway that is not observed in the wild-type. Apparently, the initially formed charge-separated state (cation of the special pair, P, and anion of the A-side bacteriopheophytin, H(A)) can decay rapidly via recombination through the neighboring bacteriochlorophyll (B(A)) soon after formation. The charge-separated state then relaxes over tens of picoseconds and recombination slows to the hundreds-of-picoseconds or nanosecond timescale. This dielectric relaxation results in a time-dependent blue shift of B(A)(-) absorption, which can be monitored using transient absorbance measurements. Protein dynamics also appear to modulate the electron transfer between H(A) and the next electron carrier, Q(A) (a ubiquinone). The kinetics of this reaction are complex in the mutant, requiring two kinetic terms, and the spectra associated with the two terms are distinct; a red shift of the H(A) ground-state bleaching is observed between the shorter and longer H(A)-to-Q(A) electron-transfer phases. The kinetics appears to be pH-independent, suggesting a negligible contribution of static heterogeneity originating from protonation/deprotonation in the ground state. A dynamic model based on the energy levels of the two early charge-separated states, P(+)B(A)(-) and P(+)H(A)(-), has been developed in which the energetics of these states is modulated by fast protein dielectric relaxations and this in turn alters both the kinetic complexity of the reaction and the reaction pathway.
Collapse
Affiliation(s)
- Zhi Guo
- The Biodesign Institute at Arizona State University, Tempe, Arizona, USA
| | | | | | | |
Collapse
|
46
|
Ritz T, Schulten K. Physik der Photosynthese: Wie Bakterien die Quantenphysik ausnutzen, um effizient Photosynthese zu betreiben. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/phbl.20010570212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Nienhaus K, Nienhaus GU. A spectroscopic study of structural heterogeneity and carbon monoxide binding in neuroglobin. J Biol Phys 2013; 31:417-32. [PMID: 23345908 DOI: 10.1007/s10867-005-0173-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.
Collapse
Affiliation(s)
- Karin Nienhaus
- Department of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
48
|
Szabó T, Bencsik G, Magyar M, Visy C, Gingl Z, Nagy K, Váró G, Hajdu K, Kozák G, Nagy L. Photosynthetic reaction centers/ITO hybrid nanostructure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 33:769-73. [PMID: 25427486 DOI: 10.1016/j.msec.2012.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/03/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022]
Abstract
Photosynthetic reaction center proteins purified from Rhodobacter sphaeroides purple bacterium were deposited on the surface of indium tin oxide (ITO), a transparent conductive oxide, and the photochemical/-physical properties of the composite were investigated. The kinetics of the light induced absorption change indicated that the RC was active in the composite and there was an interaction between the protein cofactors and the ITO. The electrochromic response of the bacteriopheophytine absorption at 771 nm showed an increased electric field perturbation around this chromophore on the surface of ITO compared to the one measured in solution. This absorption change is associated with the charge-compensating relaxation events inside the protein. Similar life time, but smaller magnitude of this absorption change was measured on the surface of borosilicate glass. The light induced change in the conductivity of the composite as a function of the concentration showed the typical sigmoid saturation characteristics unlike if the photochemically inactive chlorophyll was layered on the ITO. In this later case the light induced change in the conductivity was oppositely proportional to the chlorophyll concentration due to the thermal dissipation of the excitation energy. The sensitivity of the measurement is very high; few picomole RC can change the light induced resistance of the composite.
Collapse
Affiliation(s)
- Tibor Szabó
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Melinda Magyar
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Visy
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Zoltán Gingl
- Department of Technical Informatics, University of Szeged, Szeged, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, Hungarian Academy of Sciences, Biological Research Center, Szeged, Hungary
| | - György Váró
- Institute of Biophysics, Hungarian Academy of Sciences, Biological Research Center, Szeged, Hungary
| | - Kata Hajdu
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Kozák
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Nagy
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
49
|
Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:328-39. [PMID: 23103449 DOI: 10.1016/j.bbabio.2012.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
Abstract
Following light-induced electron transfer between the primary donor (P) and quinone acceptor (Q(A)) the bacterial photosynthetic reaction center (RC) undergoes conformational relaxations which stabilize the primary charge separated state P(+)Q(A)(-). Dehydration of RCs from Rhodobacter sphaeroides hinders these conformational dynamics, leading to acceleration of P(+)Q(A)(-) recombination kinetics [Malferrari et al., J. Phys. Chem. B 115 (2011) 14732-14750]. To clarify the structural basis of the conformational relaxations and the involvement of bound water molecules, we analyzed light-induced P(+)Q(A)(-)/PQ(A) difference FTIR spectra of RC films at two hydration levels (relative humidity r=76% and r=11%). Dehydration reduced the amplitude of bands in the 3700-3550cm(-1) region, attributed to water molecules hydrogen bonded to the RC, previously proposed to stabilize the charge separation by dielectric screening [Iwata et al., Biochemistry 48 (2009) 1220-1229]. Other features of the FTIR difference spectrum were affected by partial depletion of the hydration shell (r=11%), including contributions from modes of P (9-keto groups), and from NH or OH stretching modes of amino acidic residues, absorbing in the 3550-3150cm(-1) range, a region so far not examined in detail for bacterial RCs. To probe in parallel the effects of dehydration on the RC conformational relaxations, we analyzed by optical absorption spectroscopy the kinetics of P(+)Q(A)(-) recombination following the same photoexcitation used in FTIR measurements (20s continuous illumination). The results suggest a correlation between the observed FTIR spectral changes and the conformational rearrangements which, in the hydrated system, strongly stabilize the P(+)Q(A)(-) charge separated state over the second time scale.
Collapse
|
50
|
Structural and dynamic aspects of electron transfer in proteins — highly organized natural nanostructures. Russ Chem Bull 2012. [DOI: 10.1007/s11172-011-0199-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|