1
|
Chuduang K, Pholraksa P, Naumann CA. Capillary-Assisted Assembly of Polymer Gel-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39255463 DOI: 10.1021/acs.langmuir.4c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The polymer-supported lipid bilayer represents an attractive supramolecular assembly in numerous biophysical and bioanalytical applications. The assembly of polymer-supported membranes with a polymer layer thickness of just a few nanometers is now well-established, but bilayer properties in such a membrane architecture are still influenced by the nearby solid substrate. Polymer-supported lipid bilayer systems with a several micrometers thick polymer layer will overcome this shortcoming. However, formation of a fluid lipid bilayer on a fully hydrated, micrometer thick polymer film using traditional methods (e.g., vesicle fusion and lipid monolayer deposition techniques) remains a challenging task due to the rather unfavorable interfacial conditions for bilayer formation in such a system. Here, we report for the first time on the facile capillary-assisted formation of a lipid bilayer on the surface of a fully hydrated, several micrometers thick polyacrylamide (PAA) gel, in which forced molecular crowding of lipids at the air-water interface of the capillary results in monolayer instability and collapse, thereby forming a lipid bilayer on the top of the polymer gel inside the capillary. Stable bilayer attachment on the surface of the polymer gel can be achieved via physisorption or specific chemical linkages (tethering) on both cross-linked and non-cross-linked PAA films. Unlike the traditional solid-supported lipid bilayer (SLB), the lipid lateral diffusion in the polymer gel-supported lipid bilayer is not anymore perturbed by a solid substrate. Instead, more like a plasma membrane, it is mainly influenced by the properties of the underlying polymer and the nature/distribution of polymer-bilayer attachments. Polymer gel-supported lipid bilayers built using the capillary-assisted assembly approach show attractive self-healing properties, resulting in superior long-term stability relative to the SLB. We hypothesize that the described capillary-assisted assembly method can be applied to a wide range of polymeric materials and lipid compositions, opening exciting opportunities as an advanced model membrane system.
Collapse
Affiliation(s)
- Kridnut Chuduang
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Pornchanan Pholraksa
- Department of Biology, Indiana University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Christoph A Naumann
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
|
3
|
Abstract
Many critical biological events, including biochemical signaling, membrane traffic, and cell motility, originate at membrane surfaces. Each such event requires that members of a specific group of proteins and lipids rapidly assemble together at a specific site on the membrane surface. Understanding the biophysical mechanisms that stabilize these assemblies is critical to decoding and controlling cellular functions. In this article, we review progress toward a quantitative biophysical understanding of the mechanisms that drive membrane heterogeneity and organization. We begin from a physical perspective, reviewing the fundamental principles and key experimental evidence behind each proposed mechanism. We then shift to a biological perspective, presenting key examples of the role of heterogeneity in biology and asking which physical mechanisms may be responsible. We close with an applied perspective, noting that membrane heterogeneity provides a novel therapeutic target that is being exploited by a growing number of studies at the interface of biology, physics, and engineering.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Vernita D Gordon
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
4
|
Membrane Adhesion via Glycolipids Occurs for Abundant Saccharide Chemistries. Biophys J 2020; 118:1602-1611. [PMID: 32097623 DOI: 10.1016/j.bpj.2020.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane-bound oligosaccharides with specific chemistries are known to promote tight adhesion between adjacent membranes via the formation of weak saccharide bonds. However, in the literature, one can find scattered evidence that other, more abundant saccharide chemistries exhibit similar behavior. Here, the influence of various glycolipids on the interaction between adjacent membranes is systematically investigated with the help of small- and wide-angle x-ray scattering and complementary neutron diffraction experiments. Added electrostatic repulsion between the membrane surfaces is used to identify the formation of saccharide bonds and to challenge their stability against tensile stress. Some of the saccharide headgroup types investigated are able to bind adjacent membranes together, but this ability has no significant influence on the membrane bending rigidity. Our results indicate that glycolipid-mediated membrane adhesion is a highly abundant phenomenon and therefore potentially of great biological relevance.
Collapse
|
5
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
6
|
Wong WC, Juo JY, Lin CH, Liao YH, Cheng CY, Hsieh CL. Characterization of Single-Protein Dynamics in Polymer-Cushioned Lipid Bilayers Derived from Cell Plasma Membranes. J Phys Chem B 2019; 123:6492-6504. [DOI: 10.1021/acs.jpcb.9b03789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wai Cheng Wong
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Jz-Yuan Juo
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Chih-Hsiang Lin
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Yi-Hung Liao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Ching-Ya Cheng
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Puiggalí-Jou A, Del Valle LJ, Alemán C. Biomimetic hybrid membranes: incorporation of transport proteins/peptides into polymer supports. SOFT MATTER 2019; 15:2722-2736. [PMID: 30869096 DOI: 10.1039/c8sm02513d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular sensing, water purification and desalination, drug delivery, and DNA sequencing are some striking applications of biomimetic hybrid membranes. These devices take advantage of biomolecules, which have gained excellence in their specificity and efficiency during billions of years, and of artificial materials that load the purified biological molecules and provide technological properties, such as robustness, scalability, and suitable nanofeatures to confine the biomolecules. Recent methodological advances allow more precise control of polymer membranes that support the biomacromolecules, and are expected to improve the design of the next generation of membranes as well as their applicability. In the first section of this review we explain the biological relevance of membranes, membrane proteins, and the classification used for the latter. After this, we critically analyse the different approaches employed for the production of highly selective hybrid membranes, focusing on novel materials made of self-assembled block copolymers and nanostructured polymers. Finally, a summary of the advantages and disadvantages of the different methodologies is presented and the main characteristics of biomimetic hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| |
Collapse
|
8
|
Tunable cell-surface mimetics as engineered cell substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2076-2093. [PMID: 29935145 DOI: 10.1016/j.bbamem.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/18/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Most recent breakthroughs in understanding cell adhesion, cell migration, and cellular mechanosensitivity have been made possible by the development of engineered cell substrates of well-defined surface properties. Traditionally, these substrates mimic the extracellular matrix (ECM) environment by the use of ligand-functionalized polymeric gels of adjustable stiffness. However, such ECM mimetics are limited in their ability to replicate the rich dynamics found at cell-cell contacts. This review focuses on the application of cell surface mimetics, which are better suited for the analysis of cell adhesion, cell migration, and cellular mechanosensitivity across cell-cell interfaces. Functionalized supported lipid bilayer systems were first introduced as biomembrane-mimicking substrates to study processes of adhesion maturation during adhesion of functionalized vesicles (cell-free assay) and plated cells. However, while able to capture adhesion processes, the fluid lipid bilayer of such a relatively simple planar model membrane prevents adhering cells from transducing contractile forces to the underlying solid, making studies of cell migration and cellular mechanosensitivity largely impractical. Therefore, the main focus of this review is on polymer-tethered lipid bilayer architectures as biomembrane-mimicking cell substrate. Unlike supported lipid bilayers, these polymer-lipid composite materials enable the free assembly of linkers into linker clusters at cellular contacts without hindering cell spreading and migration and allow the controlled regulation of mechanical properties, enabling studies of cellular mechanosensitivity. The various polymer-tethered lipid bilayer architectures and their complementary properties as cell substrates are discussed.
Collapse
|
9
|
Jing P, Liu Y, Keeler EG, Cruz NM, Freedman BS, Lin LY. Optical tweezers system for live stem cell organization at the single-cell level. BIOMEDICAL OPTICS EXPRESS 2018; 9:771-779. [PMID: 29552411 PMCID: PMC5854077 DOI: 10.1364/boe.9.000771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 05/04/2023]
Abstract
Cell manipulation is one of the most impactful applications for optical tweezers, and derived from this promise, we demonstrate a new optical tweezers system for the study of cell adhesion and organization. This method utilizes photonic-crystal-enhanced optical tweezers to manipulate cells with low laser intensities. By doing so, it enables effective cell patterning and culturing within the conditions necessary for successful differentiation and colony formation of human pluripotent stem cells. To this end, the biocompatibility of plasma-treated parylene-C for cell culturing was studied, and a thorough characterization of cellular interactive forces was performed using this system. Furthermore, this study also demonstrates construction of patterned cell arrays at arbitrary positions with micrometer-scale precision.
Collapse
Affiliation(s)
- Peifeng Jing
- Department of Electrical Engineering, University of Washington, 185 Stevens Way, Seattle, WA 98195, USA
| | - Yannan Liu
- Department of Electrical Engineering, University of Washington, 185 Stevens Way, Seattle, WA 98195, USA
| | - Ethan G Keeler
- Department of Electrical Engineering, University of Washington, 185 Stevens Way, Seattle, WA 98195, USA
| | - Nelly M Cruz
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, University of Washington School of Medicine, 850 Republican St., Seattle, WA 98109, USA
| | - Benjamin S Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, University of Washington School of Medicine, 850 Republican St., Seattle, WA 98109, USA
| | - Lih Y Lin
- Department of Electrical Engineering, University of Washington, 185 Stevens Way, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Villringer S, Madl J, Sych T, Manner C, Imberty A, Römer W. Lectin-mediated protocell crosslinking to mimic cell-cell junctions and adhesion. Sci Rep 2018; 8:1932. [PMID: 29386533 PMCID: PMC5792463 DOI: 10.1038/s41598-018-20230-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cell adhesion is a crucial feature of all multicellular organisms, as it allows cells to organise themselves into tissues to carry out specific functions. Here, we present a mimetic approach that uses multivalent lectins with opposing binding sites to crosslink glycan-functionalised giant unilamellar vesicles. The crosslinking process drives the progression from contact puncta into elongated protocellular junctions, which form the vesicles into polygonal clusters resembling tissues. Due to their carbohydrate specificity, different lectins can be engaged in parallel with both natural and synthetic glycoconjugates to generate complex interfaces with distinct lectin domains. In addition, the formation of protocellular junctions can be combined with adhesion to a functionalised support by other ligand-receptor interactions to render increased stability against fluid flow. Furthermore, we consider that adhesion is a complex process of attraction and repulsion by doping the vesicles with a PEG-modified lipid, and demonstrate a dose-dependent decrease of lectin binding and formation of protocellular junctions. We suggest that the engineering of prototissues through lectin-glycan interactions is an important step towards synthetic minimal tissues and in designing artificial systems to reconstruct the fundamental functions of biology.
Collapse
Affiliation(s)
- Sarah Villringer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
| | - Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401, Illkirch Cedex, France
| | - Christina Manner
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Focal Area of Infection Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Anne Imberty
- CNRS, CERMAV, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
11
|
Diamanti E, Gutiérrez-Pineda E, Politakos N, Andreozzi P, Rodriguez-Presa MJ, Knoll W, Azzaroni O, Gervasi CA, Moya SE. Gramicidin ion channels in a lipid bilayer supported on polyelectrolyte multilayer films: an electrochemical impedance study. SOFT MATTER 2017; 13:8922-8929. [PMID: 29143830 DOI: 10.1039/c7sm01539a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Supported membranes on polymer cushions are of fundamental interest as models for cell membranes. The use of polyelectrolyte multilayers (PEMs) assembled by the layer by layer (LbL) technique as supports for a bilayer allows for easy integration of the lipid bilayer on surfaces and devices and for nanoscale tunable spacing of the lipid bilayer. Controlling ionic permeability in lipid bilayers supported on PEMs triggers potential applications in sensing and as models for transport phenomena in cell membranes. Lipid bilayers displaying gramicidin channels are fabricated on top of polyallylamine hydrochloride (PAH) and polystyrene sulfonate (PSS) multilayer films, by the assembly of vesicles of phosphatidylcholine and phosphatidylserine, 50 : 50 M/M, carrying gramicidin (GA). Quartz crystal microbalance with dissipation shows that the vesicles with GA fuse into a bilayer. Atomic force microscopy reveals that the presence of GA alters the bilayer topography resulting in depressions in the bilayer of around 70 nm in diameter. Electrochemical impedance spectroscopy (EIS) studies show that supported bilayers carrying GA have smaller resistances than the bilayers without GA. Lipid layers carrying GA display a higher conductance for K+ than for Na+ and are blocked in the presence of Ca2+.
Collapse
Affiliation(s)
- Eleftheria Diamanti
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20009 San Sebastián, Guipúzcoa, Spain.
| | - Eduart Gutiérrez-Pineda
- Instituto de Investigaciones, Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Sucursal 4-C.C.16, 1900 La Plata, Argentina. and Area Electroquímica, Facultad de Ingeniería, Universidad Nacional de La Plata, calle 1 y 47, 1900 La Plata, Argentina
| | - Nikolaos Politakos
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20009 San Sebastián, Guipúzcoa, Spain.
| | - Patrizia Andreozzi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20009 San Sebastián, Guipúzcoa, Spain.
| | - María José Rodriguez-Presa
- Instituto de Investigaciones, Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Sucursal 4-C.C.16, 1900 La Plata, Argentina.
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology, Vienna, and CEST Competence Center for Electrochemical Surface Technology, Wiener Neustadt, Austria
| | - Omar Azzaroni
- Instituto de Investigaciones, Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Sucursal 4-C.C.16, 1900 La Plata, Argentina.
| | - Claudio A Gervasi
- Instituto de Investigaciones, Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Sucursal 4-C.C.16, 1900 La Plata, Argentina. and Area Electroquímica, Facultad de Ingeniería, Universidad Nacional de La Plata, calle 1 y 47, 1900 La Plata, Argentina
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20009 San Sebastián, Guipúzcoa, Spain.
| |
Collapse
|
12
|
Valiūnienė A, Petrulionienė T, Balevičiūtė I, Mikoliūnaitė L, Valinčius G. Formation of hybrid bilayers on silanized thin-film Ti electrode. Chem Phys Lipids 2016; 202:62-68. [PMID: 27964891 DOI: 10.1016/j.chemphyslip.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
Phospholipid bilayer membranes are essential elements of living organisms as they form boundaries between the intracellular cytoplasm and the extracellular environment, as well as organelles. In this work we report on our attempts to assemble artificial phospholipid bilayer model membranes on Ti surface. To provide hydrophobic cushion for phospholipids, the surface of a thin-film Ti electrode was initially functionalized with trichloro(octadecyl)silane (OTS). Increased hydrophobicity of the solid support allowed vesicle fusion and the formation of a hybrid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer, as probed by the electrochemical impedance spectroscopy (EIS), contact angle measurements (CA) also by the Fourier transform-infrared (FT-IR) spectroscopy, spectroscopic ellipsometry (SE) and atomic force microscopy (AFM). Our study demonstrates the applicability of thin-film Ti electrodes for the formation of hybrid bilayer membranes. These membranes allow functional reconstitution of the pore-forming toxins and provide a bioanalytical platform for the detection of the activity of the cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- A Valiūnienė
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania.
| | - T Petrulionienė
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
| | - I Balevičiūtė
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
| | - L Mikoliūnaitė
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
| | - G Valinčius
- Department of Chemistry and Bioengineering, Vilnius Gedimino Technical University, Sauletekio al. 11, LT-10223, Vilnius, Lithuania
| |
Collapse
|
13
|
Weikl TR, Hu J, Xu GK, Lipowsky R. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory. Cell Adh Migr 2016; 10:576-589. [PMID: 27294442 PMCID: PMC5079412 DOI: 10.1080/19336918.2016.1180487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022] Open
Abstract
The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).
Collapse
Affiliation(s)
- Thomas R. Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| | - Jinglei Hu
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Guang-Kui Xu
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| |
Collapse
|
14
|
Tabaei SR, Gillissen JJJ, Kim MC, Ho JCS, Liedberg B, Parikh AN, Cho NJ. Brownian Dynamics of Electrostatically Adhering Small Vesicles to a Membrane Surface Induces Domains and Probes Viscosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5445-5450. [PMID: 27164321 DOI: 10.1021/acs.langmuir.6b00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using single-particle tracking, we investigate the interaction of small unilamellar vesicles (SUVs) that are electrostatically tethered to the freestanding membrane of a giant unilamellar vesicle (GUV). We find that the surface mobility of the GUV-riding SUVs is Brownian, insensitive to the bulk viscosity, vesicle size, and vesicle fluidity but strongly altered by the viscosity of the underlying membrane. Analyzing the diffusional behavior of SUVs within the Saffman-Delbrück model for the dynamics of membrane inclusions supports the notion that the mobility of the small vesicles is coupled to that of dynamically induced lipid clusters within the target GUV membrane. The reversible binding also offers a nonperturbative means for measuring the viscosity of biomembranes, which is an important parameter in cell physiology and function.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Jurriaan J J Gillissen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Min Chul Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - James C S Ho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Atul N Parikh
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
- Department of Biomedical Engineering and Department of Chemical Engineering and Materials Science, University of California , Davis, California 95616, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
15
|
Ryu YS, Wittenberg NJ, Suh JH, Lee SW, Sohn Y, Oh SH, Parikh AN, Lee SD. Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes. Sci Rep 2016; 6:26823. [PMID: 27230411 PMCID: PMC4882513 DOI: 10.1038/srep26823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/09/2016] [Indexed: 11/16/2022] Open
Abstract
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.
Collapse
Affiliation(s)
- Yong-Sang Ryu
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 Korea
| | - Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jeng-Hun Suh
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 Korea
| | - Sang-Wook Lee
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Institute of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Atul N. Parikh
- Departments of Biomedical Engineering and Chemical Engineering & Materials Science, University of California, Davis, California 95616, USA
| | - Sin-Doo Lee
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 Korea
| |
Collapse
|
16
|
Gordon VD, O'Halloran TJ, Shindell O. Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology. Phys Chem Chem Phys 2015; 17:15522-33. [PMID: 25866854 PMCID: PMC4465551 DOI: 10.1039/c4cp05876c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development.
Collapse
Affiliation(s)
- V D Gordon
- The University of Texas at Austin, Department of Physics and Center for Nonlinear Dynamics, 2515 Speedway, Stop C1610, Austin, Texas 78712-1199, USA.
| | | | | |
Collapse
|
17
|
Shindell O, Mica N, Ritzer M, Gordon VD. Specific adhesion of membranes simultaneously supports dual heterogeneities in lipids and proteins. Phys Chem Chem Phys 2015; 17:15598-607. [DOI: 10.1039/c4cp05877a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Membrane adhesion mediated by one protein species simultaneously stabilizes both ordered-phase and disordered-phase heterogeneities, distinct from the non-adhered membrane.
Collapse
Affiliation(s)
- O. Shindell
- The University of Texas at Austin
- Department of Physics and Center for Nonlinear Dynamics
- Austin
- USA
| | - N. Mica
- The University of Texas at Austin
- Department of Physics and Center for Nonlinear Dynamics
- Austin
- USA
| | - M. Ritzer
- The University of Texas at Austin
- Department of Physics and Center for Nonlinear Dynamics
- Austin
- USA
| | - V. D. Gordon
- The University of Texas at Austin
- Department of Physics and Center for Nonlinear Dynamics
- Austin
- USA
| |
Collapse
|
18
|
Minner DE, Rauch P, Käs J, Naumann CA. Polymer-tethered lipid multi-bilayers: a biomembrane-mimicking cell substrate to probe cellular mechano-sensing. SOFT MATTER 2014; 10:1189-1198. [PMID: 24652490 DOI: 10.1039/c3sm52298a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cells tiptoe through their environment forming highly localized and dynamic focal contacts. Experiments on polymeric gels of adjustable elasticity have shown that cells probe the viscoelasticity of their environment through an adaptive process of focal contact assembly/disassembly that critically affects cell adhesion, morphology, and motility. However, the specific mechanisms of this process have not yet been fully revealed. Here we report, for the first time, that fibroblast adhesion, morphology, and migration can also be controlled by altering the number of bilayers in a stack of multiple polymer-tethered lipid bilayers stabilized via maleimide-sulfhydral coupling chemistry. The observed changes in cell morphology, migration, and cytoskeletal organization in response to bilayer stacking correspond well with those previously observed on polymeric substrates of different polymer crosslinking density suggesting that variations in bilayer stacking are associated with changes in substrate viscoelasticity. This is in conceptual agreement with the existing knowledge about the structural, dynamic, and mechanical properties of polymer-lipid composite materials. Several distinct features, such as the lateral mobility of individual cell linkers and the immobilization of linker clusters, make the described substrates highly attractive tools for the study of dynamic, mechano-regulated cell linkages and cellular mechano-sensing.
Collapse
Affiliation(s)
- Daniel E Minner
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202-3274, USA.
| | | | | | | |
Collapse
|
19
|
Hadorn M, Boenzli E, Sørensen KT, De Lucrezia D, Hanczyc MM, Yomo T. Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15309-15319. [PMID: 24294899 DOI: 10.1021/la402621r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The technological aspects of artificial vesicles as prominent cell mimics are evolving toward higher-order assemblies of functional vesicles with tissuelike architectures. Here, we demonstrate the spatially controlled DNA-directed bottom-up synthesis of complex microassemblies and macroassemblies of giant unilamellar vesicles functionalized with a basic cellular machinery to express green fluorescent protein and specified neighbor-to-neighbor interactions. We show both that the local and programmable DNA pairing rules on the nanoscale are able to direct the microscale vesicles into macroscale soft matter assemblies and that the highly sensitive gene-expression machinery remains intact and active during multiple experimental steps. An in silico model recapitulates the experiments performed in vitro and covers additional experimental setups highlighting the parameters that control the DNA-directed bottom-up synthesis of higher-order self-assembled structures. The controlled assembly of a functional vesicle matrix may be useful not only as simplified natural tissue mimics but also as artificial scaffolds that could interact and support living cells.
Collapse
Affiliation(s)
- Maik Hadorn
- Center for Fundamental Living Technology (FLinT), Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Odense, Denmark
| | | | | | | | | | | |
Collapse
|
20
|
Chen H, Angerer JI, Napoleone M, Reininger AJ, Schneider SW, Wixforth A, Schneider MF, Alexander-Katz A. Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor. BIOMICROFLUIDICS 2013; 7:64113. [PMID: 24396547 PMCID: PMC3869831 DOI: 10.1063/1.4833975] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/29/2013] [Indexed: 05/04/2023]
Abstract
Primary hemostasis and blood clotting is known to be influenced by the red blood cell volume fraction (hematocrit) in blood. Depressed or elevated levels of red blood cells can lead to vascular perfusion problems ranging from bleeding to thrombus formation. The early stage of hemostasis and thus blood clotting in all vessel sections from the arterial to the venous system involves the adhesion of platelets to von Willebrand factor. Here we present experimental and theoretical results showing that the adhesion probability of platelets to von Willebrand factor is strongly and nonlinearly dependent on hematocrit and flow rate. Interestingly, the actual binding forces are not markedly different, which suggest that the origin of such behavior is in the distribution of platelets. Using hydrodynamic simulations of a simple model, we explicitly show that the higher the hematocrit and the flow rate, the larger the amount of platelets residing close to the wall. Our simulation results, which are in excellent agreement with the experimental observations, explain why such phenomena occur. We believe that the nonhomogeneous red blood cell distribution as well as the shear dependent hydrodynamic interaction is key for the accumulation of platelets on the vessel wall. The work we present here is an important step forward from our earlier work on single molecules and extends into the collective cellular behavior of whole blood. It sheds new light on the correlation between hematocrit and the initial steps in hemostasis and thrombosis, and outlines advances for the treatment of vascular diseases associated with high levels of red blood cells. These results are not only highly relevant for the field of hemostasis and the physics of blood clotting but are also of powerful impact in applied science most obviously in drug delivery and colloidal science.
Collapse
Affiliation(s)
- Hsieh Chen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA
| | - Jennifer I Angerer
- Experimental Physics I, Biological Physics Group, University of Augsburg, 86159 Augsburg, Germany ; Department of Transfusion Medicine/Haemostaseology, University Clinic Munich, LMU, 80337 Munich, Germany
| | - Marina Napoleone
- Department of Transfusion Medicine/Haemostaseology, University Clinic Munich, LMU, 80337 Munich, Germany
| | | | - Stefan W Schneider
- Department of Dermatology, Venereology, and Allergology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg Ruprecht-Karls-University, 68167 Mannheim, Germany
| | - Achim Wixforth
- Experimental Physics I, Biological Physics Group, University of Augsburg, 86159 Augsburg, Germany
| | - Matthias F Schneider
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
21
|
Blount MJ, Miksis MJ, Davis SH. The equilibria of vesicles adhered to substrates by short-ranged potentials. Proc Math Phys Eng Sci 2013; 469:20120729. [PMID: 23653527 DOI: 10.1098/rspa.2012.0729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/21/2013] [Indexed: 11/12/2022] Open
Abstract
In equilibrium, a vesicle that is adhered to a horizontal substrate by a long-range attractive, short-range repulsive force traps a thin layer of fluid beneath it. In the asymptotic limit that this layer is very thin, there are quasi-two-dimensional boundary-layer structures near the edges of the vesicle, where the membrane's shape is governed by a balance between bending and adhesive stresses. These boundary layers are analysed to obtain corrections to simpler models that instead represent the adhesive interaction by a contact potential, thereby resolving apparent discontinuities that arise when such models are used. Composite expansions of the shapes of two-dimensional vesicles are derived. When, in addition, the adhesive interaction is very strong, there is a nested boundary-layer structure for which the adhesive boundary layers match towards sharp corners where bending stresses remain important but adhesive stresses are negligible. Outside these corners, bending stresses are negligible and the vesicle's shape is given approximately by the arc of a circle. Simple composite expansions of the vesicle's shape are derived that account for the shape of the membrane inside these corners.
Collapse
Affiliation(s)
- Maurice J Blount
- Department of Engineering Sciences and Applied Mathematics , Northwestern University , Evanston, IL 60208, USA
| | | | | |
Collapse
|
22
|
Körner A, Deichmann C, Rossetti FF, Köhler A, Konovalov OV, Wedlich D, Tanaka M. Cell differentiation of pluripotent tissue sheets immobilized on supported membranes displaying cadherin-11. PLoS One 2013; 8:e54749. [PMID: 23424619 PMCID: PMC3570561 DOI: 10.1371/journal.pone.0054749] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/14/2012] [Indexed: 12/12/2022] Open
Abstract
Investigating cohesive tissue sheets in controlled cultures still poses a challenge since the complex intercellular interactions are difficult to mimic in in vitro models. We used supported lipid membranes functionalized by the adhesive part of the extracellular domain of the cell adhesion molecule cadherin-11 for the immobilization of pluripotent tissue sheets, the animal cap isolated from Xenopus laevis blastula stage embryos. Cadherin-11 was bound via histidine tag to lipid membranes with chelator head groups. In the first step, quantitative functionalization of the membranes with cadherin-11 was confirmed by quartz crystal microbalance and high energy specular X-ray reflectivity. In the next step, animal cap tissue sheets induced to neural crest cell fate were cultured on the membranes functionalized with cadherin-11. The adhesion of cells within the cohesive tissue was significantly dependent on changes in lateral densities of cadherin-11. The formation of filopodia and lamellipodia in the cohesive tissue verified the viability and sustainability of the culture over several hours. The expression of the transcription factor slug in externally induced tissue demonstrated the applicability of lipid membranes displaying adhesive molecules for controlled differentiation of cohesive pluripotent tissue sheets.
Collapse
Affiliation(s)
- Alexander Körner
- Physical Chemistry of Biosystems, Physical Chemistry Institute, University of Heidelberg, Heidelberg, Germany
| | - Christina Deichmann
- Cell and Developmental Biology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Fernanda F. Rossetti
- Physical Chemistry of Biosystems, Physical Chemistry Institute, University of Heidelberg, Heidelberg, Germany
- * E-mail: (FFR); (DW)
| | - Almut Köhler
- Cell and Developmental Biology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Doris Wedlich
- Cell and Developmental Biology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail: (FFR); (DW)
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Physical Chemistry Institute, University of Heidelberg, Heidelberg, Germany
- Cell Biophysics Laboratory, Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
23
|
Controlled lateral packing of insulin monolayers influences neuron polarization in solid-supported cultures. Colloids Surf B Biointerfaces 2013; 107:59-67. [PMID: 23466543 DOI: 10.1016/j.colsurfb.2013.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 12/21/2022]
Abstract
Neurons are highly polarized cells, composed of one axon and several branching dendrites. One important issue in neurobiology is to understand the molecular factors that determine the neuron to develop polarized structures. A particularly early event, in neurons still lacking a discernible axon, is the segregation of IGF-1 (Insulin like Growth Factor-1) receptors in one neurite. This receptor can be activated by insulin in bulk, but, it is not known if changes of insulin organization as a monomolecular film may affect neuron polarization. To this end, in this work we developed solid-supported Langmuir-Blodgett films of insulin with different surface packing density. Hyppocampal pyramidal neurons, in early stage of differentiation, were cultured onto those substrates and polarization was studied after 24 h by confocal microscopy. Also we used surface reflection interference contrast microscopy and confocal microscopy to study attachment patterns and morphology of growth cones. We observed that insulin films packed at 14 mN/m induced polarization in a similar manner to high insulin concentration in bulk, but insulin packed at 44 mN/m did not induce polarization. Our results provide novel evidence that the neuron polarization through IGF-1 receptor activation can be selectively modulated by the lateral packing of insulin organized as a monomolecular surface for cell growth.
Collapse
|
24
|
Biomimetic membrane platform: fabrication, characterization and applications. Colloids Surf B Biointerfaces 2012; 103:510-6. [PMID: 23261574 DOI: 10.1016/j.colsurfb.2012.10.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 10/20/2012] [Accepted: 10/24/2012] [Indexed: 11/24/2022]
Abstract
A facile method for assembly of biomimetic membranes serving as a platform for expression and insertion of membrane proteins is described. The membrane architecture was constructed in three steps: (i) assembly/printing of α-laminin peptide (P19) spacer on gold to separate solid support from the membrane architecture; (ii) covalent coupling of different lipid anchors to the P19 layer to serve as stabilizers of the inner leaflet during bilayer formation; (iii) lipid vesicle spreading to form a complete bilayer. Two different lipid membrane systems were examined and two different P19 architectures prepared by either self-assembly or μ-contact printing were tested and characterized using contact angle (CA) goniometry, surface plasmon resonance (SPR) spectroscopy and imaging surface plasmon resonance (iSPR). It is shown that surface coverage of cushion layer is significantly improved by μ-contact printing thereby facilitating bilayer formation as compared to self-assembly. To validate applicability of proposed methodology, incorporation of Cytochrome bo(3) ubiquinol oxidase (Cyt-bo(3)) into biomimetic membrane was performed by in vitro expression technique which was further monitored by surface plasmon enhanced fluorescence spectroscopy (SPFS). The results showed that solid supported planar membranes, tethered by α-laminin peptide cushion layer, provide an attractive environment for membrane protein insertion and characterization.
Collapse
|
25
|
Lin YH, Minner DE, Herring VL, Naumann CA. Physisorbed Polymer-Tethered Lipid Bilayer with Lipopolymer Gradient. MATERIALS 2012. [PMCID: PMC5448999 DOI: 10.3390/ma5112243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yu-Hung Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St., Indianapolis, IN 46202, USA; E-Mails: (Y.-H.L.); (D.E.M.); (V.L.H.)
| | - Daniel E. Minner
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St., Indianapolis, IN 46202, USA; E-Mails: (Y.-H.L.); (D.E.M.); (V.L.H.)
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, 755 W Michigan St., Indianapolis, IN 46202, USA
| | - Vincent L. Herring
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St., Indianapolis, IN 46202, USA; E-Mails: (Y.-H.L.); (D.E.M.); (V.L.H.)
| | - Christoph A. Naumann
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St., Indianapolis, IN 46202, USA; E-Mails: (Y.-H.L.); (D.E.M.); (V.L.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-317-278-2512
| |
Collapse
|
26
|
Boettiger D. Mechanical control of integrin-mediated adhesion and signaling. Curr Opin Cell Biol 2012; 24:592-9. [PMID: 22857903 DOI: 10.1016/j.ceb.2012.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 01/13/2023]
Abstract
Integrin-mediated adhesion is controlled by the number of bonds between cell surface integrins and substrate-bound ligands. Integrin-ligand affinity is modulated by chemical allostery, mechanical allostery and integrin clustering. This review analyzes how each of these factors changes through the phases of cell attachment, adhesion strengthening, and clustering. The analysis predicts a dominant role of mechanical factors in both adhesive regulation and integrin signaling for adherent cells. New approaches and experimental analyses will be required to substantiate this hypothesis.
Collapse
Affiliation(s)
- David Boettiger
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Abstract
Tremendous progress has been made in recent years in understanding the working of the living cell, including its micro-anatomy, signalling networks, and regulation of genes. However, an understanding of cellular phenomena using fundamental laws starting from first principles is still very far away. Part of the reason is that a cell is an active and exquisitely complex system where every part is linked to the other. Thus, it is difficult or even impossible to design experiments that selectively and exclusively probe a chosen aspect of the cell. Various kinds of idealised systems and cell models have been used to circumvent this problem. An important example is a giant unilamellar vesicle (GUV, also called giant liposome), which provides a cell-sized confined volume to study biochemical reactions as well as self-assembly processes that occur on the membrane. The GUV membrane can be designed suitably to present selected, correctly-oriented cell-membrane proteins, whose mobility is confined to two dimensions. Here, we present recent advances in GUV design and the use of GUVs as cell models that enable quantitative testing leading to insight into the working of real cells. We briefly recapitulate important classical concepts in membrane biophysics emphasising the advantages and limitations of GUVs. We then present results obtained over the last decades using GUVs, choosing the formation of membrane domains and cell adhesion as examples for in-depth treatment. Insight into cell adhesion obtained using micro-interferometry is treated in detail. We conclude by summarising the open questions and possible future directions.
Collapse
Affiliation(s)
- Susanne F Fenz
- Leiden Institute of Physics: Physics of Life Processes, Leiden University, The Netherlands
| | | |
Collapse
|
28
|
Wang X, Shindel MM, Wang SW, Ragan R. Elucidating driving forces for liposome rupture: external perturbations and chemical affinity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7417-7427. [PMID: 22509939 DOI: 10.1021/la300127m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy (AFM) studies under aqueous buffer probed the role of chemical affinity between liposomes, consisting of large unilamellar vesicles, and substrate surfaces in driving vesicle rupture and tethered lipid bilayer membrane (tLBM) formation on Au surfaces. 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio) propionate] (DSPE-PEG-PDP) was added to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles to promote interactions via Au-thiolate bond formation. Forces induced by an AFM tip leading to vesicle rupture on Au were quantified as a function of DSPE-PEG-PDP composition with and without osmotic pressure. The critical forces needed to initiate rupture of vesicles with 2.5, 5, and 10 mol % DSPE-PEG-PDP are approximately 1.1, 0.8, and 0.5 nN, respectively. The critical force needed for tLBM formation decreases from 1.1 nN (without osmotic pressure) to 0.6 nN (with an osmotic pressure due to 5 mM of CaCl(2)) for vesicles having 2.5 mol % DSPE-PEG-PDP. Forces as high as 5 nN did not lead to LBM formation from pure POPC vesicles on Au. DSPE-PEG-PDP appears to be important to anchor and deform vesicles on Au surfaces. This study demonstrates how functional lipids can be used to tune vesicle-surface interactions and elucidates the role of vesicle-substrate interactions in vesicle rupture.
Collapse
Affiliation(s)
- Xi Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697-2575, USA
| | | | | | | |
Collapse
|
29
|
Elineni K, Gallant N. Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution. Biophys J 2011; 101:2903-11. [DOI: 10.1016/j.bpj.2011.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 11/03/2011] [Accepted: 11/09/2011] [Indexed: 12/14/2022] Open
|
30
|
PUECH PH, ASKOVIC V, DE GENNES PG, BROCHARD-WYART F. DYNAMICS OF VESICLE ADHESION: SPREADING VERSUS DEWETTING COUPLED TO BINDER DIFFUSION. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048006000082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We study the kinetics of specific adhesion of giant vesicles on complemetary (bilayer-decorated) solid surfaces. Tensed vesicles exhibit a single adhesion zone that grows slowly. Floppy vesicles adhere via many small adhesion spots that grow and fuse, merging finally into a large adhesive zone. Using approaches derived from Ref. 12, we show how the progressive mobilization of adhesive molecules (diffusing toward the patch) can explain our experimental observations.
Collapse
Affiliation(s)
- P.-H. PUECH
- Inserm, U600-13000 Marseille, France
- Laboratoire PCC/UMR 168, Institut Curie, 11 rue P. & M. Curie, 75005 Paris, France
| | - V. ASKOVIC
- Laboratoire PCC/UMR 168, Institut Curie, 11 rue P. & M. Curie, 75005 Paris, France
| | - P.-G. DE GENNES
- Laboratoire PCC/UMR 168, Institut Curie, 11 rue P. & M. Curie, 75005 Paris, France
| | - F. BROCHARD-WYART
- Laboratoire PCC/UMR 168, Institut Curie, 11 rue P. & M. Curie, 75005 Paris, France
| |
Collapse
|
31
|
|
32
|
Statistical Thermodynamics of Adhesion Points in Supported Membranes. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-387720-8.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Robbins GP, Lee D, Katz JS, Frail PR, Therien MJ, Crocker JC, Hammer DA. Effects of Membrane Rheology on Leuko-polymersome Adhesion to Inflammatory Ligands. SOFT MATTER 2011; 7:769-779. [PMID: 23139698 PMCID: PMC3490436 DOI: 10.1039/c0sm00554a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A strategy for treating inflammatory disease is to create micro-particles with the adhesive properties of leukocytes. The underlying rheology of deformable adhesive microspheres would be an important factor in the adhesive performance of such particles. In this work the effect of particle deformability on the selectin-mediated rolling of polymer vesicles (polymersomes) is evaluated. The rheology of the polymersome membrane was modulated by cross-linking unsaturated side-chains within the hydrophobic core of the membrane. Increased membrane rigidity resulted in decreased rates of particle recruitment rather than decreased average rolling velocities. Reflective interference contrast microscopy of rolling vesicles confirmed that neither flaccid nor rigid vesicles sustained close contacts with the substrate during rolling adhesion. A variable-shear rate parallel-plate flow chamber was employed to evaluate individual vesicles rolling on substrates under different flow conditions. Analysis of the trajectories of single flaccid vesicles revealed several distinct populations of rolling vesicles; however, some of these populations disappear when the vesicle membranes are made rigid. This work shows that membrane mechanics affects the capture, but not the rolling dynamics, of adherent leuko-polymersomes.
Collapse
Affiliation(s)
- Gregory P. Robbins
- School of Engineering and Applied Sciences, Dept of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dooyoung Lee
- School of Engineering and Applied Sciences, Dept of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joshua S. Katz
- School of Engineering and Applied Sciences, Dept of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul R. Frail
- School of Arts and Sciences, Dept of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Mike J. Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - John C. Crocker
- School of Engineering and Applied Sciences, Dept of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Daniel A. Hammer
- School of Engineering and Applied Sciences, Dept of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- School of Engineering and Applied Sciences, Dept of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
34
|
Weil N, Farago O. Entropy-driven aggregation of adhesion sites of supported membranes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 33:81-87. [PMID: 20848152 DOI: 10.1140/epje/i2010-10646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
We study, by means of mean-field calculations and Monte Carlo simulations of a lattice gas model, the distribution of adhesion sites of a bilayer membrane and a supporting flat surface. Our model accounts for the many-body character of the attractive interactions between adhesion points induced by the membrane thermal fluctuations. We show that while the fluctuation-mediated interactions alone are not sufficient to allow the formation of aggregation domains, they greatly reduce the strength of the direct interactions required to facilitate cluster formation. Specifically, for adhesion molecules interacting via a short-range attractive potential, the strength of the direct interactions required for aggregation is reduced by about a factor of two to below the thermal energy k(B)T.
Collapse
Affiliation(s)
- N Weil
- Department of Biomedical Engineering, Ben Gurion University, Be'er Sheva 84105, Israel
| | | |
Collapse
|
35
|
Contreras-Naranjo JC, Silas JA, Ugaz VM. Reflection interference contrast microscopy of arbitrary convex surfaces. APPLIED OPTICS 2010; 49:3701-3712. [PMID: 20648136 DOI: 10.1364/ao.49.003701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Current accurate applications of reflection interference contrast microscopy (RICM) are limited to known geometries; when the geometry of the object is unknown, an approximated fringe spacing analysis is usually performed. To complete an accurate RICM analysis in more general situations, we review and improve the formulation for intensity calculation based on nonplanar interface image formation theory and develop a method for its practical implementation in wedges and convex surfaces. In addition, a suitable RICM model for an arbitrary convex surface, with or without a uniform layer such as a membrane or ultrathin coating, is presented. Experimental work with polymer vesicles shows that the coupling of the improved RICM image formation theory, the calculation method, and the surface model allow an accurate reconstruction of the convex bottom shape of an object close to the substrate by fitting its experimental intensity pattern.
Collapse
Affiliation(s)
- Jose C Contreras-Naranjo
- Artie McFerrin Department of Chemical Engineering, Jack E. Brown Engineering Building, Texas A&M University, College Station, Texas 77843-3122, USA
| | | | | |
Collapse
|
36
|
Farago O. Fluctuation-induced attraction between adhesion sites of supported membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:050902. [PMID: 20866177 DOI: 10.1103/physreve.81.050902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Indexed: 05/29/2023]
Abstract
We use scaling arguments and coarse-grained Monte Carlo simulations to study the fluctuation-mediated interactions between a pair of adhesion sites of a bilayer membrane and a supporting surface. We find that the potential of mean force is an infinitely long range attractive potential that grows logarithmically with the pair distance r : ϕ(r)/k B T=c ln r, where the constant c=2 and c=1 for nonstressed and stressed membranes, respectively. When, in addition to excluded volume repulsion, the membrane also interacts with the underlying surface through a height-dependent attractive potential, the potential ϕ(r) is screened at large pair distances.
Collapse
Affiliation(s)
- Oded Farago
- Department of Biomedical Engineering, Ben Gurion University, Be'er Sheva 84105, Israel
| |
Collapse
|
37
|
Limozin L, Sengupta K. Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Chemphyschem 2010; 10:2752-68. [PMID: 19816893 DOI: 10.1002/cphc.200900601] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adhesion can be quantified by measuring the distance between the interacting surfaces. Reflection interference contrast microscopy (RICM), with its ability to measure inter-surface distances under water with nanometric precision and milliseconds time resolution, is ideally suited to studying the dynamics of adhesion in soft systems. Recent technical developments, which include innovative image analysis and the use of multi-coloured illumination, have led to renewed interest in this technique. Unambiguous quantitative measurements have been achieved for colloidal beads and model membranes, thus revealing new insights and applications. Quantification of data from cells shows exciting prospects. Herein, we review the basic principles and recent developments of RICM applied to studies of dynamical adhesion processes in soft matter and cell biology and provide practical hints to potential users.
Collapse
Affiliation(s)
- Laurent Limozin
- Adhesion and Inflammation, CNRS UMR 6212, Inserm U600, Aix-Marseille University, Luminy, Marseille, France.
| | | |
Collapse
|
38
|
Dustin ML. Insights into function of the immunological synapse from studies with supported planar bilayers. Curr Top Microbiol Immunol 2010; 340:1-24. [PMID: 19960306 DOI: 10.1007/978-3-642-03858-7_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate and adaptive immunity is dependent upon reliable cell-cell communication mediated by direct interactions of cell surface receptors with ligands integrated into the surface of apposing cells or bound directly to the surface as in complement deposition or antibody mediated recognition through Fc receptors. Supported lipid bilayers formed on glass surfaces offer a useful model system in which to explore some basic features of molecular interactions in immunological relevant contacts, which include signal integration and effector functions through immunological synapses and kinapses. We have exploited that lateral mobility of molecules in the supported planar bilayers and fluorescence microscopy to develop a system for measurement of two-dimensional affinities and kinetic rates in the contact area, which is of immunological interest. Affinity measurements are based on a modified Scatchard analysis. Measurements of kinetic rates are based on fluorescence photo bleaching after recovery at the level of the entire contact area. This has been coupled to a reaction-diffusion equation that allows calculation of on- and off-rates. We have found that mixtures of ligands in supported planar bilayers can effectively activate T lymphocytes and simultaneously allow monitoring of the immunological synapse. Recent studies in planar bilayers have provided additional insights into organization principles of cell-cell interfaces. Perennial problems in understanding cell-cell communication are yielding quantitative measurements based on planar bilayers in areas of ligand-driven receptor clustering and the role of the actin cytoskeleton in immune cell activation. A major goal for the field is determining quantitative rules involved in signaling complex formation by innate and adaptive receptor systems.
Collapse
Affiliation(s)
- Michael L Dustin
- Helen L. and Martin S. Kimmel Center for Biology and Medicine in the Skirball Institute for Biomolecular Medicine and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
39
|
Paszek MJ, Boettiger D, Weaver VM, Hammer DA. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput Biol 2009; 5:e1000604. [PMID: 20011123 PMCID: PMC2782178 DOI: 10.1371/journal.pcbi.1000604] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 11/09/2009] [Indexed: 01/16/2023] Open
Abstract
Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled. Critical cell decisions, including whether to live, proliferate, or assemble into tissue structures, are directed by cues from the extracellular matrix, the external protein scaffold that surrounds cells. Integrin receptors on the cell surface bind to the extracellular matrix and cluster into complexes that translate matrix cues into the set of instructions a cell follows. Using a newly developed model of the cell-matrix interface, in this work we detail a simple yet efficient mechanism by which integrins could “sense” important matrix properties, including chemical composition and mechanical stiffness, and cluster appropriately. This mechanism relies on mechanical resistance to integrin-matrix interaction provided by the glycocalyx, the slimy sugar and protein coating on the cell, as well as the stiffness of the matrix and the cell itself. In general, the resistance alters integrin-ligand reaction rates, such that integrin clustering is favored for many physiologically relevant conditions. Interestingly, the mechanical properties of the cell and ECM are altered in many prevalent diseases, such as cancer, and our work suggests how these mechanical perturbations might adversely influence integrin function.
Collapse
Affiliation(s)
- Matthew J. Paszek
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - David Boettiger
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
- Department of Anatomy, University of California, San Francisco, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, Institute for Regenerative Medicine and UCSF Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Daniel A. Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Binding of platelets to fibrinogen via integrin alphaIIbbeta3 stimulates cytoskeletal reorganization and spreading. These responses depend on tyrosine phosphorylation of multiple proteins by Src family members and Syk. Among Src substrates in platelets is adhesion- and degranulation-promoting adapter protein (ADAP), an adapter with potential binding partners: SLP-76, VASP, and SKAP-HOM. During studies of platelet function under shear flow, we discovered that ADAP(-/-) mouse platelets, unlike ADAP+/+ platelets, formed unstable thrombi in response to carotid artery injury. Moreover, fibrinogen-adherent ADAP(-/-) platelets in shear flow ex vivo showed reduced spreading and smaller zones of contact with the matrix. These abnormalities were not observed under static conditions, and they could not be rescued by stimulating platelets with a PAR4 receptor agonist or by direct alphaIIbbeta3 activation with MnCl2, consistent with a defect in outside-in alphaIIbbeta3 signaling. ADAP+/+ platelets subjected to shear flow assembled F-actin-rich structures that colocalized with SLP-76 and the Rac1 exchange factor, phospho-Vav1. In contrast, platelets deficient in ADAP, but not those deficient in VASP or SKAP-HOM, failed to form these structures. These results establish that ADAP is an essential component of alphaIIbbeta3-mediated platelet mechanotransduction that promotes F-actin assembly and enables platelet spreading and thrombus stabilization under fluid shear stress.
Collapse
|
41
|
Liu P, Zhang YW, Yu H, Zhang X, Cheng QH, Lu C, Bonfield W. Spreading of an anchorage-dependent cell on a selectively ligand-coated substrate mediated by receptor-ligand binding. J Biomed Mater Res A 2009; 91:806-13. [DOI: 10.1002/jbm.a.32258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Streicher P, Nassoy P, Bärmann M, Dif A, Marchi-Artzner V, Brochard-Wyart F, Spatz J, Bassereau P. Integrin reconstituted in GUVs: a biomimetic system to study initial steps of cell spreading. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2291-300. [PMID: 19665445 DOI: 10.1016/j.bbamem.2009.07.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 07/10/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
A novel in vitro membrane system mimicking the first steps of integrin-mediated cell spreading has been developed and characterized. We have reconstituted the transmembrane alpha(IIb)beta(3) integrin into giant unilamellar vesicles (GUVs). The reconstitution process has been validated by analyzing protein incorporation and biological activity by checking the specific interaction of GUVs containing integrin with quantum dots (QD) or surfaces coated with the integrin receptor tri-peptide RGD.(1) The spreading dynamics of integrin-functionalized GUVs onto fibrinogen-coated surfaces has been monitored by Reflection Interference Contrast Microscopy (RICM). Our results are quantitatively consistent with a theoretical model based on a dewetting process coupled to binder diffusion and provide a comprehensive description of the following sequence: i) nucleation and growth of adhesive patches coupled to the diffusion of the adhesive proteins to these adhesive zones ii) fusion of patches and formation of an adhesive ring iii) complete spreading of the GUV by dewetting of the central liquid film from the border to form an adhesive circular patch that is not significantly enriched in integrins, as compared to the unbound membrane. This finding is consistent with the recognized role of the actin cytoskeleton in stabilizing focal complexes and focal adhesions in a cell-extracellular matrix contact. These very large unilamellar integrin-containing vesicles provide a unique artificial system, which could be further developed towards realistic cell mimic and used to study the complexity of integrin-mediated cell spreading.
Collapse
Affiliation(s)
- Pia Streicher
- Institut Curie, Centre de Recherche, Université Pierre et Marie Curie, F-75248 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2009; 106:12341-6. [PMID: 19597158 DOI: 10.1073/pnas.0903052106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanometer-scale intermembrane contact areas (CAs) formed between single small unilamellar lipid vesicles (SUVs) and planar supported lipid bilayers are quantified by measuring fluorescence resonance energy transfer (FRET) between a homogenous layer of donor fluorophores labeling the supported bilayer and acceptor fluorophores labeling the SUVs. The smallest CAs detected in our setup between biotinylated SUVs and dense monolayers of streptavidin were approximately 20 nm in radius. Deformation of SUVs is revealed by comparing the quenching of the donors to calculations of FRET between a perfectly spherical shell and a flat surface containing complementary fluorophores. These results confirmed the theoretical prediction that the degree of deformation scales with the SUV diameter. The size of the CA can be controlled experimentally by conjugating polyethylene glycol polymers to the SUV or the surface and thereby modulating the interfacial energy of adhesion. In this manner, we could achieve secure immobilization of SUVs under conditions of minimal deformation. Finally, we demonstrate that kinetic measurements of CA, at constant adhesion, can be used to record in real-time quantitative changes in the bilayer tension of a nano-scale lipid membrane system.
Collapse
|
44
|
Smith AS, Sackmann E. Progress in mimetic studies of cell adhesion and the mechanosensing. Chemphyschem 2009; 10:66-78. [PMID: 19115325 DOI: 10.1002/cphc.200800683] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vesicle-substrate adhesion has been studied for over two decades with the motivation to understand and mimic cell adhesion. In recent years, with progress in theoretical modelling, the development of experimental techniques, and improved data-analysis procedures, considerable advances have been made in the understanding of the adhesion process. It is this progress which constitutes the focus of this review.
Collapse
Affiliation(s)
- Ana-Suncana Smith
- II. Institut für theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57/III, Stuttgart,D-70550, Germany.
| | | |
Collapse
|
45
|
Supported double membranes. J Struct Biol 2009; 168:183-9. [PMID: 19236921 DOI: 10.1016/j.jsb.2009.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/12/2009] [Accepted: 02/17/2009] [Indexed: 12/21/2022]
Abstract
Planar model membranes, like supported lipid bilayers and surface-tethered vesicles, have been proven to be useful tools for the investigation of complex biological functions in a significantly less complex membrane environment. In this study, we introduce a supported double membrane system that should be useful for studies that target biological processes in the proximity of two lipid bilayers such as the periplasm of bacteria and mitochondria or the small cleft between pre- and postsynaptic neuronal membranes. Large unilamellar vesicles (LUV) were tethered to a preformed supported bilayer by a biotin-streptavidin tether. We show from single particle tracking (SPT) experiments that these vesicle are mobile above the plane of the supported membrane. At higher concentrations, the tethered vesicles fuse to form a second continuous bilayer on top of the supported bilayer. The distance between the two bilayers was determined by fluorescence interference contrast (FLIC) microscopy to be between 16 and 24nm. The lateral diffusion of labeled lipids in the second bilayer was very similar to that in supported membranes. SPT experiments with reconstituted syntaxin-1A show that the mobility of transmembrane proteins was not improved when compared with solid supported membranes.
Collapse
|
46
|
Abstract
Imaging membrane dynamics is an important goal, motivated by the abundance of biochemical and biophysical events that are orchestrated at, or by, cellular membranes. The short length scales, fast timescales, and environmental requirements of membrane phenomena present challenges to imaging experiments. Several technical advances offer means to overcome these challenges, and we describe here three powerful techniques applicable to membrane imaging: total internal reflection fluorescence (TIRF) microscopy, fluorescence interference contrast (FLIC) microscopy, and fluorescence correlation spectroscopy (FCS). For each, we discuss the physics underpinning the approach, its practical implementation, and recent examples highlighting its achievements in exploring the membrane environment.
Collapse
Affiliation(s)
- Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
47
|
Lee HY, Lee BK, Park JW, Jung HS, Kim JM, Kawai T. Self-organized functional lipid vesicle array for sensitive immunoassay chip. Ultramicroscopy 2008; 108:1325-7. [DOI: 10.1016/j.ultramic.2008.04.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Zhang CZ, Wang ZG. Nucleation of membrane adhesions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:021906. [PMID: 18352050 DOI: 10.1103/physreve.77.021906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 12/11/2007] [Indexed: 05/26/2023]
Abstract
Recent experimental and theoretical studies of biomimetic membrane adhesions [Bruinsma, Phys. Rev. E 61, 4253 (2000); Boulbitch, Biophys. J. 81, 2743 (2001)] suggested that adhesion mediated by receptor interactions is due to the interplay between membrane undulations and a double-well adhesion potential, and should be a first-order transition. We study the nucleation of membrane adhesion by finding the minimum-energy path on the free energy surface constructed from the bending free energy of the membrane and the double-well adhesion potential. We find a nucleation free energy barrier around 20k(B)T for adhesion of flexible membranes, which corresponds to fast nucleation kinetics with a time scale of the order of seconds. For cell membranes with a larger bending rigidity due to the actin network, the nucleation barrier is higher and may require active processes such as the reorganization of the cortex network to overcome this barrier. Our scaling analysis suggests that the geometry of the membrane shapes of the adhesion contact is controlled by the adhesion length that is determined by the membrane rigidity, the barrier height, and the length scale of the double-well potential, while the energetics of adhesion is determined by the depths of the adhesion potential. These results are verified by numerical calculations.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
49
|
Lorz BG, Smith AS, Gege C, Sackmann E. Adhesion of giant vesicles mediated by weak binding of sialyl-LewisX to E-selectin in the presence of repelling poly(ethylene glycol) molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:12293-12300. [PMID: 17918980 DOI: 10.1021/la701824q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Prior to establishing tight contact with the endothelium, cells such as leukocytes or cancer cells use the recognition between sialyl-LewisX ligands and E-selectin receptors to establish weak, reversible adhesion and to roll along the vessel wall. We study the physical aspects of this process by constructing a mimetic system that consists of a giant fluid vesicle with incorporated lipid-anchored sialyl-LewisX molecules that bind to E-selectin that is immobilized on the flat substrate. The vesicles also carry a certain fraction of repelling PEG2000 molecules. We analyze the equilibrium state of adhesion in detail by means of reflection interference contrast microscopy and find that the adhesion process relies purely on the formation of one or more adhesion domains within the vesicle-substrate contact zone. We find that the content of ligands in the vesicle must be above 5 mol % to establish specific contacts. All concentrations of sialyl-LewisX above 8 mol % provide a very similar final state of adhesion. However, the size and shape of the adhesion domains strongly depend on both the concentrations of E-selectin (0-3500 molecules/microm2) and PEG2000 (0-5 mol %). At 3500 E-selectin molecules/microm2 and small concentrations of PEG2000, the vesicle-substrate contact is maximized and fully occupied by a single adhesion domain. At concentrations of 5 mol %, PEG2000 completely impedes the specific binding to any substrate. Lastly, an increase in the adhesion strength is observed in systems with identical compositions if the reduced volume of the vesicles is larger.
Collapse
Affiliation(s)
- Barbara G Lorz
- E22 Institut für Biophysik, Technische Universität München, D-85748 Garching, Germany
| | | | | | | |
Collapse
|
50
|
Nam J, Santore MM. The adhesion kinetics of sticky vesicles in tension: the distinction between spreading and receptor binding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:10650-60. [PMID: 17824630 DOI: 10.1021/la7017709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We investigate the kinetics of spreading and adhesion between polymer vesicles decorated with avidin and biotin, held in micropipettes to maintain fixed tension and suppress membrane bending fluctuations. In this study, the density of avidin (actually Neutravidin) and biotin was varied, but was always sufficiently high so that lateral diffusion in the membrane was unimportant to the adhesive mechanism or rate. For a stunning result, we report a concentration-dependent distinction between adhesion and spreading: At low surface densities of avidin and biotin, irreversible vesicle adhesion is strong enough to break the membrane when vesicle separation is attempted, yet there is no spreading or "wetting". By this we mean that there is no development of an adhesion plaque beyond the initial radius of contact and there is no development of a meaningful contact angle. Conversely, at 30% functionalization and greater, membrane adhesion is manifest through a spreading process in which the vesicle held at lower tension partially engulfs the second vesicle, and the adhesion plaque grows, as does the contact angle. Generally, when spreading occurs, it starts abruptly, following a latent contact period whose duration decreases with increasing membrane functionality. A nucleation-type rate law describes the latency period, determined by competition between bending and sticking energy. The significance of this result is that, not only are membrane mechanics important to the development of adhesion in membranes of nanometer-scale thickness, mechanics can dominate and even mask adhesive features such as contact angle. This renders contact angle analyses inappropriate for some systems. The results also suggest that there exist large regions of parameter space where adhesive polymeric vesicles will behave qualitatively differently from their phospholipid counterparts. This motivates different strategies to design polymeric vesicles for applications such as targeted drug delivery and biomimetic scavengers.
Collapse
Affiliation(s)
- Jin Nam
- Department of Polymer Science and Engineering, 120 Governors Drive, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|